Ivan Chajda Notes on lattice congruences

Časopis pro pěstování matematiky, Vol. 103 (1978), No. 3, 255--258

Persistent URL: http://dml.cz/dmlcz/117982

## Terms of use:

© Institute of Mathematics AS CR, 1978

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.



This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

## NOTES ON LATTICE CONGRUENCES

IVAN CHAJDA, Přerov (Received August 11, 1976)

It is well-known that each ideal of a lattice L is a kernel of at least one congruence relation on L if and only if L is distributive (see e.g. [1]), and that there exists a oneto-one correspondence between congruences and ideals for relatively complementary distributive lattices (see [2]). An approach adopted in [3] enables us to investigate the relationship between congruences and ideals also for modular lattices.

**Definition 1.** Let J be an ideal of a given lattice L. Denote  $a \lor J = \{a \lor j; j \in J\}$ . A binary relation  $T_J$  on L defined by the rule

 $\langle x, y \rangle \in T_J$  if and only if there exists  $u \in L$  with  $x, y \in u \lor J$  is said to be *induced* by the ideal J.

It is clear that  $T_J$  is a symmetrical relation on L. Further, for each  $a \in L$  and an arbitrary  $j \in J$  we have  $a = a \lor (a \land j)$ ; clearly  $a \land j \in J$ , thus  $a \in a \lor J$ , which implies the reflexivity of  $T_J$ . Thus  $T_J$  is a tolerance relation on L (see [3]). In [3], conditions of the compatibility of  $T_J$  are studied (for the compatibility, see [4]). We shall now investigate the conditions for  $T_J$  to be a congruence relation. By Definition 1, if  $T_J$  is a congruence relation, J is a kernel of  $T_J$ .

**Theorem 1.** Let L be a lattice and J an ideal of L. If the relation  $T_J$  induced by J is compatible on L, then  $T_J$  is a congruence relation on L.

Proof. As  $T_J$  is reflexive, symmetrical and compatible, we must prove only its transitivity. Suppose  $a, b, c \in L$  and  $\langle a, b \rangle \in T_J$ ,  $\langle b, c \rangle \in T_J$ . Then there exist  $u, v \in L$  and  $i, j, k, l \in J$  with  $a = u \lor i$ ,  $b = u \lor j$ ,  $b = v \lor k$ ,  $c = v \lor l$ . As  $i, l \in J$ , we have

$$(1^{\circ}) \qquad \langle i, l \rangle \in T_J.$$

From  $u \in u \lor J$ ,  $a \in u \lor J$  it follows  $\langle u, a \rangle \in T_J$ . Analogously it can be proved that  $\langle u, b \rangle \in T_J$ ,  $\langle v, b \rangle \in T_J$ ,  $\langle v, c \rangle \in T_J$ . As  $T_J$  is symmetrical, also  $\langle b, v \rangle \in T_J$ . From the compatibility of  $T_J$  then

(2°) 
$$\langle u, b \rangle \in T_J, \langle b, v \rangle \in T_J \Rightarrow \langle (u \land b), (b \land v) \rangle \in T_J.$$

From  $b = u \lor j$  we have  $b \ge u$ , from  $b = v \lor k$  then  $b \ge v$ . Then  $(2^\circ)$  implies  $\langle u, v \rangle \in T_J$ , which together with  $(1^\circ)$  implies

$$\langle (u \lor i), (v \lor l) \rangle \in T_J$$

thus  $\langle a, c \rangle \in T_J$ . Hence  $T_J$  is transitive.

**Lemma 1.** Let L be a lattice and J its ideal. Let  $T_J$  be the relation induced by J. If a, b, c,  $d \in L$  and  $\langle a, b \rangle \in T_J$ ,  $\langle c, d \rangle \in T_J$ , then

$$\langle (a \lor c), (b \lor d) \rangle \in T_J$$
.

Proof. If  $\langle a, b \rangle \in T_J$ ,  $\langle c, d \rangle \in T_J$ , then  $a = u \lor i$ ,  $b = u \lor j$ ,  $c = v \lor k$ ,  $d = v \lor l$  for some  $u, v \in L$ ,  $i, j, k, l \in J$ . Hence  $a \lor c = (u \lor v) \lor (i \lor k)$ ,  $b \lor d = (u \lor v) \lor (j \lor l)$ , thus  $a \lor c \in (u \lor v) \lor J$  and  $b \lor d \in (u \lor v) \lor J$ , i.e.  $\langle (a \lor c), (b \lor d) \rangle \in T_J$ .

**Lemma 2.** Let L be a lattice, J an ideal of L and  $T_j$  the relation induced by J. If  $a, b \in L$  and  $\langle a, b \rangle \in T_j$ , then  $a = (a \land b) \lor i$ ,  $b = (a \land b) \lor j$  for some  $i, j \in J$ .

Proof. If  $\langle a, b \rangle \in T_J$ , then by Definition 1,  $a = u \lor i$ ,  $b = u \lor j$  for some  $u \in L$ ,  $i, j \in J$ . Hence  $a \ge a \land b \ge u$ ,  $a \ge i$ , thus  $a = a \lor i \ge (a \land b) \lor i \ge u \lor i =$ = a, i.e.  $a = (a \land b) \lor i$ . Analogously it can be proved that  $b = (a \land b) \lor j$ .

**Lemma 3.** Let L be a modular lattice, J an ideal of L and  $T_J$  the relation induced by J. Let c,  $d \in L$  and  $c \leq d$ . If  $\langle c, d \rangle \in T_J$  and  $T_J$  is transitive, then  $\langle (a \land d), (a \land c) \rangle \in T_J$  for each  $a \in L$ .

**Proof.** Let  $\langle c, d \rangle \in T_J$ . Then there exist  $u \in L$  and  $i, j \in J$  with  $c = u \lor j$ ,  $d = u \lor i$ . As  $c \leq d$  and L is modular, we have  $j \leq i$ , thus  $d = c \lor i$ .

Put  $x = a \land d$ ,  $y = x \lor c$ ,  $t = y \land i$ . Then  $y \ge c$ ,  $d \ge x$ . From these inequalities and by the modularity of L we obtain

$$c \lor t = c \lor (y \land i) = (c \lor i) \land y = d \land y = d \land (x \lor c) =$$
$$= (d \land x) \lor c = (d \land (a \land d)) \lor c = (a \land d) \lor c = y.$$

As  $t \in J$ , this implies  $\langle y, c \rangle \in T_J$ . From  $y = c \lor t$ ,  $t \leq x \lor t$  and by the modularity of Lit follows

$$((x \lor t) \land c) \lor t = (x \lor t) \land (c \lor t) = (x \lor t) \land (c \lor t \lor t) =$$
$$= (x \lor t) \land (y \lor t) = (x \lor t) \land (x \lor c \lor t) = x \lor t,$$

hence  $\langle (x \lor t) \land c, (x \lor t) \rangle \in T_J$ . Clearly also  $\langle (x \lor t), x \rangle \in T_J$ . By the transitivity of  $T_J, \langle (x \lor t) \land c, x \rangle \in T_J$ . By Lemma 2, there exists  $q \in J$  with  $x = (x \land ((x \lor v) \land c)) \lor q$ . However,  $x \land ((x \lor t) \land c) = x \land c$ , thus  $x = (x \land c) \lor q$ , i.e.  $\langle x, (x \land c) \rangle \in T_J$ . As  $x \land c = a \land d \land c = a \land c$ , this implies  $\langle (a \land d), (a \land c) \rangle \in T_J$ .

**Theorem 2.** Let L be a modular lattice, J its ideal and  $T_J$  the relation induced by J. If  $T_J$  is transitive, then it is a congruence relation on L.

Proof. If  $T_J$  is transitive, it is an equivalence relation on L. It remains to prove the compatibility of  $T_J$ . Let  $a, b, c, d \in L$  and  $\langle a, b \rangle \in T_J$ ,  $\langle c, d \rangle \in T_J$ . By Lemma 1, we must prove only that  $T_J$  preserves the operation  $\wedge$ . By Lemma 2, there exist  $i, j \in J$  with  $a = (a \land b) \lor i$ ,  $b = (a \land b) \lor j$ . By Theorem 1 in [3],  $(a \land b) \lor J$  is a convex sublattice of L, thus

$$a \in (a \land b) \lor J, b \in (a \land b) \lor J \Rightarrow a \lor b \in (a \land b) \lor J,$$

hence  $\langle (a \land b), (a \lor b) \rangle \in T_J$ . Analogously it can be proved that  $\langle (c \land d), (c \lor d) \rangle \in T_J$ . By Lemma 3, this implies

$$\langle (a \land c \land d), (a \land (c \lor d)) \rangle \in T_J$$

Thus  $a \wedge c \wedge d \in u_0 \vee J$ ,  $a \wedge (c \wedge d) \in u_0 \vee J$  for some  $u_0 \in L$ . By Theorem 1 in [3],  $u_0 \vee J$  is a convex sublattice of L; clearly

$$a \wedge c \wedge d \leq a \wedge c \leq a \wedge (c \lor d), \quad a \wedge c \wedge d \leq a \wedge d \leq a \wedge (c \lor d),$$

thus also  $a \wedge c \in u_0 \vee J$  and  $a \wedge d \in u_0 \vee J$ , hence  $\langle (a \wedge c), (a \wedge d) \rangle \in T_J$ . Analogously also  $\langle (a \wedge d), (b \wedge d) \rangle \in T_J$ , thus the transitivity of  $T_J$  implies  $\langle (a \wedge c), (b \wedge d) \rangle \in T_J$ , i.e.  $T_J$  is a compatible relation.

**Corollary.** Let L be a modular lattice, J an ideal of L and  $T_J$  the relation induced by J. Then the following assertions are equivalent:

- (a)  $T_J$  is a compatible relation on L.
- (b)  $T_J$  is transitive.
- (c)  $T_J$  is an equivalence relation on L.
- (d)  $T_J$  is a congruence relation on L with the kernel J.

Proof. The implication  $(d) \Rightarrow (a)$  is clear and  $(a) \Leftrightarrow (d)$  follows by Theorem 1. The implication  $(d) \Rightarrow (c) \Rightarrow (b)$  is also clear and  $(b) \Rightarrow (d)$  by Theorem 2.

The following concept is transferred from [3]:

**Definition 2.** Let L be a lattice and  $c \in L$ . If for each  $a, b \in L$  the element c fulfils the identity

$$(a \lor c) \land (b \lor c) = (a \land b) \lor c,$$

c is called a semi-distributive element.

**Theorem 3.** Let L be a modular lattice and  $j \in L$  a semi-distributive element. Let J be a principal ideal generated by j and  $T_J$  the relation induced by J. Then  $T_J$  is a congruence relation on L(with the kernel J).

**Proof.** By Theorem 2 in [3],  $T_J$  is a compatible relation for the principal ideal J generated j (it means  $J = \{x \in L; x \leq j\}$ ). By Theorem 1,  $T_J$  is a congruence relation on L. Clearly, J is the kernel of this congruence.

## References

- [1] Hashimoto J.: Ideal Theory for Lattices, Math. Japonicae 2, (1952), 149-186.
- [2] Szász G.: Introduction to lattice theory, Akadem. Kiadó, Budapest 1963.
- [3] Chajda I.: A construction of tolerances on modular lattices, Casop. pest. matem. 101 (1976) Praha, 195-198.
- [4] Chajda I., Zelinka B.: Compatible relations on algebras, Časop. pěst. mat. 100 (1975) Praha, 355-360.

Author's address: 750 00 Přerov, třída Lidových milicí 290.