Časopis pro pěstování matematiky

Milan Koman

New upper bounds for the crossing number of K_{n} on the Klein bottle

Časopis pro pěstování matematiky, Vol. 103 (1978), No. 3, 282--288
Persistent URL: http://dml.cz/dmlcz/117984

Terms of use:

© Institute of Mathematics AS CR, 1978

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

NEW UPPER BOUNDS FOR THE CROSSING NUMBER OF K_{n} ON THE KLEIN BOTTLE

Milan Koman, Praha

(Received October 7, 1976)

1. INTRODUCTION

The crossing number of a graph G for an orientable as well as for a nonorientable surface with the genus g is defined as the least possible number of crossings in a drawing of G on the mentioned surface. For an orientable surface we use the notation $c r_{g}^{*}(G)$, for the nonorientable one $c r_{g}(G), g=1,2,3, \ldots$.

The crossing numbers are most frequently investigated for the complete graphs K_{n} and the complete bipartite graphs $K_{m, n}$. Most papers deal with the plane. The other surfaces mentioned are the torus, the projective plane and the Klein bottle.

We shall give briefly the most important results in the chronological order.

1. Zarankiewicz 1954 [1] and Urbanik 1955 [2];

$$
c r_{0}^{*}\left(K_{m, n}\right) \leqq\left[\frac{m}{2}\right]\left[\frac{m-1}{2}\right]\left[\frac{n}{2}\right]\left[\frac{n-1}{2}\right] .
$$

2. Guy 1960 [3], Harary and Hill 1962 [4], Blažek and Koman 1963 [5], Saaty 1964 [6]:

$$
c r_{0}^{*}\left(K_{n}\right) \leqq \frac{1}{4}\left[\frac{n}{2}\right]\left[\frac{n-1}{2}\right]\left[\frac{n-2}{2}\right]\left[\frac{n-3}{2}\right]
$$

3. Guy, Jenkyns and Schaer 1967 [7]:

$$
c r_{1}^{*}\left(K_{n}\right) \leqq \frac{59}{216}\left(\frac{n-1}{4}\right), \quad n \geqq 10 .
$$

4. Blažek and Koman 1967 [8, 9], Harborth 1971 [10]:

$$
\begin{gathered}
c r_{0}^{*}\left(K_{n_{1} n_{2} \ldots n_{k}}\right) \leqq \sum_{i} a_{i} b_{i} A_{i} B_{i}-\sum_{i<j} a_{i} b_{i} a_{j} b_{j}+ \\
+\sum_{r<s<t<n}\left(a_{r} a_{s} a_{t} a_{u}+a_{r} a_{s} c_{t} c_{u}+a_{r} c_{s} c_{t} a_{u}+c_{r} c_{s} c_{t} c_{u}+c_{r} c_{s} a_{t} a_{u}+c_{r} a_{s} a_{t} c_{u}\right)
\end{gathered}
$$

where

$$
\begin{aligned}
a_{i} & =\left[\frac{n_{i}}{2}\right], \quad b_{i}=\left[\frac{n_{i}-1}{2}\right], \quad c_{i}=\left[\frac{n_{i}+1}{2}\right] \\
A_{i} & =\left[\left(\sum_{j} n_{j}-n_{i}\right) / 2\right], \quad B_{i}=\left[\left(\sum_{j} n_{j}-n_{i}-1\right) / 2\right] .
\end{aligned}
$$

5. Guy and Jenkyns 1969 [11]:

$$
c r_{1}^{*}\left(K_{m, n}\right) \leqq \frac{1}{6}\binom{m-1}{2}\binom{n-1}{2}, \quad m, n \geqq 45
$$

6. Koman 1969 [12, 13]:

$$
\begin{array}{ll}
c r_{1}\left(K_{n}\right) \leqq \frac{39}{128}\binom{n-1}{4}, & n \geqq 10 ; \\
c r_{2}\left(K_{n}\right) \leqq \frac{37}{128}\binom{n-1}{4}, & n \geqq 10 .
\end{array}
$$

7. Guy and Hill 1973 [14]:

$$
\begin{aligned}
\operatorname{cr}_{0}^{*}\left(\bar{C}_{n}\right) & \leqq \frac{1}{64}(n-3)^{2}(n-5)^{2}, \quad n \text { odd } \\
& \leqq \frac{1}{64} n(n-4)(n-6)^{2}, \quad n \text { even }
\end{aligned}
$$

where \bar{C}_{n} is the complement of a circuit of the length n.
8. Koman 1974 [13]:

$$
c r_{2}\left(K_{m, n}\right) \leqq \frac{1}{6}\binom{m-1}{2}\binom{n-1}{2}
$$

for infinite integers m and n. It is a hiatus that the inequality holds for all $m, n \geqq 45$.
From the given survey it is seen among other that on the torus as well as on the Klein bottle the same upper bounds for the crossing numbers of the complete bipartite graphs $K_{m, n}$ hold.

In this paper we shall show that for the complete graph K_{n} the known value

$$
\frac{59}{216}\left(\frac{n-1}{4}\right)
$$

is the upper bound not only for the torus but also for the Klein bottle.

2. PRECISE VALUES AND BOUNDS FOR $n \leqq 15$

The results for the Klein bottle and for the torus are given simultaneously (see [7, 12]):

$$
\begin{array}{ll}
c r_{2}\left(K_{7}\right)=1, & c r_{1}^{*}\left(K_{7}\right)=0 \\
c r_{2}\left(K_{8}\right)=4, & c r_{1}^{*}\left(K_{8}\right)=4 \\
c r_{2}\left(K_{9}\right)=9, & c r_{1}^{*}\left(K_{9}\right)=9 .
\end{array}
$$

For $n=10$ in contradistinction to the torus, where the precise value $c r_{1}^{*}\left(K_{10}\right)$ is known, only the upper and lower estimates are known for the Klein bottle:

$$
22 \leqq c r_{2}\left(K_{10}\right) \leqq 24, \quad c r_{1}^{*}\left(K_{10}\right)=23
$$

The upper bounds for the both surfaces follow from Figs. 1 and 2.

Fig. $1\left(\mathrm{cr}_{2}\left(K_{10}\right) \leqq 24\right)$

Fig. $2\left(c r_{1}^{*}\left(K_{10}\right) \leqq 23\right)$

Fig. 3

For $11 \leqq n \leqq 15$ we can give for the Klein bottle as well as for the torus the following estimates:

$$
\begin{aligned}
& 35 \leqq c r_{2}\left(K_{11}\right) \leqq 43, \quad 37 \leqq c r_{1}^{*}\left(K_{11}\right) \leqq 42 \text {, } \\
& 53 \leqq c r_{2}\left(K_{12}\right) \leqq 72, \quad 56 \leqq c r_{1}^{*}\left(K_{12}\right) \leqq 70, \\
& 77 \leqq c r_{2}\left(K_{13}\right) \leqq 109, \quad 81 \leqq c r_{1}^{*}\left(K_{13}\right) \leqq 105, \\
& 108 \leqq c r_{2}\left(K_{14}\right) \leqq 161, \quad 114 \leqq c r_{1}^{*}\left(K_{14}\right) \leqq 154, \\
& 148 \leqq c r_{2}\left(K_{15}\right) \leqq 225, \quad 156 \leqq c r_{1}^{*}\left(K_{15}\right) \leqq 225 .
\end{aligned}
$$

The inequality $c r_{2}\left(K_{11}\right) \leqq 43$ gives Fig. 3. The upper bound is here lower by 1 than that given in [12]. The inequality $c r_{2}\left(K_{15}\right) \leqq 225$ is a consequence of the construction which will be presented in Part 3. For $n=15$, the upper bound for $c r_{2}\left(K_{15}\right)$ decreases from 239 (see [12]) to 225.

3. BOUNDS FOR $n \geqq 16$

The drawing of the graphs $K_{n}, n \geqq 3$ on the Klein bottle, which gives the upper bound for the crossing number $\mathrm{cr}_{2}\left(K_{n}\right)$, arises by a simple modification of an analogous Guy-Jenkyns's drawing on the torus [17]. For $n=12$ the both drawings are obvious from Figs. 4 and 5.

Fig. $4\left(\operatorname{cr}_{2}\left(K_{12}\right) \leqq 72\right)$

Fig. $5\left(\operatorname{cr}_{1}^{*}\left(K_{12}\right) \leqq 72\right)$

For other n 's the drawings for K_{n} are generalizations of Figs. 4, 5. All n vertices are divided into three approximately equal parts: white, black and grey. We dislocate the vertices according to Fgs. 6, 7. After sticking the appropriate pairs of vertices we obtain in the first case the Klein bottle, in the second the torus.

On the constructed surface we join all the vertices having the same colour with the identically coloured circuit. In this way three disjoined circuits arise: white, black and grey, which form already a crossingfree subdrawing of the sought drawing. The edges joining two vertices with different colours are determined by these crossingfree circuits. The other edges are constructed according to the following rule.

First of all we label all the vertices with cyclical orders on each of the crossingfree coloured circuits with the integers.

$$
1,2,3, \ldots, n_{i}
$$

(n_{i} is the length of the white, black and grey circuit C_{i} respectively). We join two identically coloured vertices u, v coinciding with a crossingfree circuit C_{i} (with length n_{i}) on one side iff the edge $u v$ is parallel to some of the edges

$$
1 w, \quad w=2,3, \ldots,\left[n_{i} / 2\right] .
$$

Other remaining joins of the vertices belonging to C_{i} are constructed on the opposite side of the circuit C_{i}. Two edges $u v$, $w t$, whose endpoints belong to the same crossingfree circuits C_{i} of length n_{i} are called parallel iff

$$
u+v \equiv w+t\left(\bmod n_{i}\right)
$$

holds.
The just obtained drawing of the graph K_{n} on the Klein bottle as well as that on the torus contains three subdrawings of complete graphs generated by white, black or grey vertices respectively. These subdrawings are homeomorphical with the drawing given in [5] by means of the construction B.

From the table and from $[12,13]$ we obtain the inequalities

$$
\frac{1}{14}\binom{n}{4} \leqq c r_{2}\left(K_{n}\right) \leqq \frac{59}{216}\binom{n-1}{4}
$$

As in [7] we obtain the following upper bounds:

$n=$	Common upper bound for $c r_{2}\left(K_{n}\right)$ and $c r_{1}\left(K_{n}\right)$		
$6 k=3 u$			
$6 k+1=3 u+1$	$u(u-2)\left(59 u^{2}-98 u+24\right) / 64=n(n-6)\left(59 n^{2}-294 n+216\right) / 5184$ $u\left(177 u^{3}-412 u^{2}+180 u+64\right) / 192=$ $=(n-1)\left(59 n^{3}-589 n^{2}+1541 n-435\right) / 5184$ $(u-1)\left(177 u^{3}-707 u^{2}+727 u-117\right) / 192=$ $=(n-2)\left(59 n^{3}-530 n^{2}+944 n+480\right) / 5184$ $6 k+2=3 u-1$ $(u-1)\left(59 u^{3}-157 u^{2}+45 u-27\right) / 64=$ $=(n-3)\left(59 n^{3}-471 n^{2}+405 n-243\right) / 5184$		
$6 k+3=3 u$			
$6 k+4=3 u+1$			
$6 k+5=3 u-1$		\quad	$(u-1)\left(177 u^{3}-235 u^{2}-97 u+27\right) / 192=$ $=(n-4)\left(59 n^{3}-412 n^{2}+356 n+240\right) / 5184$ $(u-2)\left(177 u^{3}-530 u^{2}+416 u-96\right) / 192=$ $=(n-5)\left(59 n^{3}-353 n^{2}+365 n-87\right) / 5184$
:---			
(n)			

To compare the upper bounds for the same graph (class of graphs) but for different surfaces it is useful to investigate the coefficients by the leading members:

	K_{n}	$K_{m, n}$	\bar{C}_{n}
Euclidean plane	$\frac{1}{64}=0.0156 \ldots$	$\frac{1}{16}=0.0625 \ldots$	$\frac{1}{64}=0.0156 \ldots$
Projective plane	$\frac{1}{10} \frac{3}{24}=0.0126 \ldots$	$?$	$?$
Torus	$\frac{59}{5184}=0.0113 \ldots$	$\frac{1}{24}=0.0416 \ldots$	$?$
Klein bottle	$\frac{59}{5184}=0.0113 \ldots$	$\frac{1}{24}=0.0416 \ldots$	$?$

References

[1] Zarankiewicz, K.: On a Problem of P. Turán concerning graphs. Fund. Math. 41 (1954), 137-145.
[2] Urbanik, K.: Solution du problème posé par P. Turán, Ceolloq. Math. 3 (1955), 200-201.
[3] Guy, R. K.: A combinatorial problem. Bull. Malayan Math. Soc. 7 (1960), 68-72.
[4] Harary, F. and Hill, A.: On the number of crossings in a complete graph. Proc. Edinburgh Math. Soc. (2), 13 (1962-3), 333-338.
[5] Blažek, J. and Koman, M.: A minimal problem concerning complete plane graphs. Theory of graphs and its applications, editor M. Fiedler, Proc. Symp. Smolenice June 1963, Prague 1964, 113-117.
[6] Saaty, T. L.: The minimum number of intersections in complete graphs. Proc. Nat. Acad. Sci., U.S.A., 52 (1964), 688-690.
[7] Guy, R. K., Jenkyns, T. A., Schaer, J.: The toroidal crossing number of complete graph. (Univ. Calgary, Research paper 18 (1967), 1-20.) J. Comb. Theory, 4, (1968), 376-390.
[8] Blažek, J. and Koman, M.: On an extremal problem concerning graphs. CMUC, 8, 1 (1967), 49-52.
[9] Blažek, J. and Koman, M.: The crossing number of complete k-chromatic graphs. (in Czech), Matemat., Sbornik Ped., fak. UK Praha 1970, 69-84.
[10] Harborth H.: Über die Kreuzungszahl vollständiger, n-geteilter Graphen. Math. Nachrichten, 48 (1971), 179-188.
[11] Guy, R. K. and Jenkyns, T. A.: The toroidal crossing number of $K_{m, n}$. J. Comb. Theory, 6 (1969), 235-250.
[12] Koman, M.: On the crossing number of graphs, Acta Univ. Carol. Math. Phys., 10 (1969), 9-46.
[13] Koman, M.: A note on the crossing number of $K_{m, n}$ on the Klein bottle. Recent Advanc. in Graph Theory, Proc. Symp. Praque, June 1973, Editor M. Fiedler, Acad. Praque 1975, 327-334.
[14] Guy, R. K. and Hill, A.: The crossing number of the complement of a circuit. Discr. Math., 5 (1973), 335-344.

Author's address: 11639 Praha 1, Rettigové 4 (Katedra matematiky a fyziky pedagogické fakulty UK).

