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Časopis pro pěstování matematiky, roč. 101 (1976), Praha 

MARTINGALE CONVERGENCE TO THE POISSON DISTRIBUTION 

G. K. EAGLESON, Cambridge 

(Received July 1, 1975) 

1. INTRODUCTION 

Consider a double array of random variables (r.vs), whose rows are martingale 
difference sequences, i.e. for each n = 1, 2,..., we have r.vs Xnl9..., Xnkn on a proba
bility space (Q, &9 P) with sub-a-fields ^nQ c ^nl c ... c 3Fnkn of #" such that Xnj 

is ^nj- measurable and E(Xnj | tFnj„^) = 0almost surely (a.s.)for j = 1, 2,..., k„9 

where kn -* oo as n -* oo. Such arrays are called martingale arrays. Let 

Sn = Xni + ... -f Xnkn , (Tnj = E(X„j J S^nj-i) > 

Vn\ = E °*«j > fcn = max a^. . 
1=i J^fc« 

A martingale array is called a martingale elementary system if it satisfies 
a) EXnJ < oo9 for all j and n; 
b) there exists a finite constant C such that 

l imP(VX>C) = 0; 
n~*<x> 

and 
c) b„ -»p0 as n -» oo. 

If the r.vs Xwl,..., JCnfen are independent for each n9 then Vnkn is a.s. constant and 
equal to ES*. The conditions (a), (b) and (c) then constitute the requirements for the 
triangular array to form an elementary system (see GNENDENKO [5], p. 316). 

A sufficient condition (BROWN and EAGLESON [3]), for the row sums of a martin
gale elementary system to converge in law to the Poisson distribution with zero mean 
and parameter X (written 0*(X)) is that 

(1) for all e > 0, %E(XijI(\XHj - l | > «)| ^nj-i) ~*p0, as n -> oo , 

and 

(2) IJE(X2„j\^ttj.1)^X9 as w - > o o . 

Til 



The conditions (l) and (2) involve both truncation and conditioning. In this paper, 
we will investigate the possibility of removing these difficulties by proving a martingale 
analogue of Alda's ([1]) condition for convergence of the row sums of an elementary 
system of independent r.vs to the Poisson distribution. 

2. RESULTS 

Theorem 1. Let {XnJ, ^nj} be a martingale array. The two conditions 

(3) lXnJ(XnJ ~ 1) ~+p A as n->oo, 
J 

and 

(4) K / l ^ - l f ^ O as n -»oo , 
J 

together imply (l) and (2). 

Proof. First note that 

E(ZX2jI(\XnJ - 1| > «)) <; e - - E(lX2
nj{Xnj - l)2) -> 0 , 

J J 

so that (1) follows immediately from (4). 
For each n, the sequence of r.vs, 

UnJ - XnJ(XnJ - 1) - £(XBXXW/ - 1) | -F. .J-0--

- X ^ - 1) - £ « • | ^ „ j ~ i ) , I = 1,..., K, 

is a sequence of martingale differences. Thus 

E(lunJy ** jxuij) s m*tix»j -1)2) - o. 
J J J 

So (2) follows from (3). 

Corollary 1. If {Xttj9 &nJ} is a martingale array, for which 

(3) I^nj(XnJ - I) ^X as n - o o , 

and 

(5) lim lfiX*j - lim JpxZ, - lim £EX* - A, 
*"*«o I K »-»cc i n-*co J 

then (1) and (2) hold. 

Corollary 2. / / {XnJ, &ni\ is a martingale elementary system satisfying either 
(3) and (4) or (3) and (5), then Sn^

9 ?(X) as n -> ocv 

272 



Unfortunately, the moment condition (4) or some other, equally strong, moment 
condition seems to be indispensible in proving that (3) implies the conditions (1) 
and (2). In the reverse direction, most of these moment conditions may be removed 
at the cost of more delicate computations. 

Theorem 2. Let {Xnj9 3Fn^ be a martingale array. The three conditions: 

(1) for all e > 0 , Y&Pli K\xnj - 1| >«) | **.;- i) - ' 0 as n - oo , 
j 

(2) I - W | ^ » J - i ) - » ' * as » - » « • 
j 

and 

(6) l i m _ X . = A, 
n-+ oo 

together imply 

(7) max \XnJ(XnJ - 1)1 ->p 0 as n -» oo 

and 

(3) IXm/XmJ-l)-+'X as n ^ c o . 
1 

Proof. The proof is divided into a number of lemmas. 

Lemma 1. Under the conditions of the Theorem ((1), (2) and (^)), for all e, 
0 < 8 < i, 

(8) lim YE(X2
njt I(\Xnj - 1| > ft)) = 0 , 

n-*oo j 

(9) l im_:£(^/( |Xn J | = e)) = 0. 

Proof. Clearly 

= ZE(X2jl(\Xnj - 1| > s) | .T.j..) = I£(XB
2

; I *„, ._ .) . 
I I 

The hypotheses of the Theorem imply that the last term -*p A, and the two middle 
terms ->p0, as n -> oo. As (6) holds, the result follows from Pratt's Theorem [8]. 

Set Mn = max \XnJ(Xnj - 1)|. 

Lemma 2* Under the conditions of the Theorem, Mn -*
p 0 as n -* oo. 

Proof. For fixed e > 0 (e _> £), if |x(x — 1)| > a, then there are neighbour
hoods No and -^i of 0 and 1 respectively such that X$NQKJ Nt. Let 

jy = i min (length of N0, length of Nt). 
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Then for all xiN0uNu 

\x(x - 1)| = (l + r,-1) x2. 
Now 

- P(Mm>B)£llP(\XjXaJ-l)\>e)g 

= *-\i + n-1)IMxa.ii<\xmJ(xIIJ - i)| > a)) = 

lS« - 1 ( l+OI -5(^^-y - - | > f ) ) . 

which tends to zero as n -* oo by Lemma 1. 

Lemma 3 Under the conditions of the Theorem, for all e > 0 

Yjnj(Xnj - 1) l(\Xnj\ >e)->*>0asn->x>. 
J 

Proof. 

\^nj(Xnj--l)I(\Xnj\>e)\S 

. £ Mn %I(\Xnj\ >e)SMne~2 £X2,. I(\Xnj\ > e) . 
J J 

But M,, -tp Oand e~2 ^K2^ J(|Xni| > e) is bounded in probability since its expectation 
J 

is bounded by e""2 YM?^nj) S A where A is a constant independent of n. 
J 

Lemma 4. Under the conditions of the Theorem, for all e > 0 

YXnJ(XnJ - l)l(\XnJ\ = B) - ZE(XnJ(XnJ - l)I(\XnJ\ = B) I &.J.J -*L1 0 
J J 

as n -^oo , 

Proof. For each n, the sequence of r.vs 

WnJ - XnJ(XnJ - X)I(\XnJ\ = e) - E(XttJ(XttJ - l)I(\XnJ\ = a) | J ^ . . ) 

is a sequence of martingale differences. So 

£(LX;)2 = I ~ « = I^ 2 X^ - !)2 - W =«)) • 
J- > ; 

But (Xsi-1)21(1X^1 = «) = (1 + «)2and liffl 2E(X2j l(\XnJ\ = s) = Oby Lemma 1. 
«-»» y • 

The proof is completed. 
Finally, note that for all n and j E(XnJ(Xnj - 1) | *.j-i) = E(X2

nJ \ ̂ uj-lt\ so 
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that combining the results of the above Lemmas, the proof of the Theorem follows 
if we establish the following Lemma: 

Lemma 6. For all s > 0, 

JXXJX*-1)K\X*J\>*)\**J-I)-*'0 as I I - C O . 
j 

Proof. Fix 5 > 0. Then 

\ZE(Xnj{XnJ - 1) I(\XnJ\ > e and \XnJ - l | > 8) \ &„,,-$ g 

^ (1 + ^)mX2
nJI(\XnJ - 1)| > 5) | <FntJ_x) ->>0 

j 

by hypothesis. 
Also 

%E(XnJ(XnJ - l)l(\XnJ\ > s and \XnJ - l\ g 3) \ SF^-,) £ 

£de-1ZE(X2
nJ\&nJ-1)->>'X5e-

1, 
j 

by hypothesis. As S may be chosen arbitrarily small, the result follows. 

Corollary 3. If {Xnj, Fnj} is a martingale array satisfying the moment con
ditions, 

(5) lim"ZEX2
nJ = limYdEX3

nj = \im^EX4
nj^X, 

it-*oo j n-*oo j M-*ao j 

then the conditions (1) and (2) together are equivalent to (3). 

3. REMARKS 

1. Analogous results for convergence to normality were obtained by SCOTT [11]. 
Scott proved the martingale version of Raikov's Theorem [9] by showing that if 
{Xnj, ^nj} is a martingale array then the conditions 

(io) '" 5 X ^ I ^ . J - I ) - * M *s »-*•«>. 
j 

and 

(11) for all 6 > 0 , ^E(Xlj'l(\Xnj\>B)\^j.1)^
p0 as n ^ o o 

are equivalent to 

(12) K,-M a s n^az, 
j 

and 

(13) m a x X ^ ^ O as n -> oo , 
JHkn 
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provided the following moment condition holds 

(14) l i m l E X i - l . 
H~*00 j 

Although Scott's proof in [11] is in terms of a single sequence of martingale 
differences, the result is also true for triangular arrays. In fact, looking at Scott's 
proof, one sees that it is possible to prove that (10) and (11) together imply (12) 
and (13), and that (12) and (13) together with (14) imply (10) and (11). Thus it would 
seem that the martingale version of Lindeberg's conditions, (10) and (11), are stronger 
than the Raikov-type conditions (12) and (13). That this is in fact so has been shown 
recently by MCLEISH [6] who proved a martingale central limit theorem under 
rather weak moment restrictions. 

As the situation for convergence to the Poisson distribution is similar (the con
ditions (l) and (2) seem to be stronger than (3)) one wonders whether a theorem about 
convergence to the Poisson could be proved without using the conditions (1) and (2). 

2. At first sight, the use of the r.v. 

(is) 2XA**/-i) 
J 

seems a little arbitrary. However, it should be remembered that in a discrete distribu
tion it is often more natural to use factorial moments, so that (15) might well play 
the role of a sample variance. Further, if Y(t)91 2£ 0, is a Poisson process with para
meter A, and Z(t) = Y(t) — Af, then it is easy to show that if 0 = t0 < tt < ... 
... <f , » 1, 

£(Z(f,) - Z(t^))(Z(t) - Zfo-0 - 1) - ' A 
i«0 

as the partition becomes finer i.e., as-max jf* — f,_i| -»'0. 

3. Though the moment condition (4) may seem excessive, even in the case of in
dependent {Xnj}, (4) together with (6) is necessary and sufficient for the convergence 
in law of the row sums to a Poisson r.v. T0 and for 

litn.ES* = £71 . 

(see Brown and Eagleson [2]). 

4. There have been a number of results giving sufficient conditions for the conver
gence of row sums of arrays of dependent r.vs to the Poisson (see for example, 
FREEDMAN [4], MIHAILOV [7] and SEVAST'YANOV [10])> but all of these papers deal 
with the special case of 0 - 1 r.v'*. 
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