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Časopis pro pěstování matematiky, roí. 104 (1979), Praha 

CONCERNING A GEOMETRICAL CHARACTERIZATION 
OF FRECHET DIFFERENTIABILITY 

MARIAN FABIAN, Praha 

(Received March 18, 1977) 

INTRODUCTION 

In finitely dimensional normed linear spaces, Frechet differentiability from a geo­
metric point of view has been studied by many authors, see e.g. FLETT [8] and ROET-
MAN [12]. Unfortunately, the methods used fail if the requirement of finite dimension­
ality is dropped. In general normed linear spaces, geometric characterizations of 
Frechet differentiability were given first by DURDIL [5], [6], and recently by DANES 
and DURDIL [4]. They do so by means of tangent plane, tangent cone and conic 
neighbourhood, respectively. 

Here, in §1, we present a new characterization, which may be also called a "metric" 
one. However, in §4 it is observed that our characterization and those in [4]—[6] 
are virtually the same because each characterization can be obtained by rewriting 
another one. Nonetheless, the metric characterization is useful for introducing the 
Frechet contiguity of sets. This concept is studied in §2. It is proved there (see Theorem 
2.1) that the Frechet contiguity of sets is conserved by a transformation (general 
enough) of the space. This result is then applied in §3 for deriving some theorems 
concerning the Frechet contiguity of mappings. Namely, the Frechet contiguity 
of inverses, linear combinations and compositions of mappings is studied. As co­
rollaries, we obtain the corresponding theorems from differential calculus in normed 
linear spaces. 

§0. PRELIMINARIES 

Throughout the paper (X, | |- | |), (Y, | |- | |), (Z, | |- | |), (17, | |- | |), {W, | |- |) will stand 
for real (or complex) normed linear spaces. Let M be a nonempty subset of, say, Z. 
The symbols M', int M will denote the derived set and the interior of M, respectively. 
For z e Z w e define 

(0.1) M © {z} «- {m + z | meM} , 

(0.2) d(z, M) « inf {\z - m|| | m € M} . 
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Let HI • | j | be a norm on Z equivalent with || • |. Then there are a, ft > 0 such that 

(0.3) ^ VzeZ « | z | g | | | z | | | g / ? | z | | . 

Hence, denoting d'(z, M) = inf {|||z — m||| | m e M}, we can see that 

(0.4) Vz 6 Z a d(z, M) S d'(z, M) S P d(z, M) . 

In what follows, we shall often put Z = X x Y, W = X x U, etc. In such cases, we 
shall always use the maximum norm, i.e., e.g., for Z = X x Y, 

(0.5) | | (x ,y ) |=m a x( lx | , |M | ) , (x,y)eZ. 

We shall recall some concepts and notations concerning (multivalued) mappings. 
Under a (multivalued) mapping from X into Y we understand an arbitrary nonempty 
subset F a X x Y. We then write F : X -> 2Y. (Hence, we do not distinguish between 
a mapping and its graph!) The domain of F is defined by D(F) = {xeX \{x} x 
x Yn F 4= 0}. For each xeX, we set Fx = {y e Y\ (X, y) eF}. Let us remark 
that F can also be defined by fixing the set Fx for each x e X. If Fx consists of one 
point only, we denote this point by Fx, too. For a set M c X we define F(M) = 
= \j{Fm | meM}. Especially, we put R(F) = F(X). F is called singlevalued at 
x0 e X if the set Fx0 is a singleton. F is called singlevalued if, for each xeX, Fx is 
either a singleton or Fx = 0. In this case, we write F :X -* Y. The inverse (multi­
valued) mapping to F is defined by P*"1 = {(y, x) e Y x X \ (x, y)eF}. Hence 
F" 1 : y-» 2X. We say that F is upper semicontinuous (briefly u. s. c.) at x0 e D(F) 
if, to every e > 0, there exists a S > 0 such that Fx is contained in the e-neighbourhood 
of the set Fx0 whenever \\x — x0|| < 8,xe D(F). 

The set of all singlevalued, positively homogeneous, Lipschitzian mappings 
L : X -> y with D(L) = X will be denoted by Jf(X, Y). 

R will stand for the real line with the usual norm. 

§1. A GEOMETRIC CHARACTERIZATION OF FRECHET DIFFERENTIABILITY 

During the last ten years, the concept of Frechet differentiability has been gener­
alized by many authors in several various directions and ways, see, e.g., [1], [2], 
[7], [9], [10] and the literature cited there. We shall work with the following slight 
generalization: 

Definition 1.1. Let X, Y be normed linear spaces. Let F : X -+ 2Y be a mapping 
with int D(F) # 0 and take some x0 e int D(F). Suppose that F is singlevalued at x0 

and that there exists L e 3t(X, Y) such that 

(i.i) Xo*x-+Xo*>sup{\\y-Fx°-I+x-x°)\\\yeFxl-+o. 

Then we say that F is Frechet differentiable at x0 and write dF(x0) — L. 
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It can be easily seen that the Frechet differentiability of F at X0 implies the u. s. c. 
of F at x0. Furthermore, from the definition, the uniqueness of L follows. 

Theorem 1.1. Let X, Y be normed linear spaces. Let F : X -* 2Y be Frechet 
differentiate at x0eX and denote Z = X x Y, z0 = (x0, Fx0), L = dF(x0). 

Then the following two implications hold (in the space Z): 

(1.2) ( ^ z e f & z ^ z 0 ) ^ ] ; - ^ U o , 
II- ~ zo|| 

(1.3) ( 0 * z 6 L & z - , 0 ) = > ^ ^ ^ 0 . 

Nl 
Proof. We shall first prove (1.2). Let z = (x, y) e F, z 4= z0. Then x 4= x0 and, 

by (0.2) and (0.5), 

d(z - z0, L) S \\(x, y) - (x0, Fx0) - (x - x0, L(x - x0))|| = 

= \\y - Fx0 -L(x- x0)\\, 

d(z - z0, L) < \\y - Fx0 - L(x - x0)\\ 

II- ~ -ol ~ \\x ~ xo\ 

If now z -> z0, then x -> x0 and Definition 1.1 together with the last inequality 
proves (1.2). 

Let us prove (1.3). Suppose 

0 =f= z = (x, Lx) e L & z -+ 0 . 

Then 0 # x -* 0 and, for x so small that x + x0 e D(F), we have 

d(z + z0, F) = ||(x, Lx) + (x0, Fx0) ~(x + x0, y)\\ = \\Lx + Fx0 - y\\ , 

where yeF(x + x0). Hence Definition 1.1 yields 

d(z + z0, F) \\Lx + Fx0 - y\\ ( 

as (1.3) asserts. 
It should be noted that, thanks to (0.3) and (0.4), the implications (1.2) and (1.3) 

are valid for an arbitrary norm on Z which is equivalent to that defined in (0.5). 

Theorem 1.2. Let X, Y be normed linear spaces. Let F : X -+ 2Y be singlevalued 
and u. s. c. at x0 e int D(F) and denote Z = X x Y, z0 = (x0, Fx0). Moreover, 
suppose there exists L eJ^(X, Y) such that (1.2) holds. 

Then F is Frechet differentiate at x0 and dF(x0) = L. 
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Proof. The Lipschitz constant of Lwill be denoted by C. Let 

(1.4) - e e (o, —--—-^ K ' \ 2(1 +C)J 

be given. (1.2) implies that there is tj > 0 such that 

d(z - z0,L) < e\\z - z0|| 

whenever ze F, 0 < ||z — z0|| < rj. Fix such a z = (x, y) arbitrarily. In view of 
(0.2) and (0.5), there is uz e X such that 

(1.5) flx - x0 - «z|| < e||z - z0|| , ||y - Fx0 - Lwz|| < e||z - z0|| . 

Now, using (1.4) and (1.5), we can estimate 

\uz\\ £ ||x - x0 - uz\\ + ||x - x0|| < e||z - z0|| + ||x - x0 | | , 

\\y - Fx0|| £ \\y - Fx0 - Luz\ + C||u2|| < 

< e(l + C) ||z - z0|| + Cjx - x0|| < i||z - z0|| + C||x - x0|| , 

||z - z0|| = max(||x - x0||, \y - Fx0||) < i||z - z0|| + (1 + C) ||x - x0|| , 

(1.6) ||z - z0|| < 2(1 + C) ||x - x0|| . 

Further, (1.5) and (1.6) yield 

\y - Fx0 - L(x - x0)|| S \\y ~ Fx0 - Luz\ + C\uz - (x - x0)|| < 

< e(l + C) ||z - z0|| < 2e(l + C)2 ||x - x0|| . 

Hence 

(1.7) \\y - Fx0 - Ux - x0)|| < 2e(l + Cf \\x - x0|| 

for all z = (x, y) e F fulfilling 0 < ||z — z 0 | < r\. Finally, since F is u. s. c. at x0, 
there is 8 e(0, tj) such that \\y — Fx0|| < tj whenever Jx — x0|| < 5 and y eFx. 
Thus for each x e X fulfilling 0 < ||x — x0|| < 8 and each y e Fx, (1.7) holds, which 
completes the proof. 

Theorem 1.2 says that (1.2) implies (under some assumptions) that F is Fr6chet 
differentiable at x0. Unfortunately, the same is not generally true for (1.3). This is 
shown in the following 

Example 1.1. Let X •» Y « R and define F : X -+ Yas follows: 

F 0 « 0 , Fx = xsin(x~2) for O + x e J J . 
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Obviously, F is continuous at 0. But F is not Frechet diflferentiable at 0. Indeed, 
putting 

xn = (nn + in)~1/2, n = 1, 2, . . . , 

we get xn -> 0 while 

Fxn = sin (xn
 2) = sin (nn -h ìn) = ( — l)n 

On the other hand, we shall show that (1.3) is fulfilled at z0 = (0, 0) if we take 
L = X x {0}. Let x e R, |x| e (0, i). We can find a unique natural number nx > 1 
such that 

Then, denoting 

"* - 1 = —r < nx 

nx 

nW2 

PC 

and taking into account (0.2), (0.5), we can estimate 

d((x, 0), F) < ||(x, 0) - (ux, Fux)\\ = \x- ux\, 

| | (x ,0) | |>(«n x ) -^ = |«x | . 

Therefore, if (0, 0) 4= (x, 0) -> (0, 0), then nx -> + oo and so 

d((x,0)F) ] x ^ = [ , ^ / / _ J ? ; _ \ 
- 1 - • 0 . 

Thus (1.3) is verified. 
The first part of Theorem 1.1 together with Theorem 1.2 gives us a geometrical 

characterization of Frechet differentiability. We shall formulate it in 

Theorem 1.3. LetX, Ybe normed linear spaces and let F : X -> 2y be singlevalued 
and u. s. c. at x0eint D(F). Finally, let LeJf(X,Y) and denote Z = X x Y, 
"o = (*o, Fx0). 

Then the following two assertions are equivalent: 

(i) F is Frechet differentiable at x0 and dF(x0) =-= L, 

(ii) (z0±zeF&z^Zo)~
 d{~l ~ Z°' L ) •-> 0 . 

- - zo 
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§2. FRECHET CONTIGUITY OF SETS 

Let us observe that the implications (1.2) and (1.3) can be rewritten in a symmetric 
form. In fact, denoting Lt = L® {z0}, see (0.1), we get respectively 

(2.1) (z0 4= zeF&z - z0) => f ^ \ ^ 0, 
F ~ 2o|| 

(2.2) (z0 * z eLi & z -> z0) -
 d(z'F> -- ^ 

ll2""zo|| , 

It suggests the following 

Definition 2.1. Let M, N be two sets in a normed linear space Z such that M' nN' + 
=# 0, and let z0e M' n Nf. We say that M is Frechet contiguous to N at z0 if the 
following implication holds: 

(z0*zeN&z-+z0)=> f(z' M\ -> 0 . 
\\z - *o | | 

Of course, replacing ||z — z0 | by |z — z0||
B, Frechet contiguity of n-th order can 

be defined. Furthermore, let us observe that Definition 2.1 is based only on the 
concept of distance, without using the linearity of Z. Hence it follows that Frechet 
contiguity can be defined in metric spaces, too. It should be also noted that the concept 
intioduced is local and independent of which equivalent norm on Z is taken, see 
(0.3) and (0.4). 

Theorem 2.1. Let Z, W be normed linear spaces and M, N two subsets of Z. 
Suppose that M is Frechet contiguous to N at z0 e M' n N'. Moreover, let there 
exist a singlevalued mapping B :Z -> W with D(B) 3 M u N u {z0}, Frechet 
differentiate at z0 and such that the following two conditions hold: 

(2.3) (zeM vN&Bz -> Bz0) => z ~> z0 , 

(2.4) 3<5>0 3 c > 0 ( z e M u N & \\Az - _4z0|| < 8) => 

=> \Az — y4z0|| -t 2c||z — z0 | , 

where the mapping A :Z -+ Wis defined by 

(2.5) Az = £z0 + dB(z0)(z - z0) , zeZ. 

Then each of the sets J(M), A(M) is Frechet contiguous to both B(N)9 A(N) at the 
point w0 -= Bz0 =- i4z0. 
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Proof. First we shall show that w0€A(M)', w0eB(M)'. Since Z0EM', there 
exists a sequence {zn} c M such that z0 + zn-+ z0. The continuity of A and B at 
z0 (B is Frechet differentiable at z0) implies that Azn -> .Az0, Bzn -• Bz0. But (2.4) 
or (2.3) yields respectively Azn 4= Az0, Bzn + Bz0 for n large enough. Hence w0 = 
= Az0 € A(M)', w0 = Bz0 e B(M)'. The relations w0 e A(N)', w0 € B(N)' can be 
obtained in the same way. 

Next, put for brevity 

(2.6) co(z - z0) = Bz - Bz0 - d£(z0) (z - z0) , z e D(B) . 

Hence, the Frechet differentiability of B at z0 implies 

(2.7) Zo + z ^ Z o = . l ^ 
IF - zo|| 

Now let 

w0 4= w e B(N) &W -» w0 and Wo-^ive yl(N) & w -* w0 . 

To each w and w, we can find zeN and zeiV such that w = J3z and w = Az, re­
spectively. Then, by (2.3) and (2.4), 

(2.8) z 0 4 = z e N & z - > z 0 , z 0 4 - z € N & z - > z 0 . 

Using (2.4)—(2.8) and assuming w and w sufficiently close to w0, we can estimate 

||w - Wo|| = \\Bz - Bz0\ = \\Az - Az0\ - \co(z - z0)|| > 

> 2c||z - z0|| - c\z - z0|| = c||z - z0 | , 

||w - w0|| = \Az - Az0\ ^ 2c||z - z0|| . 

That is, 

(2.9) ||w - w0|| > c||z - z0|| , ||w - w0|| > c|z - z0|| . 

Further, since M is Frechet contiguous to JV at z0, (2.8) implies 

4 - .M) | Q > d(z,M) i Q 

\\z - z0\\ ' \\z - z0|| 

So to each z, z there exist mz e M, mt e M such that 

(2.10) i ^ ^ - O and | ^ ^ - > 0 . 
IF ~ -tf| ||z ~ Zo\\ 
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Hence combining (2.7); (2.8) and (2.10), we get 

||mz - z0|| -• 0 , flm, - z0|| -• 0 , 

ftm H " « - - o ) B ^ 0 t - Hm£-z0)fl 
{ 1 ) ii- - -oil | | z - z 0 | | 

Now let C be the Lipschitz constant of dB(z0). Then using (2.5) and (2.6), we can 
estimate 

d(w, B(M)) = d(Bz, B(M)) = flfiz - Bmz|| = ||Bz0 + dB(z0) (z - z0) + 

• + co(z - z0) - (Bz0 + dB(z0)(mz - z0) + co(mz - z0))|| ^ 

= C\z - mz\ + \w(z - -„)! + ||©(mz - z0)|| , 

d(w, A(M)) = d(Bz, A(M)) = \\Bz - _4m,|| = ||dB(z0) (z - z0) + 

+ w(z - z0) - dB(z0)(mz - z0)|| g Cflz - mz\\ + 

+ |h(z - z0)|| , 

d(w, B(M)) = d(Az, B(M)) = fl.42 - Bmf|| = ||dB(z0) (z - z0) -

- dB(z0) (mj - z0) - <u(m2 - z0)|| = C|z - ms\\ + 

' + Mm, - z0)l, 

d(w, A(M)) =t c.L4z, 4(M)) = \\Az - 4mf|| = 

. = ||d£(z0) (z - z0) - dB(z0) (mz - z0)|| = C||z - m(|| . 

These estimates together with (2.7)—(2.11) yield 

d(w,B(M)) ^ Cflz - mz\\ + \\m(z - z0)\\ + ]|o(mz - z0)\\ _^ Q ^ 
flw - w0|| c||z - z0 | c\\z - z0|| c||z - z0 | 

d(w,A(M))^C\\z-mz\\ | H - - - o ) H , 0 > 

flw - w0|| c\\z - z0|| c\\z - z 0 | 

d (w,B(M))^c l z -m, | | t flo(m.-z0)H | Q > 

||w - w0|| c\\z - z0|| c||z - z0|| 

d(w,A(M))^C}\z-mi\\]Q^ 
\\w - w0|| c||z - z0|| " . 

T he proof is thus complete. 
Of course, in the abovetheorem it suffices to assume that B is Frechet differentiable 

at z0 with respect to the set M u N u {z0} in an appropriate sense. 
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§ 3. FRECHET CONTIGUITY OF MAPPINGS 

Let X, Y be normed linear spaces and F, G : X -* 2Y two mappings. Putting 
Z = X x Y, M = F, N = G in Definition 2.1, we arrive at 

Definition 3.1. Let F, G : X -» 2Y be two mappings such that int D(F) n int D(G) 
is nonempty and take an x0 in this set. Moreover, suppose that F, G are singlevalued 
and u. s. c. at x0 and that Fx0 = Gx0. Then we say that the mapping F is Frechet 
contiguous to G at x0 if (the set) F is Frechet contiguous to (the set) G at the point 
(x0, Fx0) in the space Z = X x Y. We say that the mappings F and G are mutually 
Frechet contiguous at x0 if F is Frechet contiguous to G as well as G is Frechet 
contiguous to F at x0. 

We use Definition 2.1 here. Hence we must verify that (x0, Fx0) e F' n G\ But 
this follows from the fact that F, G are singlevalued and u. s. c. at x0 and that Fx0 = 
= Gx0. Definition 3.1 is thus correct. 

Obviously, Frechet contiguity of mappings is a local concept and is independent 
of which equivalent norm in X x Y is taken. 

Now, bearing in mind Definition 3.1 and the implications (2.1), (2.2), the results 
of §1 can be formulated as follows: . 

Theorem 3.1. Let the assumptions of Theorem 1.3 be fulfilled. Then the following 
three assertions are equivalent: 

(i) F is Frechet differentiate at x0 and dF(x0) = L. 

(ii) The mapping L1 = L © {z0} is Frechet contiguous to F at x0, i.e., (2.1) holds. 

(iii) The mappings Lt and F are mutually Frechet contiguous at x0, i.e., both (2.1) 
and (2.2) hold. 

It should be noted that Example 1.1 and Theorem 3.1 show that, if F is Frechet 
contiguous to Lt at x0, Lx and F need not be mutually Frechet contiguous at x0. 

Let F, G : X -+ 2Y be two mappings with D(F) = D(G) and int D(F) =j= 0. Suppose 
there exists x0 e int D(F) such that F and G are singlevalued and u. s. c. at 
x0 and let Fx0 = Gx0. Finally, suppose that the following implication holds (see 
[3, 1.2.1]): 

(3.1) x0 + x^x0^
S^^U'^iUeF^VeGxK0. 
F - * o | | 

Then, in a similar way as in the proof of Theorem 1.1> we can see that F and G are 
mutually Frechet contiguous at x0. Unfortunately, the converse Is not true generally. 
This can be easily checked takingZ:= 7 = R,F = G = {(x,y)eX x Y\ \y\ = |x|}. 
It need not hold even if we require F and G to be singlevalued. This is shown in the 
following. 
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Example 3.1. Let X = F-= J? and define the mappings F,G:X-> Yas follows: 

FO = GO = 0, 

Fx = xsin(x~ 2), Gx = xcos(x" 2) for 0 4= x e R. 

Obviously, F, G are continuous at 0. Further, if we put 

кn = lnn + -) , n = 1,2,..., 

then xn -> 0 while 

\Fxm - Gx„ 
= 1 

for all n = 1, 2,.... It means (3.1) is violated. 
Next we shall show that F and G are mutually Frechet contiguous at 0. Let xe.fi 

be such that 0 < |x| < •§• and put 

«- = * ( i - ^ 2 ) 1 / 2 -

Then 

- 5 - 2 ft 

X 2 = M,2 + -

2 

and so we get 
JFx - Gux\ = |xsin(x~2) - ux cos («; 2 ) | = 

= |x cos (wj2) - u* cos ( w ; 2 ) | __ \x - M j c | . 
Hence 

<*((*^*)>o) < l | ( * , F x ) - f o G u , ) ! 1» - ux\ _(.__ x 2 Y m _ . 0 

||(*,Fx)|| " \\(x,Fx)\\ ~ \x\ { 2 ) 

as (x, Fx) -» (0, 0). It means G is Frechet contiguous to F at 0. And, using a similar 
argument, we get that F is Frechet contiguous to G at 0, which was to be proved. 

Now we are going to derive some results concerning Frechet contiguity of inverses, 
linear combinations and compositions of mappings from Theorem 2.1. 

Theorem 3.2. Let a mapping F : X -* 2 r be Frechet contiguous to a mapping 
G : X -* 2r at x0 e X Suppose, moreover, that the inverse mappings F " 1 , G""1 : Y-+ 
-* 2X are single valued and a. s. c. at y0 = Fx 0 = Gx0 and /e* y0 e int K(F) n 
rsint R(G). 

Then F"1 is Frichet contiguous to G""1 at y0. 
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Proof. Put Z = X x Y9 W = Y x X, M = F, N = G, z0 = (x0, j 0 ) and define 
the mapping B : Z -> JVby 

£(x, )>) = (y, x) , ( x , y ) 6 l x 7 . 

The assumptions of Theorem 2.1 are obviously fulfilled. Therefore, the set B(M) 
is Frechet contiguous to the set B(N) at JBZ0. But 

B(M) = F"1, B(N) = G~1
9 B(x09y0) = (y09x0)9 

D(F~1) = R(F) , D(G~1) = R(G) . 

Hence, according to Definition 3.1, the result follows. 

Corollary 3.1. Let G : X -* 2Y be Frechet differentiate at x0eX and such that 
y0 = Gx0 eint R(G). Also suppose that G_1 : Y-* 2X is singlevalued and u. s. c. 
at y0 and let the mapping (dG(x0))

_1 belong to Jf(Y9 X). 
Then G"1 is Frechet (iifferentiable at y0 and 

dG-1(j0) = (dG(x0))"1. 

Proof. Put F = dG(x0) 0 {(x0, yo)}> see (0.1). By Theorem 3.1, F is Frichet 
contiguous to G at x0. But 

F-i = B(F) = B(dG(x0)) 0 {B(x09 y0)} = (dG(x0))"
1 0 {(y09 x0)} . 

Hence F"1 is singlevalued and continuous at j>0. Theorem 3.2 then says that F"1 is 
Frechet contiguous to G"1 at y0. Now, making use of Theorem 3.1 again, we get the 
result. 

It should be noted that the above corollary can also be obtained directly from 
Theorem 1.3 by using (0.2) and (0.5). 

Let F, G : X -* 2Y be two mappings and let A be a given number. Then we 
define the mappings AF : X -> 2Y

9 F + G : X -• 2Y by 

AF = {(x,Ay)|(x,y)eF}, 

F + G = {(x, yt + y2)\ (x, yt) e F, (x, y2) e G} . 

Remark that the mappings AF and F + G are different from the A-multiple of the set 
F and the sum of the sets F and G in the space X x Y, respectively. 

Theorem 3.3. 1/ F : X -+ 2Y is Frechet contiguous to G : X -» 2Y at x0 e l , then 
AF is Frichet contiguous to XG at x0, too. 

Proof. The case A = 0 is trivial. If A =# 0, put Z = W = X x Y9 M = F, N « 
= G, z0 = (x0, Fx0) and define the mapping B : Z -* Was follows: 

B(x,y) = (x,Ay), ( x , ^ ) € Z x Y. 
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The verification of the hypotheses of Theorem 2.1 is easy. Further, B(F) = XF, 
B(G) = XG. Hence the result follows. 

.# 
Corollary 3.2. If G :X -> 2Y is Frechet differentiable at x0 eX, then so is XG and 

d(XG) (x0) = X dG(x0) . 

Proof. Denote F = dG(x0) © {(x0, Gx0)}, see (0.1). Then Theorems 3.1 and 3.3 
yield the result. 

Next we shall need a slight generalization of Theorem 2.1. Checking its proof we 
can easily see that this theorem remains valid also for a multivalued mapping B : Z -* 
-+ 2W if (2.3) is replaced by 

(3.2) (zeM<uN&weBz&w-+ w0) => z -* z0 . 

In the rest of the section we shall use Theorem 2.1 in this more general setting. 

Theorem 3.4. Let F, G, H : X -> 2Y be three mappings such that F is Frechet 
contiguous to G at x0 e X and H is Frechet differentiable at x0. 

Then each of the mappings F + H, F 4- q> is Frechet contiguous to both G + H, 
G + q> at x0, where 

q> = d#(x0) © {(x0, Hx0)} , i.e., <p(x) = dH(x0) (x - x0) + Hx0 , x e X . 

Proof. Since x0 e int D(F) n int D(G) n int D(H) and Frechet contiguity is a local 
concept, we may assume without loss of generality that D(F) u D(G) <=. D(H). Put 
Z = W = X x Y, M = F, N = G, y0 = Fx0 = Gx0, z0 = (x0, y0) and define the 
mapping B : Z -* 2W by 

(3.3) B(x, y) = {(x, y + v) | v e Hx} , (x, y) e D(H) X Y. 

Let us verify the hypotheses of Theorem 2.1. Obviously, D(B) = D(H) x 7=> 
D M U J V U {Z0}. A simple computation yields that B is Frechet differentiable at 
z0 and that 

(3.4) dB(z0) (h, k) = (h, k -f dH(x0) h) , (h, k) € X x Y. 

It remains to show the validity of (3.2) and (2.4). So, let z = (x, y) e M u N, w € Bz, 
w -• w0. According to (3.3), w = (x, y + v) ~» (x0, y0 + Hx0), where v e Hx. Hence 
x -* x0 and the fact that F, G are singlevalued and u. s. c. at x0 yields y -> y0. Thus 
z -* z0, i.e. (3.2) holds. In order to show (2.4) suppose the contrary. Then there 
exists a sequence {z„} = {(x„, yn)} c M u N such that 

Az0 # 4z„ -̂  Az0 & if2" "" ^̂ 011 -> 0 . 
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(It should be noted that Az = Az0 implies z = z0.) Hence, bearing in mind (2.5) and 
(3.4), x„ -> x0 and 

This implies 

max(||xn - x0||, || yn - y0 + dH(x0)(xn - x0) 
max(||xn - x0||, \\yH ~ y0\\) 

\\*n ~ XQ\\ _> Q Hyn - yQ + dH(x0) (x„ - X0)|| ^ Q 

\yn - yoll ' \yn - yol 

Further, denoting the Lipschitz constant of dH(x0) by C, 

0 = l i m ly, - yo + dfl(x0) (x. - x0)l ^ l i m / _ c \xn - x0||\ = t ̂  

||y„ - yol * - » V Hyi, - y o | | / 

which is impossible. (2.4) is thus proved. 
Now we may apply Theorem 2.1. (2.5), (3.3) and (3.4) yield 

B(M) = B(F) - V{B(x, y) | (x, y) e F} = 

= {(x,y + v)\(x,y)eF,(x,v)eH} = F + H, 

A(M) = A(F) = {A(x, y) | (x, y) e F} = 

= {B(x0, j;0) + d£(x0, y0) ((x, y) - (x0, y0)) | (x, y) e F} = 

= {(*o> yo + Hx0) + (* ~ *o> y - yo + dH(x0) (x - x0)) | (x, >>) e F} = 

= {(x, y + dH(x0) (x - x0) + Hx0) \ (x, y) e F} = F + y . 

Similarly for N, 

B(N) = B(G) = G + H, A(N) = A(G) - G + q>. 

Thus our theorem follows from Theorem 2.1 and Definition 3.1. 

Corollary 3.3. If mappings G, H : X -» 2Y are Frgchet differentiate at x0 e l , 
then so is G + H and 

d(G + H) (x0) = dG(x0) + dH(x0). 

Proof. Put 

F = dG(x0) 0 {(x0, Gx0)} , i.e., Fx = dG(x0)(x - x0) + Gx0 , xeX. 

Then 

Fx + (p(x) = (dG(x0) + dtf(x0)) (x - x0) + (G + H) x0 , x e X, 
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i.e., 
F + q> = (dG(x0) + dfl(x0)) 0 {(x0, (G + H) x0)} . 

The result now follows from Theorems 3.1 and 3.4. 
If F : X -> 2r, H : Y -+ 2^ (U being a normed linear space) are two mappings, the 

composition H o F of F and H is defined by 

i f o F = {(x,W ) |3^6y(x,^)eF&(y,M)eH} . 

Hence H o F : Z - > 2 y . 

Theorem 3.5. Let F, G : X -> 2r fee two mappings such that F is Frechet contiguous 
to G at x0eX. Let H :Y-+ 2V be Frechet differentiable at y0 = Fx0 = Gx0. 
Moreover, suppose that for every sequence {(xn9 yn)} c F u G with x0 # xn -> x0, 
either 

(3.5) liminf l*" ~ y» < +co or liminf- Jy"'" yo" xll < + oo. 
V ' . - . K - X o l — |dH(y0)(yrt~y0)|| 

77»en each of the mappings H ° F, \j/ ° F is Frechet contiguous to both H ° G, 
ifr °G at the point x0, where 

* = dtf(y0) © {(y0, Hy0)} i.e., *(y) = dfl(y0) (y - y0) + Hy0 , yeY. 

Proof. Without loss of generality we may restrict ourselves to the case R(F) u 
u R(G) <= D(H). Put Z - X x Y, W=X xU, z0 = (x0, y0), M = F, N = G 
and define the mapping B : Z -* 2W as follows: 

(3.6) B(x, y) = {(x, u) | (y, u)eH}, (x, y) e X x Z)(tf). 

We have to verify the assumptions of Theorem 2.1. Obviously, D(B) = X x 
x i)(ff) => Af u iV u {z0}. Also we can easily show that B is Frechet differentiable 
at z0 and that 

(3.7) dB(z0) (h, k) = (h, dff(y0) k), (h,k)eX x Y. 

(3.2) follows at once from the fact that F, G are singlevalued and u. s. c. at x0. (2.4) 
can be proved from (3.5) in a similar way as in the proof of Theorem 3.4. 

Further, (2.5), (3.6) and (3.7) yield 

B(M) - B(F) - U{B(x, y) | (x, y) e F} = 

- {(x, u)\3yeY (x, y)eF &(y,u)eH} = H ° F, 

A(M) = .4(F) = {A(x, y) \ (x, y) e F} = 

- {B(x0, y0) + dB(x0, y0) ((x, y) - (x0, y0)) | (*, y) 6 F} = 

= {(x0, #y0) + (x - xo, dH(y0) (y - y0)) | (x, y) e F} = 

- { ( * . ^ ) ) | ( * . . v ) e . F } - * . F , 
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and similarly, 

B(N) = B(G) = H o G , A(N) = A(G) = ^ o G . 

Hence the result follows from Theorem 2.1 and Definition 3.1. 

Corollary 3.4. If G:X -+2Y is Frechet differentiable at x0eX and H:Y-*2U 

is Frechet differentiable at y0 = Gx0, then the composition H o G : X -• 2U is 
Frechet differentiable at x0 and 

&(HoG)(x0) = m(y0)o&G(x0). 

Proof. Put F = dG(x0) © {(x0, Gx0)}. Then 

il/oF = {(x,u)\3yeY(x,y)eF&(y,u)eil/} = 

= {(x, u) | 3y e Y (x - x0, y - y0) e dG(x0) &(y- y0iu- Hy0) e dH(y0)} = 

= {(x, u) | (x - x0, u - Hy0) 6 dH(y0) o dG(x0)} = 

= dH(y0) o dG(x0) © {(x0, (H o G) x0} . 

Hence, observing that the Frechet differentiability of F, G implies the first condition 
in (3.5), Theorems 3.1 and 3.5 yield the result. 

§4. COMPARISON 

In this section we are going to compare the geometric characterizations of Frechet 
differentiability given in [4] —[6] with our one formulated in Theorem 1.3. In order 
to do it we shall introduce some concepts and notations. 

Let Z be a normed linear space. Under a cone (in Z) we understand every subset 
C of Z such that C 4= 0, C * {0}, and kzeC whenever z e C and A ^ 0. Observe 
that every L e 3f(X, Y) is a cone in Z = X x Y. 

Let C be a cone in Z and e e (0,1). We define the following two kinds of conic 
e-neighbourhoods of C, see [4], [6]: 

Vt(C) -= {z e Z | d(z, C) < e\\z\\} u {0} , 

C/e(C) = {A(c + z)\ceC, |c|| = l , zeZ, \\z\\<e, X = 0} . 

Both these sets are cones. The relations between them are established in the following 

Proposition 4.1. Let s e (0,1) and let C be a cone in Z. Then 

Ue(C)czVt(C)czUA(C), 

where A = 2e/(l - e). 
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Proof. Let 0 + w € Ue(C). We can then write w = A(c + z), where ceC, \\c\\ = 1, 
zeZ, \\z\\ < e, X > 0. We have 

w 

"Ř' c s d tór ( " l* a o ) >-
= d(c, {aw | a ^ 0}) á c w 

Л 
z < є. 

Hence d(w, C) < e||w||, i.e., w 6 Ve(C). 

Further, let 0 =# w e Ve(C) and denote z = w/||w||. Then d(z, C) < e and so there 
exists c e C, c 4= 0 such that ||z — c|| < e. Hence 

1 - e < \\z\\ - ||z - c\\ S \c\ S ||z|| + H-3 - c\\ < 1 + 8 , 

- e . 1 . 1 . 1 

1 - Є 

1 л -

1 < 1 - —r < 1 1 - Є 1 + Є 1 + Є 

1 -
1 - Є 

Z — < 2 " C + C — < є + C < є + (1 + є) 
1 - є 

2є 

1 - e 

Thus, according to the definition of U^(C), 

= Å . 

z = + (z - ÌFÏÏ. є ^ ( С ) ' w = W z є ^ ( С ) 

and the proof is complete. 

Further, let M a Z, M' + 0 and take z0 6 M'. For r > 0 we define the following 

cône: 
Cr(M, z0) « {A(z - z0) | z e M, I z - z0|| < r, A = 0} . 

Finally, for z0 e Z and 5 > 0, set , 

-Bz(zo> <5) =* {z € Z | ||z - z0|| < <5} . 

Now, using the above notation and Proposition 4.1, we can easily rewrite the 
assertion (ii) in Theorem 1.3. We arrive at 
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Theorem 4.1. Let X, Y be normed linear spaces and F :X -> 2Y a mapping with 
int D(F) 4= 0, singlevalued and u. s. c. at x0 e int D(F). Let L e Jf(X, Y) and denote 
Z = X x Y, z0 = (x0, Fx0). 

Then the following four assertions are equivalent: 

(i) F is Frechet differentiate at x0 and dF(x0) = L, 

(ii) (z0±zeF&z^ z0) =-> d(z^z°>L) ^ 0 > 

||Z - Zo\\ . 

(iii) Ve > 0 38 > 0 F n Bz(z0,S) f,F s(L) 0 \z0) , 

(iv) Vs > 0 3r > 0 Cr(F, z0) a Ue(L) . 

In the papers [4] — [6], a slightly restricted situation is considered, namely, F is 
assumed sto be singlevalued and L linear and continuous. Bearing in mind such F 
and L, we can compare our results with those of [4] — [6]. (i) o(ii i) says the same 
as [4, Theorems 1, 2]. It is also shown there (see [4, Lemma 1]) that this equivalence 
is a reformulation of [5, Theorem 1]. (i) <=> (iv) is included in [6, Theorem 1]. It 
follows that the geometric characterizations of Frechet differentiability given in 
[4] — [6] and here, in §1, are virtually the same. 

Let us remind that [6, Theorem 1] asserts in addition that (i) implies 

(v) Ve > 0 Vr > 0 L c Ue(Cr(F, z0)) . 

Hence the following equivalence holds: 

(0~((iv)&(v)). 

Regarding the fact that Cr(F, z0) c CS(F9 z0) whenever 0 < r < s9 we can even 
rewrite ((iv) & (v)) as follows: 

(vi) Ve > 0 38 > 0 Vr e (0, 8) Cr(F9 z0) c: Ue(L) & L c= Ue(Cr(F9 z0)) . 

It should be noted that the equivalence (i) o (vi) suggests to introduce the concept 
of the Frechet cone of a set as well as of a mapping, see [7]. 

At the end of the section we shall show that (under the. hypotheses of Theorem 
4.1) the implication (i) => (v) can be derived from the results of §1. In fact, by Theorem 
1.1, (i) implies (1.3), i.e., 

( 0 Ф г 6 L & г - > 0 ) ^ < i ( г { ; o ' f ) - > 0 , 

Fll 

Hence, we shall obtain the result if we prove the following 
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Proposition 4.2. Under the assumptions of Theorem 4.1, 

(1.3) => (v). 

Proof. Let s e(0,1) and r > 0 be fixed. Put A = e/(l + e) and choose 8 > 0 
such that (A + 1)S <r and that 

(0 * z 6 L & \\z\\ < 6) => d(z + z0, F) < .d||z|| . 

To each z from this implication, take w z e F s o that 

(4.1) \\z + z0- wx\\ < A\\z\\ . 

We can then estimate 

(4.2) ||wz - z0 | | S \\z + z0 - wx\\ + ||z|| < zl||z|| + ||z|| < (A + 1) <5 < r. 

Further, (4.1) implies that wz #- z0 because A < 1. Then, denoting 

Ь ш z + z0 - wг 

P . - zo| | 
we can write 

(4-3) - = |w. - z0| (fi^*-. + * ) . 
VIK - -oil / 

where, by (4.1), 

(4.4) i i » i i , " ' ; ' ' - j

 t < r - A - ' -
||Z|| - (JZ + Z 0 - W,|| 1 - -4 

Now, (4.2) - (4.4) together yield that z e Ue(C,.(F, z0)) for all z e L fulfilling || z || < 5. 
But both Land UB(Cr(F9 z0)) are cones. Hence L c Ue(Cr(F, z0)) as required. 

However, the reverse implication (v) => (1.3) may be false. 

Example 4.1. Let {en}f be a system of orthonoimal elements of a real Hilbert 
00 

space. Let X be the linear span of {e„}f, i.e., the set of all elements x = £ ce^ such 
f r - l 

that af = 0 for each i = 1,2,... except for a finite number of i. Put Y = R and 
define the mapping F :X -* Fas follows: 

_ y 0 if <xt < T 2 for all i =- 1,2,..., 
j?x _ F(Y <xe) »< f 

S«I * \max jaf| otherwise . 

F is continuous at 0. We shall show that (v) holds for L * X x {0} and z0 = (0,0). 
00 

2 Indeed, let r > 0. For each x -=- J) ocgeg e Jf there exists f > 0 such that *2 Y a2 < r 
i*i « * i 
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and *ja|| < i 2 for all i == 1, 2,. . . . Hence F(tx) = 0 and (fx, 0) e Cr(F9 z0). It means 
L c Cr(F, z0) and so (v) is verified. 

On the other hand, (1.3) is violated. In fact, let 

zn = - (en, 0) , n = 2 , 3 , . . . . 

Then zn -• (0, 0) and for each x = £ a^f e X we have 
.=_ 

||z„ - (x, Fx)| - max ţ i e„ - x , |Ғx| j £ i - a„ + - N 
2 1 ' 

If an < n"""2, then 

| z , . - ( x , F x ) | Ц 1 
- - a, 
n 

iA-.ru_.___ 
2 \n n-j ~ 4 n 4 

If an ^ n 2, then 

\\zn-(x,Fx)\\^ 
1 1 
— — -- aя 2 n 

- ï Iz-

.+ ІW-И-ІЫ-
Hence 

d ( г „ Ғ ) > ł | | г . | | , n = 2,3,... 
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