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Časopis pro pëstovánfi matematiky, roč. 99 (1974). Praha 

FUNCTIONS CONTINUOUS IN THE FINE TOPOLOGY 
FOR THE HEAT EQUATION 

IVAN NETUKA and LUDĚK ZAJÍČEK, Praha 

(Received August 16,1973 

Introduction. One of the most important concepts of potential theory is the notion 
of superharmonic (or hyperharmonic) function. Superharmonic functions having 
continuous second partial derivatives date back to the nineteenth century, but lower 
semicontinuous superharmonic functions were first introduced by F. RIESZ in 1926. 
Nowadays, in some axiomatic systems of potential theory, hyperharmonic function 
becomes a primitive notion (compare [5]). 

In view of the fact that hyperharmonic functions form the core of potential theory, 
for certain problems an intrinsically defined topology appears to be more suitable 
than the Euclidean topology or, in the general context of harmonic spaces, the original 
locally compact topology. The new topology, called the fine topology, can be defined 
as the smallest topology making continuous all hyperharmonic functions. The notion 
of the fine topology corresponding to the Laplace case and first important results 
on the subject are connected with the names of French mathematicians M. BRELOT 
and H. CARTAN (about 1945). The former also studied systematically the fine topo
logy and the closely related concept of thinness in a more or less general setting in 
a long series of papers and lectures (see [4] where the corresponding bibliography 
may be found). 

Although some special problems for the heat equation were treated by means 
of methods of potential theory, in the first half of the century there existed no unified 
potential theory including the case of both elliptic and parabolic equations. In 1954, 
J. L. DOOB introduced an axiomatic system of potential theory and remarked that the 
theory may be applied also to the heat equation drawing by this parabolical equations 
to potential theory. This axiomatic approach was extended, deepened and developed 
chiefly by H. BAUER and C. CONSTANTINESCU and A. CORNEA (see [2] and 5]) and 

all important results of potential theory were rediscovered in this more general frame. 
In particular, the notion of the fine topology T for the heat equation in ,R"+1, the 
Euclidean (n -f- l)-space, has a good sense. Some properties of T are known, for 
example, T is completely regular and (Rn+1, T) is a Baire space (see [4] or [7]). Of 

300 



course, the topology T essentially differs from the Euclidean topology. Let us notice 
that there is no infinite compact set in the fine topology and T is neither normal nor 
paracompact. Moreover, it does not possess the Lindeldfs property and is totally 
disconnected (see [3]). One may ask how complicated, from the point of view of the 
topology of Rn + 1, can be the nature of T-continuous functions. It is the aim of this 
note to show that they cannot behave badly. More precisely, any T-continuous 
function is of Baire class 1 in the Euclidean topology. From this fact it will be deduced 
that each T-continuous function vanishing at the infinity can be expressed as a point-
wise limit of heat potentials with special properties. 

In the classical potential theory, that is in the Laplace case, it is known that a func
tion continuous in the corresponding fine topology is approximately continuous 
and, consequently, of Baire class 1 (compare [7], p. 165). 

Definitions and notation. In what follows, n ^ 1 will be a fixed integer. For any 
open set U of Rn+1 we shall denote by Jf(U) the collection of all functions h having 
continuous second partials on U and satisfying there 

n d^h dh 

j=idxj dxn+l 

Then / is a harmonic sheaf on Rn+1 possessing the Doob convergence property 
and Rn+1 endowed with ^ is a ^-Bauer space (Theorem 3.3.1 in [5]). The functions 
belonging to J^(U) and the hyperharmonic functions (with respect to (Rn+1, 3tf)) 
will be called parabolic and hyperparabolic functions, respectively. 

Recall the following definition (see [5], § 5.1). The fine topology on Rn+1 is the 
coarsest topology on Rn + 1 in which any hyperparabolic functions on any open set 
of Rn + 1 is continuous. Concepts relative to the fine topology will be prefixed by "fine" 
or "finely". 

The symbol k will stand for the (n + l)-dimensional Lebesgue measure in Rn+1. 
If M cz Rn+i a n d / i s a function defined on M, we shall write 

f /cU 
J M 

for the upper Lebesgue integral of/over M. 

For x = [ x j , . . . , xB + 1] e Rn + 1 and a > 0 we shall denote 

Hx = {yeR"+i;yn+1ixn+l}, 

K'x = {yeRn+l; \yt- x4| < i<x, i = 1, . . . , n, xn+l - a2 < yn+l < xn+l} , 

Q'x = { y e i R " + 1 ; " l ( x , - J,)2 :£ a2}". 
i = l 

We shall sometimes write K(x, a) and Q(x, a) instead of K*x and Qa
x9 respectively. 
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For our purposes the following result from [6] (p. 224) will be useful. There is 
a non-negative function Q0 continuous in H0 such that the following assertion 
is true: If u is a hyperparabolic function defined in a neighbourhood U of the origin 0 
and a > 0 such that the closure of KJ is contained in U, then 

(1) u(0) = a - " - 2 f u.Q0dk. 
JK(0,a) 

Moreover, the sign of equality holds in (1), provided u is parabolic on U. 

Given xejRn+1, put 

QJ(t) = Qo(i ' x) 

for £ e H^ while Qx(€) = 0 elsewhere and set 

v*(M) = f Qxdl9 Ma Rn + l . 
J M 

In the case that M is measurable (X) we shall write vx(M) in place of v*(M). 
Taking u = 1 in (1) we get easily 

(2) vx(K*) = (xn + 2 , xeRn + 1. 

Finally, we shall define the function G on Rn + 1 by 

^ ) = Z;;i2.exp(--X^K+i) for z r t + 1 > 0 , 
i = l 

G(z) = 0 for zn+1 = 0 . 

For any finite signed Borel measure ft with compact support in Rn+i the function 

x i-> G(x - y) dџ(y) 

on Rn+l will be denoted by Gp and called the heat potential of /L. 

Proposition. Let x e .Rw+1 and Vbe a fine neighbourhood of x. Then 

(3) l i m ^ l l ) = 0. 
- o + vx(Kl) 

Proof. We shall assume that Vis not an Euclidean neighbourhood of x, for other
wise (3) holds trivially. V being a fine neighbourhood of x there is a hyperparabolic 
function u defined on an open neighbourhood M of x such that 

oo > /? = lim inf u(y) — u(x) > 0 
V*y-.x 
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([5], Proposition 5.5. l). Fix an arbitrary e ^ 0 and define the function v on M by 

v=l +(ep)-l(u~u(x)). 

It is clear that v is hyperparabolic on M, v(x) == 1 and 

lim inf v(y) > e _ 1 . 
V$y^x 

Let a 0 > 0 be chosen in such a way that 

(4) inf {v(y) ; y e KX°\V} > e'1 . 

By (1), (2) and (4) we get for 0 < a g a 0 

I = v(x) = a " " " 2 f v.Qxdk ^ a ^ - V 1 f Q* <M = fi--.v*(XS\*0 
JK(x,«) J K(x,a)\V Vx(Kx) 

and the equality (3) follows. 

Corollary 1. Let U be an open subset of Rn + i . If x is a boundary point of U and 

im sup a n 2 

«^o + Jк 

lim sup a - 1 1 - 2 Qx dA > 0 , 
I K(x,z)\V 

then x is a regular point of U. 

Proof. If the assertion were false, then U u {x} would be a fine neighbourhood 
of x ([5], Theorem 6.3.3, Proposition 6.3.3), which would contradict the proposition. 

Lemma. Let x e Rn+\ M c Kn+1, a > 0, a > 0 and 

v * ( K « \ M ) < a . v x ( K x ) . 

Then there is a 5 > 0 such that the inequality 

(5) v * ( K « \ M ) < a . v y ( K ; ) 

holds for any y e Qx. 

Proof. Observing that 

v*(K* \ M) < a . vx(Kx) = a . vy(K;) , yeRn+i, 

we arrive at the following inequality: 

v*y(K'y^M) < a . vy(K;) + vy(K;\Kx) + 

+ v*(Kx^M)-v*x(K"x^M). 
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In view of the obvious fact that 

lim[vy{K;\Kl)] = 0, 
y-+x 

it is sufficient to prove that 

l im|v*(K«\M)-v:(K^\M)| = 0. 
y->x 

In order to do this, denote by C the A-measurable hull of the set K* \ M. Then 

vy*(K: s,M)=t Q0({ - y) <tt(t), vx*(K: ^M)=[ Q0(£ - x) dA(£) 

and the quantity in question admits the following estimate: 

| V * ( ^ N M ) - v*(/^\M)| g f |Q0(ci -y)- Q0(i - x)| (U({) . 

The integral can be shown to approach zero as y -> x (see e.g. [8], Theorem 13.24). 

This concludes the proof of the lemma. 

Theorem. Any finely continuous function in Rn+l is of Baire class 1 in the Eu
clidean topology. 

Proof. The proof of the theorem is based on the characterization of function 
of Baire class 1 given in [9]. 

Let us assume that the function f is finely continuous in Rn+i. Suppose that there 
is a closed set 0 =)= F c Rn+l and numbers a < b such that the sets A = {x e F; 
f(x) = a}, B = {x e F; f(x) = b] are dense in F. Fix e > 0 in such a way that 
a + e < b — e and for any positive integer k put A2fc_1 = A, A2k = B, J2k-i = 
= (-co, a + s), J2k = (b - e, oo). 

We shall start with an arbitrary xx e A. Recalling that f'^JJ is a fine neighbour
hood of xx and applying the proposition, we obtain 

v * ^ * ! , * . ) ^ / " 1 ^ . ) ) < ivXl(K(xu a.)) 

for a suitable oct e (0, 1). The lemma (cf. (5)) guarantees the existence of ^ e (0, 1) 
such that 

v%K{y> «0 \ /~ W ) < H(K(y, «0) 

provided y e Q(xu S^. 
Further we shall proceed inductively. Put x0 = xu a0 = <50 = 2 and let k = 1 
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be an integer. Let us suppose that the points xt and the numbers a/5 Si (i = 1, . . . , k) 
have already been defined such that 

xteAi n Q(x*-i, i$i-i)> 

0 < Si < \Si_1 , 0 < Ui < i a , - l s 

v*(K(y, a^rVi)) < H(X(y, «,)) 

whenever y e Q(xi9 St). Since the set Ak+1 is dense in F, there is x k + 1 e A k + 1 n 
n Q(xk, \Sk). The set f_1(A+i) *s a fine neighbourhood of x k + 1 and the proposition 
and the lemma yield the existence of ak+1 e (0, i<xk), Sk+1e (0, \Sk) such that 

y*{K{y, «k+1)\f-
1(Jk+1)) < $vy(K{y, a,+ 1)) 

for an arbitrary y £ Q(xk+1, Sk+1). In this manner we have defined the sequence 
of points {xj c= F and two sequences {a j , {<5f} of positive numbers. It is obvious 

oo 

that fl Q(*p Sj) contains exactly one point, say x. Of course, x e F. Since x belongs 
1=i 

to all Q(xj, Sj) we conclude that for any k = 1,2,.. . 

(6) v*(K(x, a2fc+1) \ f - 1 ( ( - o o , a + e))) < Jv-(__(x, a2Jk+1)) , 

(7) v*x(K(x, a2fc) \ f - ^ b - £, oo))) < ivx(K(x, a2k)) . 

The last two inequalities are in contradiction to the assumption that f is finely continu
ous at x. Indeed, supposing f(x) < b — e and using (7) we derive for any k 

4 ~ v ^ ^ x , oc2k)) 

which is impossible in view of the proposition, becauses f""1^—oo, b — £>) is a fine 
neighbourhood of x and a2k -» 0. The same type of arguments together with (6) 
may be used for the case that f(x) > a + e. 

We have established the following assertion: For each closed set F c Rn+i and 
any real numbers a < b at most one of the sets {x e F; f(x) ^ a}, [x e F; f(x) ^ b} 
is dense in F. It follows ([9], Theorem 1) that f is of Baire class 1 and the proof 
of the theorem is complete. 

Remark. The theorem may be used to show directly that the fine topology is not 
normal. It is sufficient to repeat the reasonings from [7], p. 165. 

Corollary 2. Let f be a finely continuous function in Rn+1 vanishing at the 
infinity (i.e. at the ideal point of the Alexandrov compactification of JRrt+1). Then 
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there exist finite Borel signed measures fim with compact support such that Gp.m 

is a continuous function having compact support and 

f(x) = \imGfim(x), xeRn + 1 . 
m-+oo 

Proof. If g is a continuous function vanishing at the infinity, continuous potentials 

pk, qk (in the sense of the harmonic space (Rn+l, 34?)) may be found such that pk, qk 

are parabolic outside a compact set Xk, pk — qk has a compact support and g is 

the uniform limit in J R " + 1 of the functions pk — qk (see [2], Satz 2.7.4). The Riesz 

representation theorem for potentials ( [ l ] , Bemerkung 14) can be used to assert 

that pk — qk = Gvk for a suitable signed measure with compact support in R" + 1 . 

The rest of the proof is easy. 
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