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Časopis pro pěstování matematiky, roč. 101 (1976). Praha 

ON THE DIOPHANTINE EQUATION - = ^ + — + -

WILLIAM A. WEBB, Pullman 

(Received July 15, 1975) 

Introduction. Given positive integers k and n, and nonzero integers al9 a2,..., ar; 
consider the equation 

(1) - = - 1 + -* + ... + — 
n Xj x2 xr 

where the x$ are positive integers such that (ai9 xf) = 1. Let (1') denote the same 
equation where the xt can be any nonzero integer. In the special case at = a2 = ... 
... = ar = 1, the so-called Egyptian or unit fractions, these equations have been 
extensively studied. 

Let A = X(k; ai9 a2,..., ar) be the largest integer n for which the equation (l) 
has no solution. If (1) is unsolvable for infinitely many values of n, set X = oo. 
If (1) is solvable for all positive n, set X = 0. Also, define X' similarly with respect 
to equation (1'). Very little is known about precise values of A and A', even in special 
cases. 

In this paper we will consider solutions of equation (l) with particular attention 
to the cases r = 2 and 3. The principal result obtained is a lower bound for A and A' 
when r = 3, and k is large. 

Preliminary Results and the Case r = 2. If p is a prime, and p\(at,..., ar), then 
(1) is not solvable for n = p5 and all 5 sufficiently large, since (xh p) = 1. Hence, 
if (a t , . . . , ar) # 1, A = oo and so we assume henceforth that (a l 5 . . . , ar) = 1. 

The case r = 1 is trivial and will not be mentioned again. 
The following result gives necessary and sufficient conditions for (1) to be solvable 

in the case r = 2. 

Theorem 1. The equation 

(2) ' -* = 21 + *1 
n xt x2 -

is solvable in positive integers xu x2 such that (a t, xt) = 1 = (a2, x2), if and 
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only if there exist positive divisors dt and d2 of n such that aidi + a2d2 = kt 
for some positive integer t such that {ata291) = I, and {n\di9 at) = (n\dl9 a2) = 1. 

Proof. If the conditions of the theorem are satisfied, then let xt = tn\dt. We 
then have 

at a2 __ atdx a2d2 __ kt ^ k 
xt x2 tn tn tn n 

and (ai9 xt) = (ai9 tn\d() = 1 by the hypotheses. 
Now suppose that (2) is satisfied by xt and x2 such that (at9 Xi) = (al9 x2) = 1. 

Also, assume (fc, n) = 1. Let d = (xl9 x2), x* = dXt and t == (d9 atX2 + a2Xt). 
Then 

(3) - == flix2 + ^2*1 _ fli,K2 + a2Xt _ (a1K2 + a2Ki)/r 
n x tx2 dKtX2 (d\t)XtX2 

Since (Kt, Z2) = 1 and (ai9 Xt) = 1, (atK2 + a2Xl9 XtX2) = 1. This, together with 
((atK2 + a2K1)/r, d/f) = 1, implies that the right hand fraction in (3) is reduced, 
and so fc = (atX2 + a2Xi)lt and n = (d\t)XtX2. 

Therefore, letting dt= X2 and d2= Xl9 we have immediately that d, | n 
and atd! + a2d2 = kt. Also, (n/dt, a t) = {dXt\t9 a t) = (xt/r, at) = 1. Similarly 
(n/d2, a2) = 1. Finally, (af, xt) = 1 which implies (ai9 d) = 1 and hence (a;, r) = 1, 
which gives us (ata291) = 1. 

If (fc, n) = b > 1, apply the above argument to X = fc/b and N = n/& and then 
use divisors D,- = bdt. 

We are now ready to consider k(k; al9 a2) in more detail. We have already noted 
that we must have (a t, a2) = 1. It is also obvious that (fc, ata2) =t= 1 implies k = oo, 
and so we will also assume (fc, ata2) = 1 for the rest of this section. Finally, k = oo 
if both a i and a2 are negative, so without loss of generality ax > 0. 

Theorem 2. Let (at9 a2) = (fc, ata2)= 1 and aj > 0. Then k(k; ai9 a2) = oo 
unless 

(i) fc = l or 2 and a2 ^ — 1 
0r 

(ii) fc > 2, a2 = —1 and aA 4= 1 /ias fhe property that all primes dividing at 

are = 1 (mod k). 

In these cases k = 0, except that k(l; 1, — 1) = 1 and A(2; 1, — 1) = 2. 

Proof. Write n = AtA2m where -4f is the largest divisor of n containing only 
primes which divide a,-. The property mentioned in (ii) above will be called property P. 

If a2 < — 1, then there is a prime p which divides a2. Then by Theorem 1, equation 
(2) is not solvable if n = ps for s sufficiently large. The conditions (n/d2, a2) = 1 
and ((atdt + a2d2)/fc, a ta2) = 1 imply d2 = j>s and dt = 1, respectively. Thus 
t = (at + a2p

s)\k < 0 for s sufficiently large. Therefore A = oo if a2 < - 1 . 
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If fc > 2 and either at or a2 does not have property P, let p =|= 1 (mod fc) be 
a divisor of at. (We may suppose at is divisible by p and not a2 since a2 = — 1 
is only remaining case where a2 < 0.) There are now infinitely many values of 5 
for which (2) is not solvable with n = ps. Applying Theorem 1, just as above we find 
dt = ps and *d2 = 1, and fc does not divide atp

s + a2 for infinitely many values 
of s. Thus A = oo in this case also. 

If fc > 2, a2 > 0 and both at and a2 have property P, then again A = oo since (2) 
is not solvable for all primes q == 1 (mod fc). In applying Theorem 1 we find atdt + 
+ a2d2 s 1 + 1 =ts 0 (mod fc). 

If fc > 2, a t = 1 and a2 = - 1 we apply Theorem 1 to n = p, a prime =f= 1 (mod fc). 
Clearly none of the cases for a idj + a2d2 = dx — d2 yield a positive integer divisible 
by fc. Hence A = oo. 

The only remaining case for fc > 2 is a2 = — 1 and at =t= 1 having property P. 
Write- n = Al^m and apply Theorem 1 with dt = Ax and d2 = 1. Then axdt + 
+ a2d2 = a t.4 t — 1 = 1 — 1== 0 (mod fc)anda1^41 — 1 > 0. The other conditions 
of the theorem are satisfied since (al9 atAt — 1) = 1, (m, a t) = 1 and (n, — 1) = 1. 
Therefore equation (2) is solvable for all n, and so A = 0. The case fc = 1 or 2, 
a2 = - 1 and at any positive integer > 1 uses exactly the same argument. The special 
cases A(l; 1, -1 ) = 1 and A(2; 1, - 1 ) = 2 are easily checked. 

The final case is fc = 1 or 2, a2 > 0. Write n = AtA2m and apply Theorem 1 
with dt = A(. Then atdx + a2d2 = 0 (mod fc) and is clearly positive. The other 
conditions of the theorem are satisfied since (ax Ax + a2Al9axa2) = l,(A2m, ax) = 1 
and (Axm9 a2) = 1. 

The following results apply to the case where the xf may be positive or negative, 
and can be proved similarly. 

Theorem 1'. The equation 

(4) * = £i + ^ 
n xx x2 

is solvable in integers x t, x2 such that (ai9 x t) = 1 = (a2, x2), if and only if there 
exist divisors (positive or negative) dj and d2 of n such that atdx + a2d2 =• kt 
for some positive integer t such that (axal91) = 1 and (njdi9 a t) = (njd29 a2) = 1. 

Theorem 2'. Let (al9 a2) = (fc, ata2) = 1, then A(fc; a t, a2) = oo unless 
(i) |a ta2 | = 1 and k = 1, 2, 3, 4 or 6 

or 
(ii) feofft aA and a2 are # +1 and /*at;e the property that all primes dividing ax 

or a2 s ±1 (mod fc). 
In these cases A =- 0 except that if \axa2\ = 1, A(3; a t, a2) = A(4; al5 a2) == i 

and A(6; a l5 a2) = 2. 

Case (i) in the above theorem was previously mentioned in [6]. 
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The Case r = 3. The solution of equation (1) with r = 3 and all of the a{ = 1 
has received considerable attention. The finiteness of k(4; 1,1, 1), k(5; 1,1,1), 
k(k; 1,1,1) and k'(k; 1,1,1) has been conjectured by ERD5S and STRAUSS, SIERPINSKI 

and SCHINZEL. Although many people have considered the problem, it is not known 
if k(k; 1,1, 1) is finite for any fc > 3. A fairly complete list of references can be found 
in [1]. 

Efforts on the problem for A' have been a little more successful as SIERPINSKI [5], 
SEDLACEK [4], PALAMA [3], and STEWART and WEBB [6] have established that kf 

is finite for fc < 36. 
Although the conjectured values of A for small k are small (A(4; 1, 1, 1) = 

= A(5; 1,1,1) = A(6; 1, 1,1) = 1, A(7; 1,1,1) = 2), some numerical evidence ob­
tained by Webb [7] indicates that A increases rapidly with fc. For example A(12; 
1,1,1) ^ 12241. In a private communication, Erdos noted that k(k; 1, 1,1) > cfc1+e 

for c > 0 and any e < i, and conjectured that A(fc; 1, 1, 1) > kf for every positive 
integer s and all fc sufficiently large. 

In this section we prove this conjecture by establishing a slightly stronger inequality 
which holds for any k(k; at9 a2, a3) and A'(fc; at9 a2, a3). 

Theorem 3. There is a constant c > 0 such that 

k(k; at9 a2, a3) > exp (c log fc log log fc) 

for all k sufficiently large. 

Proof. Let E = exp (c log fc log log fc). We will show that there exist primes p 
in the interval E S P =" 2E for which the equation 

/_x fc a t a 2 a 3 , x 

(5) - = -J- + -* + -2 (af, Xi) = 1 
p xt x2 x3 

has no solutions in positive xt. 
Without loss of generality we may suppose that a3/x3 is the largest of the three 

fractions a,-/x,-. This implies fc/3p ^ a3/x3 and so x3 :g 6a3JS/k. Hence, there are at 
most 0(EJk) values of x3 for which (5) is solvable for any E 5* p ^ IE. 

We now fix x3 and bound the number of p for which (5) is solvable with the 
given x3. 

p x3 px3 x t x2 

We note that p > k and p > x3 so (p, fc) = (p, x3) = 1. Also, (fcx3 — a3P, Px3) = 1. 
From (6) we see that p | XiX2. 

Case I. Suppose p j xt and p | x2. Then by Theorem 1 there exist dt and d2 which 
divide x3 such that fcx3 — pa3 | atdt + a2d2. We know df | px29 but the condition 
p I xf implies p X dt. There are d2(x3) choices for dt and d2 and at most d(atdt + 
+ a2d2) choices for p given a particular d t and d2. (d(m) denotes the number of 
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divisors of m) Thus, there are at most d2(x3) d(a1di -h a2d2) < f3(E) values of p 
for which (6) is solvable, where f(n) is the maximum value of d(k) for all fc g n. 

Case II. Suppose p divides only one of the integers xt and x2. Say xt = pyx 

and (x2, p) = 1 . Then 

kx3 - pa3 _ _o^ ^ yi(fcx3 - Pa3) - x3a t _ ^ 

P*3 Pyi P*3yi V 

which implies p | yifcx3 — x3at and so p | yxk — ax. By Theorem 1, Xj = px3(at£/t -f 
+ ai&i)\kdt where d*1 x3P which implies j ^ < E3\k2 and so j^fc — ax < E3. 
Hence, there are at most d(ytk — at) < f(E3) values of p for which (6) solvable. 

Now by [2, Theorem 317] f(n) = 0(exp(log n/log log n))9 and so bothf3(£) and 
f(£3) are 0(exp (3c log fc)). Therefore, the total number of primes p9 E ^ p g IE for 
which (5) is solvable, is 0(exp (3c log fc) E\k). However, there are at least Ejlog2 fc 
primes between E and 2E9 and hence picking c < 1/3 we see that there must be 
some primes >JB for which (5) is unsolvable. 

Corollary. There is a constant c > 0 such that 

A'(k; at9 al9 a3) > exp(c log fc log log fc) 

for all k sufficiently large. 

Proof. By the above argument, it is clear that there exist primes p, E S p S 2E 
such that all eight equations 

fc ± 0 i - fa 2 +a3 

P Xl x2 X3 

are unsolvable. 
There are a number of related questions which are still open and require further 

study. Some obvious examples are: 

1. Can the bound on A(fc; ai9 al9 a3) be improved? 

2. Can similar bounds be obtained for A(fc; ai9 al9 a39 a4) or more generally for 
X(k\ at9..., ar)? (One result along these lines is that fc = o(A(fc)). This is obvious 
from Lemma 1 of [6].) 
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