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Časopis pro pěstování matematiky, roí. 103 (1978), Praha 

NOTES ON LATTICE CONGRUENCES 

IVAN CHAJDA, Pferov 

(Received August 11, 1976) 

It is well-known that each ideal of a lattice Lis a kernel of at least one congruence 
relation on Lif and only if Lis distributive (see e.g. [l]), and that there exists a one-
to-one correspondence between congruences and ideals for relatively complementary 
distributive lattices (see [2]). An approach adopted in [3] enables us to investigate 
the relationship between congruences and ideals also for modular lattices. 

Definition 1. Let J be an ideal of a given lattice L. Denote a v J = {a v j;'j e J}. 
A binary relation Tj on L defined by the rule 

<x, y> e Tj if and only if there exists u e L with x9yeu v J is said to be induced 
by the ideal J. 

It is clear that Tj is a symmetrical relation on L. Further, for each ae L and an 
arbitrary j e J we have a = a v (a A j); clearly a A j e J9 thus ae a v J, which 
implies the reflexivity of Tj. Thus Tj is a tolerance relation on L (see [3]). In [3], 
conditions of the compatibility of 7} are studied (for the compatibility, sep [4]). 
We shall now investigate the conditions for Tj to be a congruence relation. By Defini* 
tion 1, if T, is a congruence relation, / is a kernel of Tj. 

Theorem 1. Let Lbe a lattice and J an ideal of L. If the relation Tj induced 
by J is compatible on L, then Tj is a congruence relation on L. 

Proof. As Tj is reflexive, symmetrical and compatible, we must prove only its 
transitivity. Suppose a9b9ce Land <a, 6> e Tj9 <6, c> e Tj. Then there exist u9ve L 
and i, I, k9le J with a = u v i, b = u v j9 b =? v v fe, c -= v y /. As i, / e /, 
we have 

(1°) 0,l>eTj. 

From ueu v J9 aeu v J it follows <ti, a> e Tj. Analogously it can be proved 
that <w, b} e Tj9 (v9 by e Tj9 <t>, c> e Tj. As 7> is symmetrical, also <b, t?> e= Tj. 
From the compatibility of 7} then >• 
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(2°) <ti, b) e Tj9 <ft, v)eTj^ <(II A ft), (ft A t>)> € 7 } . 

From ft = u v j we have ft = «, from ft = t? v fc then ft = v. Then (2°) implies 
<i*, t>> e T/, which together with (1°) implies 

<(II v i),(* v 0 ) 6 ^ , 

thus <a, c> € Tj. Hence Tj is transitive. 

Lemma 1. Let Lbe a lattice and J its ideal. Let Tj be the relation induced by J. 
If a9b,c,deL and <a, ft> e Tj9 <c, d) e Tj9 then 

<(a v c), (ft v d)> e Tj . 

Proof. If <a, ft> e Tj9 <c, d) e Tj9 then a = u v i, ft = u v j , c = v v k9 

d = v v I for some u9 v e L, i , j , k9le J. Hence a v c = (u v t;) v (i v k)9 

ft v d = (K v v) v (j v /), thus a v ce(u v v) v J and ft v de(u v v) v J9 

i.e. <(a v c), (ft v d)> e Tj. 

Lemma 2. Let Lbe a lattice, J an ideal of L and Tj the relation induced by J. 
If a, beL and <a, ft> e 7}, then a = (a A ft) v i, ft = (a A ft) v j for some 
i9jeJ. 

Proof. If <a, ft> e Tj9 then by Definition 1, a = u v i, ft = u v j for some ue L9 

i9j e J. Hence a gt a A ft ^ w, a _; i, thus a = a v i = (a A ft) v i = u v i = 
= a, i.e. a = (a A ft) v i. Analogously it can be proved that ft = (a A ft) v f 

Lemma 3. Let Lbe a modular lattice, J an ideal of Land Tj the relation induced 
by J. Let c9de L and c S d. If <c, d) e Tj and Tj is transitive, then <(a A d)9 

(a A C)> e Tj for each ae L. 

Proof. Let <c, d) e 7}. Then there exist ue L and i,j eJ with c = u v j , d = 
= u v i. As c g d and Lis modular, we have j ^ i, thus d = c v i. 

Put x — a A d9 y =* x v c9 t ** y A i. Then j ^ c, d = x. From these inequali
ties and by the modularity of Lwe obtain 

c v t = c v (y A i) =- (c v i) A y = d A y = d A (X V C) = 

= (d A x) V c = (d A (a A d)) v c = (a A d) v c = y. 

As t e J9 this implies <y, c) e Tj. From y = c v t91 ^ x v t and by the modularity 
of Lit follows 

((x V t) A c) v I; * (x v t) A (c v t) = (x V t) A (c V t V t) = 

-s- (X V 0 A (y V t) SB (x V t) A (x V C V t) « X V I , 
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hence <(x v t) A C, (X V t)} e Tj. Clearly also <(x v t), x> 6 Tj. By the transitivity 
of Tj, <(X v t) A c, x> e Tj. By Lemma 2, there exists q e J with x = (x A ((x v 
v if) A c)) v q. However, x A ((X V t) A C) = x A C, thus x = (x A C) v q, i.e. 
<x, (x A c)> e Tj. AS X A C = a A d A C = a A C, this implies <(a A d), 
(a A c)> e Tj. 

Theorem 2. Le* Lbe a modular lattice, J its ideal and Tj the relation induced 
by J. If Tj is transitive, then it is a congruence relation on L. 

Proof. If Tj is transitive, it is an equivalence relation on L. It remains to prove the 
compatibility of Tj. Let a,b,c,de L and <a, b> e Tj, <c, d} e Tj. By Lemma 1, 
we must prove only that Tj preserves the operation A . By Lemma 2, there exist 
*',7 e J with a = (a A b) v i, b = (a A b) v 7. By Theorem 1 in [3] ,(a A b) v J 
is a convex sublattice of L, thus 

ae(aAb)vJ, be(aAb)vJ=>avbe(aAb)vJ, 

hence <(a A b), (a v fc)> e Tj. Analogously it can be proved that <(c A d), 
(c v d)} e Tj. By Lemma 3, this implies 

<(a A c A d), (a A (c v d))} e Tj. 

Thus a A c A d e u0 v J, a A (c A d) e u0 v J for some u0 6 L. By Theorem 1 
in [3], u0 v J is a convex sublattice of L; clearly 

a A C A d ^ a A c ^ a A ( c v d ) , aACAd^aAd^aA(cvd), 

thus also a A ceu0 v J and a A deu0 v J, hence <(a A C), (a A d)> e Tj. 
Analogously also <(a A d), (b A d)} e Tj, thus the transitivity of Tj implies <(a A C), 
(b A d)> e Tj, i.e. Tj is a compatible relation. 

Corollary. Let Lbe a modular lattice, J an ideal of Land Tj the relation induced 
by J. Then the following assertions are equivalent: 

(a) Tj is a compatible relation on L. 
(b) Tj is transitive. 
(c) Tj is an equivalence relation on L. 
(d) Tj is a congruence relation on L with the kernel J. 

Proof. The implication (d) => (a) is clear and (a) o ( d ) follows by Theorem 1. 
The implication (d) => (c) => (b) is also clear and (b) => (d) by Theorem 2. 

The following concept is transferred from [3]: 
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Definition 2. Let Lbe a lattice and c e L. If for each a, b e Lthe element c fulfils 
the identity 

. * • (a v c) A (b v c) =* (a A b) v c, 

c is called a semi-distributive element. 

Theorem 3* Let L be a modular lattice and j e L a semi-distributive element. 
Let J be a principal ideal generated by j and Tj the relation induced by J. Then 
Tj is a congruence relation on L(with the kernel J). 

Proof. By Theorem 2 in [3], Tj is a compatible relation for the principal ideal / 
generated; (it means J = {x e L; x ^ /'}). By Theorem 1, Tj is a congruence relation 
on L. Clearly, J is the kernel of this congruence. 

References 

[1] Hashimoto / . : Ideal Theory for Lattices, Math. Japonicae 2, (1952), 149—186. 
[2] Szász G.: Intгoduction to lattice theory, Akadem. Kiadó, Budapest 1963. 
[3] Chajda /,: A construction of tolerances on modulaг lattices, Časop. p st. matem. I0I (1976) 

Praha, 195-198. 
[4] Chajda /., Zelinka B.: Compatible relations on algebras, Časop. pëst. mat. I00 (1975) Pгaha, 

355-360. 

Author's address: 750 00 Přerov, třída Lidov ch milicí 290. 

258 


		webmaster@dml.cz
	2012-05-12T09:15:00+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




