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Časopis pro pěstování matemasiky, roč. 102 (1977), Praha 

INTERIOR REGULARITY OF SOLUTIONS TO SYSTEMS 
OF VARIATIONAL INEQUALITIES 

MILAN KUCERA and JINDRICH NE£AS, Praha 

(Received December 4, 1975) 

Let O b e a domain in an N-dimensional Euclidean space RN with a Lipschitzian 
boundary. We shall denote by Wl(Q) the well-known Sobolev space with the norm 

b!|fT2k(0) = - - y> ID^MI* dx ( Í X N 
\JflM-i* 

Further, let m be a positive integer. Denote by [^(fl)]"1 the Cartesian product 
of W2(Q) (m times) with the usual norm, which we shall denote by || • ||2,ft,fl-

The elements of [JV^)]"1 will be denoted by u = [ul9...,um) (u^W^Q), 
i = l , . . . , m). 

Let F be a given subset of'the boundary of Q. Denote V= [JV^)]"1* ^r = 
= {v e V; v = 0 on F}. (We write v = 0 if v{ = 0 in the sense of traces for i = 
= 1,..., m.) 

Let at(^t,..., £x) (t = 1, ..., x) be real functions of x variables. Suppose that these 
functions have measurable bounded derivatives datjd^s (t, s = 1,..., x). Further, 
let Nt (t = 1,..., x) be differential operators defined on [JV^XT by the formulas 

where cjj (j = 1,..., m, j = 1,..., N, i> = 1,..., x) are constants. We shall suppose 
that the following conditions are fulfilled (with C > 0): 

(1) i T7 00 « . ^ c E «? for each f , >/ e R* ; 
f ,s=l OQs ' t-1 

(2) f I(iV .(i>))2d*^cy|f f l f 0 for each veVr. 

The condition (1) is the usual ellipticity, the condition (2) is an inequality of Korn's 
type (cf. [2]). 
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Define an operator A : V-* V* *) by 

(3) ' <Au, i>> = t <HU)) Niv)d* • 
f = l 

Consider given elements u0, ^ e V, u0 *> \j/ on Q. (We write w ^ ^ on O if wf ^ \jit 

almost everywhere on Q, / = ! , . . . , m.) Denote 

K = {v e V; v - u0eVr, v §; ^ on 0} . 

For a given elementf = [fl9.. .,fm] e [L2(;Q)]m we shall seek an element u such that 

(4) • ueK, 

/ • x /• wt 

(5) Xa,(jVt(u))iV,(> -u)dx £ LVr(>, - «,-) d* for each ue/i:. 

The last condition can be writen as 

(6) , <AH, v - w> £ </*, » - «> for all » elC, 

m 

where the functional f* e V* is defined by <f*, v> = \Q £fr^r &x-
r = i 

It is easy to show that the set K is convex and closed in Vand that the operator A 
is bounded, continuous, strictly monotone on K (i.e. <Aw — Av, u — v) > 0 
for u, veK, u + v) and coercive on K (i.e. lim ((Au> u — t?0>/||ti||2,i,ij)

 == + 0 0 

Цtt||-00 
ueK 

for a certain v0 e K). This follows from the assumptions (1), (2).) Hence, the existence 
and unicity of the solution of our problem follows from the general theory of varia­
tional inequalities which is developed for example in the book [3]. Here we shall 
deal with the interior regularity of the solution. Namely, we shall prove the following 
result: 

Theorem. Suppose \j/ e [^(O)]"1. Let u be a solution of the problem (4), (5), 
let Q' be a subdomain of Q such that D' c Q. Then u e [fV2(.Q')]m. 

This result was proved by J. FREHSE in [1] for a special class of operators Nt 

and for u0 = 0. We shall present here another proof, which is based on penalty 
method and applies to the general case. 

Let us consider a continuous, bounded and monotone operator ft: V -» V* 
such that fi(v) = 0 if and only if v e K, i.e. the so called penalty operator correspond-

*) We denote by V* the dual space to V; the duality between Vand V* is denoted by <.,.>. 
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ing to the set K. Then for each positive e and / e V* there exists a unique solution 
ue e V of the equation*) 

(7) Aue + - j 3 u e = / 
e 

and, moreover, ue -^ u (if e -> 0+), where u is a solution of the problem (4), (6) 
(-*• denotes the weak convergence). Especially, ue are bounded in the norm of V 
and (1/e) pue are bounded in the norm of V*. This holds for a general Banach space V, 
a convex closed set K a V and a bounded, continuous, strictly monotone and coer­
cive (on K) operator A : V -• V* (see [3]). 

In our special case, it is not convenient to introduce the penalty operator with 
respect to K directly in the space V. But if we set K0 = {v e Vr; v + u0 e K) and write 
w = u — u0, then the conditions (4), (6) are equivalent to 

(8) weK 0 , 

(9) <-4(u0 + w), v - w> = </, v - w> for each veK0 . 

Define an operator p : Vr -» V* by 

<j5(w), v> = - Z (Mo,r + vvr - t/fr)~ t;r dx for u„v eVr. 
Jfl'=i 

It is easy to verify that p has all the properties declared above (for Vr instead of V 
and K0 instead of K). 

We can write an operator AUQ: Vr -> V* (defined by AUQ(v) = A{u0 + v)) instead 
of A in (9). Hence we obtain from the above that for each e > 0 there exists we e Vr 

such that 

4 " o + vve) + i j8(w e )= / . 
e 

This means (by setting ue = u0 + we) that there exists ue e Vsuch that 

(10) A(ue) + -p(u'-u0)=f 
e 

in the space V/, i.e. 

(11) [ t *r(Nt(u
e)) Nt(v) dx - i f X (ur - ^ ) " t;r dx = f £ /rur dx 

Jn- = - e j f l ^ - J f l^ i 

for each i; e VT. Moreover, ue are bounded in V, (l/e) /?(ue — u0) are bounded in Vr 
(but need not be bounded in V*!). 

*) The so called equation with the penalty corresponding to the problem (4), (6). 
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In the sequel we shall use the following notation: Let e be a vector in the direction 
of the i-th coordinate axis in RN, ||e|RN == 1; if v is a real or vector function, h #= 0 
a real number, theft vh denotes the function defined by vh(x) = v(x — he). Moreover, 
we set 

4*) = vk - v 

Proof of Theorem. Let ue be a solution of the equation (10). Consider an 
arbitrary element v e V such that supp v cz Q' (i.e. v lies in the closure of [£#(:Q')]m 

in V). Then we have veVr and for h sufficiently small also v„he Vr. Hence (11) 
holds for v as well as for v-h instead of v. Thus 

I 
(12) f £at(Nr(u°))Nt(v„h -v)dx--[ £{u'r - *,)-(v,,_h-vr)dx = 

m 

E/rOV.-A ~ Vr)dx . 

The same equality holds for v — vh (instead of v_fc — v) and by a translation of h 

(13) f t at(Nt(u
e.h)) Nt(v.h -v)dx-

jQt=l 

i c m 

- ~ EK-*-^,-*) (»r,-*-»r)d^ = 
e J A ' - -

/• m 

Z/r.-A^r,-* - Vr)dX . 
jQr=l 

By adding the two equalities we obtain 

(14) f f W^(" -* ) ) - «r(iVt(u
£))] • Nt(v.h -v)dx-

1 f m 

- - Z ("r.-A - ^r,-*) - (Wr ~ *Ar) (t>r,-A ~ *>r) d * == 

8 Jf l^ -
/» m 

= Z(fr,-h~fr)(Vr,-H-Vr)dX-
Jf l^ l 

Further, we shall consider a domain O* such that Q' cz Q*, Q* cz Q. There exists 
a real function # e ._?(;£*) such that # = 1 on _2'. We shall set v = <P2 . ue in (14). 
Now, we obtain from (14) 

(15) <A(ue„h) - A(u% (<P2u%h - * V > -
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- - f £ IK-* - +r,-*Y - K - ^)"] • ((*2«3-* - *2Ur) dx = e J__r=l 
/» m 

= I (fr.-* - /r) ((^2"r)-, - #Vr) dx . 

J-_'=-

We shall show that there exist constants C l s C2, C3 such that Ct > 0 and 

(16) C I | | - 4 - A ( 0 <D||2fl>fl ^ C2||^-,(u8) *| |2 i l f f l + C3 . 

It will be clear from here that the norms ||_d _h(w
e). #||2,_,__ are bounded, especially, the 

norms ||_d -h(u
e)\\ 2>1 >fr are bounded (independently of e, h). We have A -h(u

e) - - A -h(u) 
£-+0 + 

in V for each fixed positive h and therefore the norms ||_d_fc(M)||2,i,o' (Ai > 0) 
are bounded, too. That means that there exists a weakly convergent sequence 
A-hn(u) (h„ -> 0). Simultaneously, A_h(u) -- dujdxt (if h -> 0) in [L2((2)]m, because 
u e [TV2(0)]m. This implies A_hn(u) - dujdxi in [JV_;(G')]W. In particular, dujdxi e 
G [JV2(-T)]m, i.e. w e [^2(-2')_T (because the index i was arbitrary). Hence it is suf­
ficient for the proof of Theorem to show that (16) holds. 

First, we shall estimate the left hand side in (15). By using the identity A _h(<P2ue) = 
= <f>2 A_h(u

e) + ue.h A_h(<P2) we obtain 

(17) 1 <A(ulh) - A(u% (*V)__, - <*>V> = 

= f t (l8£(Nv(u
e) + Q(Nx(ulh)-

J„ ' .»=iJo OQs 

- JVt(«
8))) d.iVs(-t-*(««)) !Vf[_l_^2«e)] dx = I, + /_ , 

where 

' i = f f I d£Ns(A_h(u
e)).N{<P2A^(ue))dQdx9 

Jfl jo '.~ = -0Cs 

/2 = f f1 f 8^Ns(A.h(u
e))Nt(ulhA^^))dQdx. 

(We do not write the arguments of the functions dat\d£s depending on Q\ it is the same 
as in (17).) By using the formulas 

(18) N,(*2 _•_„(«<)) - *NA*A-J[u')) + ~ I c J . - * . . ^ , 
i = l j = - OX,-

(19) JV,(_ _*(«')) • = NX* - > ' ) ) - I I -1/ ̂  -1 -*(«0 
1=1J'l ox,-
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we obtain 

(20) / . - - - [ f i d£Ns{$A_h{u°))N{<PA_h{u'))dedx-
JnJo'.»=1oC5 

- f f I %W*-M)\t icljA_h{u^]dedx + 
J n J o ' . s = 1 ^ . L i = 1 ' = 1 fajj 

+ f f i %xtA-M)*\t bljA^u^dedx. 

By the assumptions (l), (2) the first integral is not less than ct\\<P A-h(u))\\ltltQ. Let 
us estimate the second integral. The functions datjd^s, d<PJdXj are bounded. Hence, 
we obtain by virtue of the Holder inequality and the inequality 2ab _g da2 + 5~lb2 

(holding for arbitrary real a, b and 8 > 0) that the second integral is not greater in 
the absolute value than 

C„l*4_4(H*))||2.1^|M-»(«,))l2JD.-5 

g c2{5\\<PA_h{u'))l2
2,1>a + 5 - 1 | | J _ A ( « 0 | 2

2
> „ . ) . 

where we denote by || • \\2)Q the norm in the space [L2(_3)]m. Let us estimate the last 
integral in (20). This integral can be rewritten as 

f f i 8^Ns{^A_h^))\i icijA^u^dgdx-
JoJoM- l - { , \_1~1J-1 0X.J 

-friM£«i.^<p£«i---M^W. 
JDJo«.---^.L'~'-- ax jL i = i ^ = i xjj 

The first expression can be estimated in the same way as the second integral in (20), 
the second is not greater than c3||_L|,(u*)| _,_•*• Hence we obtain 

(21) Ii _. f i t* A_h{u')\l,ua - c4 _i||* A_h{u')\l,ua -

-c5(5-1 + l)|H>0||2,»*-

Now we shall estimate the integral I2. It is easy to see that 

A_h{&) = A_h{$) (* + <P_»). 

Ns[A_h{u'){^ + *-*)] = 

m N p. 

- N,[A_h{u<)] (* + *_») + 1 1 c.j <_-.(«.) — (* + *_.) , 
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*,[_•__ __„(*2)] = Nt(u-h)A_h(&) + H cJX-- / - (-«--*2). 
1 = 1 j = l OXj 

By an easy calculation we obtain from here 

(22) /_ = f f' t ^ iV.[__„(«') (* + *-»)] *.[«'-_ - U * ) ] d. dx -
J„Jo'.»=1oC. 

-f r 1%*&-&(*+*-$* 
Jf l jo M=l^Cs 

x r E Z *.X-» / • (-*-*(*))! d<? dx -L„=i/=i ^ J 

- r r t S-T-- %4J* -*(»D ---(*+*-oi-v.(-,-„-i ._(*)) d.dx+ 
Jfljo t,s-i3^. L«=w=i fa, J 

+ f f f fTz Z-IJ-I-^T-C* + *-i\ >< 
JiJoM=i3£_L f==1-=1 fej J 

[ m N p, —j 

Z EciX-*r-(-M*)) U.dx + «=i;=i dx, J 

+ f f z ^^-u^Tz icjx-i^^-^dcdx. 
J f_Jo^ s = i ^ s • L'*1-'-1 5*/ J 

The functions dat\d£s, z__ft(#) are bounded. Hence we can use the same argument to 
estimate the first integral in (22) as in the case of the second integral in (20). Moreover, 
if we use the identity A_ft(u

e)(<2> + #_ft) = 2A_ft(w
e) <2> + (we_ft- ue)A^h(&)9 we 

obtain that the first integral is not greater (in the absolute value) than 

cn\A_„(««) ($ + -Lj.)la.i,o. ||«-»l2.i._- == 

^ c2
7d\\A_h(u°)(4> + <P-„)lii.i,« + c7_-1iii'__!_,_i0. f_ 

c85|j__(u0$||..1,o + c85-1||u8||_,1,„. 

The second integral can be estimated in the same way. The third integral is not greater 
than 

c9|_-„(«e)||-.n' + C9M2.1 .0. 

the fourth integral is not greater than 

c10||-1_„(u«)||i,„.+ c 1 0 | u e p. n . 
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In the case of the last integral, we come back to an expression without any derivatives 
of the functions at. We have 

(23) f I*' t d£NlA_h(u<))\i ic\,)U\,_h±(A_h(^)\6Qdx = 
J „ J o ' . » = i ^ _ L i = 1 > = 1 8xj J 

= I f Z[«M«-_))- «m»em\i icijuu±(A-t*y]dx-
«Jft<=l L i=1J'=1 ^Xy J 

= Jf Z -««*)) £ £ <Ju« Tp (-W*2)) - «1.-» / - (^-^2))1 dx . 
hjat^i i = i j = i L fei 5-*7 J 

Further, 

(24) u\ ± (A_h(<P2
h)) - u\,.h ± (A_h(&)) = 

dxj dXj 

= (u\ - «.,_.,) / - (_._,(*.?) + uU ± [A„h(*t - *-)] . 
dxj dxj 

It is easy to see that the functions (d\dxj)(A_h(^h)) and (l\h) A_h(0h — # 2 ) are 
bounded. Moreover, we have \at(£)\ _S c||£||j_w (for £eRN, \\%\\RN denotes the usual 
Euclidean norm). This follows from the assumption that the derivatives dat\d^s 

are bounded. Hence we obtain from (23) and (24) that the last integral in (22) is not 
greater in absolute value than 

Clll"1|2.1.„(|M-h(«
E)[|2.»*+ IMkfl):-

g c12(b
e\\lx,a + l-M-Ollo. + ||-iiU). 

This together with the previous yields 

(25) \I2\ ^ cl3 S\\A_h(u°) mua + Cl4(||»1|li,„ + ||^„(u<)|2,„.), 

where c 1 3 > 0 and c 1 4 depends on the choice of <5. 
Let us remind that the norms ||fie||_jfi,0 are bounded. It follows from here that the 

norms ||_d__A(w£)|2>fl* are bounded, too. Hence, if the number 3 is sufficiently small, 
then we obtain from (21), (25) 

(26) ~-2<A(ulh) - A(u% (02u%h - <f>2u> = I± + I2 ^ 

^C1\\^A^h(u%\2
2tUQ--C2, 

where Cx > 0. (The constants Cu C2 depend on the choice of 8.) 
Now we shall estimate the member given by the* penalty operator in the equation 

(15). We have 

(27) - ~ f i [«-* - *,..,)- - « - *,)-] x 
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x [(«;#2).h - u\$2] dx = 

- - "75 f I [«-* - *-.-*)" - W - )̂"1 x 

«n Jn '=i 
x (u£,_A - tK,_„ - uj + </v) <_2 dx + 

+ T_ f £ [«-* - *'•-*)" " ("' " *')"- x 
eh2Jflr=i 

x [-(_;**)_» + u.,_h<_2 - ^ , _ h < _ 2 + ^ 2 ] dx. 

It is clear that the first expression on the right hand side is nonnegative. (This follows 
from the monotonicity of the negative part.) The second expression can be written as 

Ti f Ž ("' ~ ^)" i""'*2 + "'** ~ *'** + ÍM* 
£« J_>r=i 

+ (u^2)_,. - u\,.h<P2 + ^r,_h<t>2 - ýr<P2] dx = 

= i - <j8(_' - u0), ul,(#2_A - 4-2) + u«(4»2 - <í>2) + eh2 

+ (*_t - #) <_2 + (^ - *) $2> = _ 

= ±- </*(_' - u0), uth[(<Plh - 02) - (*2 - *J)] + («'_t - ««) (<_2 - <_ 2) + 
e/r 

+ (_. - . ,) («_ - .• . + (*» - 2* + .-„) *!> -

. I / * , - „.),„., ____£___ + (,_, _ „.)____iM____) + 

+ 
_'.„ - и' Ф - Фt 2 ф + Q , , - < / 0 ( Ф 2 - Ф 2 ) tøt - 2^ + ft_t) Л 

h h h h h2 /' 

This expression in the absolute value is not greater than 

(28) c15(||u
£|2,_,0 + \\A_h(u°) * | 2 , i ( 0 + | |4. .-)lki . . . + 

+ — 1^ -2^ + ^_t|2,i,D., 

because the functionals (l/e) j.(u£ - u0) are bounded in the norm of V* (independently 
of e) and the functions (l//i2) (<__„ - 2<_ 2 + <_ t ) , (l/h2) (<_ - <f> t)

2 (1/h) (<P - <£•„) 
are bounded. We know that |u£|2>1,0 are bounded. Moreover, it follows from the 
assumption t/r _ [W\(Q)]m that the norms fl-l.,^! 2 ,_,_••> (l/h2) |tK - 2^ - ^_t||2>i,n. 
are bounded (if h -* 0). Hence the expression from (28) is not less than 

- c
1 « | - ' - - ( « , ) * | 2 . 1 f o - C 1 7 . 
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The right hand side in (15) can be rewritten by means of the identity 

(29) ($2us)-h - $2ue = *!*(!<•-* - u£) + ($lh - <£2) ue = 

= (<Pih - <S>2) (ulh - u£) + * V - * - «') + (*-* - ^ 2 ) w* • 

The functions A_/.(#2), #, #2 are bounded independently of h. Moreover, it is easy 
to see that for f e [L2(Q)]m we have /*_„(/) -* 3//&c, in the dual space ([W^(0*)]w)*. 
Especially, A„h(f) are bounded in this space. 

It follows from here and from (29) that the absolute value of the right hand side 
in (15) is not greater than 

Cn(\\A-h(u*)<P\\2tUQ + \\u%}ltQ)h2
 = c18\\A_h(u*)<P\\2>ltQh2. 

Now all the estimates proved yield together the inequality (16). The proof of the 
theorem is complete. 
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