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časopis pro pěstování matematiky, roč. 105 (1980), Praha 

ON CHARACTERIZATION OF THE SPHERE IN E4 

BY MEANS OF THE PARALLELNESS OF CERTAIN VECTOR FIELDS 

KAREL SVOBODA, B m O 

(Received September 16, 1977) 

In this paper we present a certain generalization of the results contained in [3]. 
Using the parallelness of a certain normal vector field associated to a given couple 
of tangent vector fields, we prove theorems analogous to those of [3] to get the base 
for other considerations. 

1. Let M be a surface in the 4-dimensional Euclidean space E4 and dM its bounda
ry. Let the surface M be covered by domains Ua in such a way that in any Ua there 
is a field of orthonormal frames {M; vl9 vl9 v39v4} with vl9 v2 e T(M)9 v39v4 e N(M), 
T(M)9 N(M) being the tangent and the normal bundle of M, respectively. Then 

(1) dM = colv1 + co2v2 9 

dv1 = co2v2 + co\v3 + co4v4 , 

dt?2 = — co 2^ + co\v3 + co4v4 , 

dv3 = — co\v1 — co\v2 + co4v4 , 

dv4 = -co1v1 - co4v2 - co\v3 ; 

(2) dco( = coJ A colj, dco{ -= co) A CO{ , 

co{ -f co) = 0 , co3 = co4 == 0 (i,I, k = 1, 2, 3, 4) . 

Using the well-known prolongation procedure, we get the existence of real functions 
ai9 b( (i = 1. 2, 3), ai9 fit (i = 1, 2, 3, 4), Ai9 Bi9..., Et (i = 1, 2) in each Ua such that 

(3) co\ = ^co 1 + a2co2 , ct>2 = a2ca1 + a3co2 , 

co* -= b^1 -F fc2co2, a>2 -= i^co1 + 63co2 ; 

(4) dat — 2«2G>J — btco4 = a-w1 + a2a>2, 

da2 + (flj — a3) a)2 — 62co3 = OL2CO1 -f a3co2 , 
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da 3 + 2a2co\ — b3co3 = a3co1 + a4co2 , 

db ! - 2b2co\ + axco\ = pxcox + p2co2 , 

db 2 + (bx - b3) co\ + a2co\ = P2cox + p3co Иъш 

2 i „ ,.A __ fì ,.Л . fì ,.Л db 3 + 2b2coJ + a3ca3 = p3cox + P^co2 ; 

(5) da x - 3a2c02 - Pxco\ = A^1 + (Bt - a2K - ibxfc) co2 , 

da 2 + (ax - 2a3) co2 - j52c03 = (Bx + a2K + \bxk) co1 + 

+ (Ct + axK - \b2k)co2 , 

da 3 + (2a2 - a 4) co\ - j?3co3 = (Cx + a3K + \b2k) co1 + 

+ (D! + a2K - ib3fc) co2 , 

da 4 + 3a3a>2 - P4co3 = (Dx - a2K + %b3k) co1 + Exco2 , 

d£i - 3j82co2 + axco3 = A2cox + (B2 - b2K + \a^k) co2 , 

d02 + (Pi ~ 2j83) co\ + OL2CO\ = (B2 + b2K - $atk) co1 + 

+ (C2 + b!K + ia2k) C02 , 

dP3 + (2p2 - j34) co2 + a3co^ = (C2 + b3K - \a2k) co1 + 

+ (D2 + b2K + ia3fe) co2 , 

dj?4 + 3P3(»\ + X4C0* = (D2 - b2K - ia3k) co1 + E2co2 , 
where 

K = ata3 - a2
2 + blb3 - b2 , k = (aY - a3) b2 - (bY - b3) a2 , 

the function K being the Gauss curvature of M. As always, 

H = (ax+ a3)
2 + (b, + b3)

2 

denotes the mean curvature and 

I = (at + a3) v3 + (bx + b3) vA 

the mean curvature vector field of M. 
Let us remark that the normal vector field n = xv3 + yv^ being parallel in N(M) 

we have k = 0 (see [1], p. 61), and since vl9 v2 e T(M) generates an orthogonal 
conjugate net of lines on M, [2], we have 

(6) a2 = 0 , b2 = 0 

and again k = 0 on M. In addition, in the last case, because of (4), there are real 
functions Q9 a such that 

(7) co\ = QCO1 + GCO2 , 

a2 = Q(ax - a3), a3 = a(a1 - a3) , 

p 2 = Q(bt - b3), p 3 = a(bx - fc3). 
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Like in [3], all theorems contained in this contribution are proved by means of 
the maximum principle. 

Let / : M -» 0t be a real function. The covariant derivatives fi9f{j (i9j = 1, 2) 
of its restriction to Ua with respect to the frames {M; vl9 vl9 v39 u4} are introduced 
by the formulas 

(8) d/ = / 1 c o 1 + / 2 c o 2 , 

d/i - f2(o\ = / l f y + /12c02 , d/2 + fx(o\ = /^co1 + f22co2 . 

We use the maximum principle in this form: 
Let M be a surface in E4 and dM its boundary. Let f be a real-valued function 

on M and fi9fij (i9j = 1,2) its covariant derivatives. Let ( i ) / _ 0 on M; ( i i ) / = 0 
on dM; (in) f satisfy the equation 

0 i i / n + 2aufi2 + anfii + aJi + a2/2 + a0f = a 

with a0 = 0, a ^ 0 and the quadratic form aiJx
ixj positive definite. Then / = 0 

on M. 
In the following we use the function / : M -> ffl defined by 

(9) f=H-4K = (a, - a3)
2 + (b, - b3)

2 + 4a2 + 4b2 , 

satisfying / ^ 0 on M and / = 0 at the umbilical points of M. Using (4), (5) and (8) 
we get the covariant derivatives of/, in particular 

(10) / n = -2 [ (a , - a3) a3 + (b, - b3) b3 - 4(a2 + b2)] K -

- [fc + 4(a.&2 - a26 .)] k + 2(a, - a3)2 + 2(p, - p3)
2 + 

+ 8(a2 + pi) + 2(a. - «73)(.41 - C.) + 2(bt - b3)(A2 - C2) + 

+ 8(a2Bj + b2B2), 

Ui = 2[(a. - a3)ai + (b, - b3) b, + 4(a2 + ft2)] K -

- [fc + 4(a2b3 - a3b2)] k + 2(a2 - a4)2 + 2(p2 - j?4Y + 

+ 8(a2 + P2) + 2(a. - a3).(c. - E,) + 2(6, - b3)(c2 - E2) + 
+ 8(a2Z>. + b2i92) . 

2. Let M be a surface in E* and let Vl9V2e T(M) be fixed orthonormal vector 
fields. In all the following considerations we choose orthonormal frames {M; vlt v2, 
V3> "4} of M in such a way that Vt — vlt V2 = v2 at any point me M. Define further 
normal vector fields Vtt, VJit, VkJii (i,j, fc = 1, 2) by the relations 

v„ = (vtvty, vJtl- (VjVi{y, vkJti = (vkvJtty (», j , k = 1,2), 

where (Y)w denotes thenotmal component of the vector field Y. 
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It is easy to see that 

(11) VX1 = axv3 + btv4 , V22 = a3v3 + b3v4 . 

Suppose further that Vl9 V2 generate an orthogonal conjugate net of lines on M, 
i.e. we have (6) and (7) on M. Then we get from (11) using (1), (3) and (4) 

d ^ n = ^ m ^ 1 + V211co2
 9 dV22 = V122a>1 + V222co2 (modv l 5 v2) 

with 

(12) Vlxl = cc1v3 + piv4 , V211 = a2v3 + p2v4 , 

^122 = a3u3 + p3v4 , V222 = a4v3 + p4v4 . 

By differentiating the relations (12) and using (l), (3), (5) we obtain 

d * n i = V111XOJ1 + ^ 2 i u ^ 2 > dV211 = V1211col + V2211co2 , 

dVi22 = V1122CDX + V2122co2 , dV222 = V1222col + V2222co2 (modv 1 ? v 2 ) , 

where 

(13) Vlltl = (A, + 3CC2Q) V3 + (A2 + 3p2Q) v4 , 

^2111 = C6! + 3a2tj) v3 + (B2 + 3P2a) v4, 

^i2ii = [^i - («i - 2a3) Q] v3 + [B2 - (p± - 2j33) 0] v4 , 

^2211 = \C1 + atK - (a, - 2a3) a] v3 + [C2 + btK - (p, - 2P3) a] v4 , 

Vil22 = [Cx + a3K - (2a2 - a4) Q] V3 + [C2 + b3K - (2jS2 - p4) Q] v4 , 

^2122 = [ A - (2*2 - a4) a] v3 + [D2 - (2j?2 - J?4) a] v4 , 

^1222 = (£'i ~ 3a3^) v3 + (D2 - 3P3Q) v4 , 

^2222 = (-Ei - 3a3tr) v3 + (E2 - 3p3a) v4 , 

Q9 a being the functions defined by (7). 
From (11) it follows that 

i = vtl + v22. 

This vector field can be considered as a special case of the normal field 

(14) X = PVX1 + QV22 = (Pa, + Qa3) v3 + (Pbt + Qb3) v4 , 

where P, Q e 0t are constants with P2 + Q2 =t= 0. 
First of all we prove that the normal vector field X is invariant on M when choosing 

the orthonormal frames in the above mentioned way. To this end, consider another 
orthonormal frame {M; vl9 v2, v3, v4} on M such that Vt = vl9 V2 = v2. Then we have 

(15) vx = vx , v3 = e cos a . v3 — sin a . v4 , 

v~2 = vz » v4 = e sin a . v3 + cos a . v4 (e2 = 1) 

and the following lemma is valid: 
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Lemma 1. On M, it is 
X = X . 

m 

Proof. It is easy to see that 

at = s(at cos a + b% sin a) , Bl = — (ax sin a + bx cos a) , 

a3 = e(a3 cos c + b3 sin <x), 53 = — (a3 sin a + b3 cos a) 

and according to (15) and the preceding equations we obtain 

Pil = ^11 , ^ 2 2 = ^22-

As P = P, Q = Q, our assertion is proved. 
Now, define normal vector fields Xh Xtj (i,j = 1, 2) by the formulas 

xt = (vtxy9 Xl7 = ( V ^ f 0,I = i ,2) , 

where the symbol (Y)N denotes again the normal component of the vector field F-
Then we have the following 

Lemma 2. Let Vl9 V2 e T(M) generate an orthogonal conjugate net of lines on M, 
Then for the normal vector field X = PVn + QV22, P, Qe @twe have 

(16) X, = P V i n +QV 1 2 2 , X2 =PV211 +QV222, 

(17) Xlt = P V n l l + QV1122 , X12 = PV1211 + SV1222 , 

-^21 = - P ^ l l l + GV2122 > -^22 = PV2211 + 6V2222 • 

Proof. The relation (14) yields 

dZ = PdVn + o,dV22 

and hence 

dX = (PV in + QV122)(o
x + (PV211 + QV222)w

2 (mod».,»2) 

which implies (16). Further 

dX, = P d V i n + QdV122) dX2 = PdV211 + QdV222, 
that is 

dXt = (PV n n + QV1 1 2 2K + (PV2111 + QV2122)<o2, 

dX2 = (PV1211 + 6^1222)a1 + (PV2211 + QV2222)w
2 (modt^, v2). 

This proves the validity of (17). 
Thus, assuming that V., V2 e T(M) generate an orthogonal conjugate net of lines 

on M, we have from (12) and (16) 

(18) X, = (Pa, + Qa3) v3 + (Pfi, + Qfi3) v4 , 

X2 = (Pa2 + Qa4) v3 + (Pp2 + Qfi4) v4 
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and from (13) and (17) 

(19) Xtl = {PA! + S(ei + a3K) + Q[(3P - 2Q)a2 + Qa4]} v3 + 

+ {PA2 + Q(C2 + b3K) + Q[(3P - 2Q) p2 + Q/J4]} vA, 

X12 = {PB, + QDX - e[PK l - (2P - 30,) a3]} v3 + 

+ {PB2 + QD2 - Q[Pp, - (2P - 3Q) p3]} vt, 

X2i = {PBi + QDt + <r[(3P - 2Q)a2 + Qa4]} v3 + 

+ {PB2 + QD2 + <r[(3P - 2Q) p2 + Qp4]} t>4, 

X22 = {P(C, + a,K) + QE, - a[Pa. - (2P - 30,) a3]} v3 + 

+ {P(C2 + b,K) + QE2 - a[Pp, - (2P - 3Q) p3]} vA . 

By these remarks we have completed all preliminaries necessary for our con
siderations. 

3. Now we are going to prove the basic 

Theorem 1. Let M be a surf ace in E4 and dM its boundary. Let 

(i) K > 0 on M; 

(ii) there exist Vl9 V2 e T(M) generating an orthogonal conjugate net of lines 
on M; 

(iii) X = PVU + QV22, where P9Qe0t satisfy the relations P2 + Q2 > 0, 
PQ ^ 0, be parallel in N(M); 

(iv) dM consist of umbilical points. 

Then M is a part of a 2-dimensional sphere in E4. 

Proof. As remarked, we use the maximum principle for the invariant functionf 
defined by (9). Since the assumption (ii) implies (6) in M, we have in virtue of (10) 

(20) P/1X + Qf22 - 2[(at - a3)(Q0l - Pa3) + (b, - b3)(Qb, - Pb3)]K = 

= 2V + 2$ 
where 
(21) V = P[(at - a3)2 + (pt - p3f] + S[(«2 - a4)

2 + (/?2 - Ptf] + 

+ 4P(a2 + p\) + 40,(af + p\) 

and 

(22) <*> = (a, - a3) [P(A, - Ct) + Q(C, - Ej] + 

+ (b, - b3) [P(A2 - C2) + Q(C2 - E2)] . 
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Now, the condition (iii) for X defined by (14) yields 

(23) . d(Pfl. + Qa3) - (Pbt + Qb3) o>* = 0 , 

d(Pbt + Qb3) + (pfl l + Qa3) co4
3 = 0 

and hence according to (4) and (6) 

(24) P a i + Qa3 = 0 , Pa2 + Qa4 = 0 , 

PPi + Qh = 0, P/?2 + QpA = 0 . 

Differentiating these equations and using (24) again, we obtain the relations 

(25) [PA! + 6(c i + a3K)] co1 + '(PB. + QD,)co2 + 

+ [(3P - 2Q) a2 + Q«A] col = 0, 

[PA2 + Q(C2 + b3K)] co1 + (PB2 + QD2) co2 + 

+ [(3P-2Q)p2 + QP4]co2 = 0, 

(PB, + QDjco1 + [P(C, + atK) + QE^co2 -

- [ P a , - ( 2 P - 3 Q ) a 3 ] « 2 = 0, 

(PB2 + QD2) co1 + [P(C2 + btK) + QE2] co2 -

-[Ppl -(2P-3Q)p3]co2 = 0. 

Multiply the equations containing Au ..., £. by a% — a3 and the relations containing 
A2,..., £2 by bt — b3. Then according to (7) we get in particular 

(26) (a, - a3) [PAt + Q(C, + a3K)] + a2[(3P - 2Q) oc2 + QaA] = 0, 

(b, - b3) [PA2 + Q(C2 + b3K)] + f}2[(3P - 2Q) fi2 + QPA] = 0, 

(a, - a3) [P(C, + atK) + QE,] - cc3[Poct - (2P - 3g)a3] = 0, 

(b, - b3)[P(C2 + btK) + QE2] - p3[PPt - (2P - 3Q)p3] = 0 

and hence 

(a, - a3) [P(At - CO + 6(Ci - £,)] = (a, - a3)(Pai - Qa3)K -

- a2[(3P - 2Q) a2 + £a4] - a3[Pa i - (2P - 3Q) a3] , 

(b, - b3) [P(A2 -C2) + Q(C2 - E2)] = (b, - b3)(Pbt - Qb3)K-

- p2[(3P - 2Q) /?2 + QpA] - p3[PPt - (2P - 3Q) p3] . 

Using these relations we obtain from (22) 

<P -, [(a. - a3)(Pat - Qa3) + (bt - b3)(Pbt - Qb3)]K-
- oc2[(3P - 2g) a2 + QaJ - a3[Po,t - (2P - 3Q) a3] -

- p2[(3P - 20.) p2 + QpA] - p3[Ppx - (2P - 3Q) p3] 
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and the equation (20) has the form 

(27) Pfn + Qf22 - 2(P + Q)fK = 2W 

where 
W= V- a2[(3P - 2Q) a2 + Qa4] - a^P^ - (2P - 3(2) a3] -

- fi2[(3P - 2Q) p2 + QP*] - p3[Ppr - (2P - 3Q) /?3] . 

From this identity arid from (21) we finally have 

W = P[(a, - -}a3)
2 + (px - iPs)2] + C[(«4 - i«2)

2 + (j»4 - t/?2)
2] + 

+ i(4P + 3Q) (a2 + P2
2) + i(3P + 4Q) (a2 + /?2) . 

If P = 0, Q = 0 and P2 + Q2 > 0, we have - ( P + Q)K = 0, IV = 0 and the 
quadratic form corresponding to Pftl + 2/22 i s positive definite so that, according 
to the maximum principle, the theorem is true. On the other hand, if P ^ 0, Q ^ 0 
and P2 + 2 2 > 0, it is - ( P + Q) K = 0, IV ^ 0 and the form corresponding 
t 0 -°/n + 6/22 1s negative definite. Then it is sufficient to multiply the equation (27) 
by — 1 to get the condition (iii) of the maximum principle. Thus the assertion is 
proved. 

As an immediate consequence of this theorem we introduce 

Corollary 1. Let M be a surface in £4 possessing the properties (i), (ii) and (iv) 
of Theorem 1. Let 

(iii') VlteN(M) or V22eN(M) be parallel in N(M). 
Then M is a part of a 2-dimensional sphere in E4. 

It is sufficient to put P = 1, Q = 0 or P = 0, Q = 1 in Theorem 1. 
From the proof of Theorem 1, we easily see that in the case P = Q we can omit 

the assumption (ii). But there is another interesting possibility how to do it. It is 
formulated in 

Theorem 2. Let M be a surface in E4 satisfying the conditions: 

(i) K > 0 on M; 

(ii) there are orthonormal vector fields Vi9 V2 eT(M) such that linearly in
dependent vector fileds 
X = PVn + 2^22eN(M), 7 = RVn + SV22eN(M)9 P, Q, R9 S e 0t, 
are parallel in N(M)\ 

(iii) dM consists of umbilical points. 

Then M is a part of a 2-dimensional sphere in is4. 
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Proof. The condition (ii) yields (23) and 

d(Rat + Sa3) - (Rbt + Sb3) cot = 0, 

d(Rbt + Sb3) + (Rat + Sajcof = 0 

and hence according to (4) 

(Pa t + Qa3) co1 + (Pa2 + Qa4) co2 + 2a2(P - Q) co\ = 0 , 

(PPi + Q^co1 + (Pp2 + QP4)co2 + 2b2(P - Q)co\ = 0 , 

(Pa. + Sa3) co1 + (Pa2 + Sa4) co2 + 2a2(P - S) co\ = 0 , 

(Rpt + Sp3) co1 + (Rfi2 + S04) co2 + 2b2(R - S) co\ = 0 , 

PS - QR + 0 . 

First of all suppose P + Q,R + S. Multiply the first two equations by R — S and the 
other two by P — Q. Subtracting the corresponding equations we get 

(R - S) (Pa. + 6a3) - (P - Q) (Pax + Sa3) = 0 , 

(R - S) (Pa2 + oa4) - (P - Q) (Ra2 + Sa4) = 0 , 

(R - S) (Pp, + QP3) -(P-Q) (RP, + Sp3) = 0 , 

(R - S)(Pp2 + Qp4) - (P - Q)(Rp2 + Sp4) = 0 
and hence 

a i + a 3 = 0 > a2 + a4 = 0 , 

Pi + 0 3 = 0 , /?2 + jS4 = 0 . 

We could obtain the same relations assuming either P = Q or R = 5. The exterior 
differentiation of these equations and their repeated use finally implies 

(28) A! + Ci + a3K = 0 , Q + Ex + axK = 0 , Bx + Dx = 0 , 

A2 + C2 + b3K = 0 , C2 + E2 + bxK = 0 , B2 + D2 = 0 . 

Now, consider the function/defined by (9). Since the assumption (ii) implies k = 0 
on M, we obtain according to (10) 

(29) / n + / 2 2 - 2/K = 2V+ 2$ + 8? + 8 ^ + b2
2)K 

where 

(30) V = (a. - a3)2. + (a2 - a4)2 + (j8. - j83)
2 + (j82 - )54)

2 + 

+ 4(a2 + a2) + 4(^2 + iS2)5 

# = ( « i - « 9 ) ( ^ i - £ i ) + (bi - 6 3 ) ^ 2 - £ 2 ) , 

cp = a2(fi! + Dj + b2(B2 + D2). 

From (28) it follows immediately that cp = 0 and 

<P = [{al-a3)
2 + (bi-b3)

2]K. 
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Thus the relation (29) has the form 

/ u + / 2 2 - 4 / K = 2V 

and the maximum principle yields our assertion. 
Notice that in the case P = Q we have X = P£, where £ is the mean curvature 

vector field, and thus we can omit the supposition concerning the vector field Y. 
Analogously in the case R = S. (See [3].) 

Corollary 2. Let M be a surface in E4 with the properties (i) and (ii) of Theorem 2. 
Then the condition 

(ii) linearly independent vector fields Vll9 V22 eN(M) are parallel in N(M) 
implies that M is a part of a 2-dimensional sphere in E4. 

We put P = 1, Q = 0, R = 0, S = 1 in Theorem 2. 
Now, we introduce a certain modification of Theorem 1. 

Theorem 3. Let M be a surface in E4, dM its boundary and let 

(i) K > 0 on M; 

(ii) there exist Vl9 V2 e T(M) generating an orthogonal conjugate net of lines 
on M; 

(in) x = PV1X + QV22eN(M), P,Qe£, P2 + Q2 > 0, PQ = 0, be such that 
Xu X2 e N(M) are parallel in N(M); 

(iv) dM consist of umbilical points. 

Then M is a part of a 2-dimensional sphere in E4. 

Proof. Consider the vector field X. The parallelness of XUX2 is expressed, 
according to (18), by the formulas 

d(Pax + Qa3) - (PPX + QP3) co4 = 0, 

d(Ppt + QP3) + (Pai + £a3) co4 = 0, 

d(Pa2 + ga4) - (PP2 + Qpt) co4 = 0, 

d(PP2 + QP*) + (P«2 :+ C«4) <*>3 = 0 . 

Now, using (5), we obtain the equations (25) and with regard to the proof of Theorem 
1 our assertion is true. 

Again we have 

Corollary 3. Let M be a surface in E4 satisfying the conditions (i), (ii) and (iv) 
of Theorem 3. Let 
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(iii') Vlll9 V211eN(M) or V122, V222eN(M) be parallel in N(M). 
Then M is a pqrt of a 2-dimensional sphere in E4. 

It is sufficient to put P = 1, Q = 0 or P = 0, Q = 1 in Theorem 3. 
We complete the results of this corollary by 

Theorem 4. Let M be a surface in E4 and dM its boundary. Let 

(i) K > 0 on M; 

(ii) there exist Vu V2e T(M) generating an orthogonal conjugate net on M; 

(iii) Vllu V222eN(M) be parallel in N(M); 

(iv) dM consist of umbilical points. 

Then M is a part of a 2-dimensional sphere in E4. 

Proof. The assumption (ii) implies (6) and (7) on M. The condition (iii) and rela
tions (12) yield further 

dat — Pxcol = 0 , d/?! + OLXCO\ = 0, 

da4 - P4co$ = 0, d£4 + (x4co$ = 0 

and hence using (5) and (6) we conclude 

A^co1 + BXCD2 + 3oc2co\ = 0, A2cox + B2co2 + 3p2co\ = 0 , 

D-w1 + EjO)2 - 3a3co\ = 0 , D2(o
x + E2co2 - 3p3co\ = 0 . 

Thus by means of (7) we have in particular 

(31) (at - a3)Ax + 3a^ = 0, (bt - b3)^2 + 3/?| = 0 , 

(ax - a3)E, - 3cc2 = 0 , (bx - b3)E2 - 3fi2 = 0. 

Now, because of (6), the equation (29) has the form 

hi + / 2 2 - 2 / K = 2V+2<D, 

the functions V, $ being defined by (30). According to (30) and (31) we get 

<P = ~3(a2 + a2 + p2 + Pl) 

so that V + # jg 0. This and the maximum principle complete the proof. 

4. We revert to the considerations concerning the normal vector field X and we 
prove the following assertiori generalizing Theorem 3. 

Theorem 5. Let M be a surface in E4 and dM its boundary. Let 

(i) K > 0 on M; 
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(ii) there exist v.. V2 e T(M) generating an orthogonal conjugate net of lines 
on M; 

(iii) X = PVu + QV22 BN(M), P, Qe 0t, P2 + Q2 > 0, PQ = 0, be such that 

(a) <Xtl + S(X12 - X21), Vlx - v22y ^ 0 

on M, where S : M -* 0t is a function with S2 ^ | , and 

(b) X2 e N(M) is parallel in N(M) 
or 

(iii') X = PFU + QV22 G N(M), P, Qe 0t, P2 + Q2 > 0, PQ = 0, be such that 

(a)' <-X 2 2 + S(X12 - X21), V.. - V22> = 0 

on M, S : M -» 0t being a function satisfying S2
 = | , and 

(b') XteN(M) is parallel in N(M); 

(iv) dM consist of umbilical points. 

Then M is a part of a 2-dimensional sphere in E4. 

Proof. We prove Theorem 5 under the supposition (iii), its proof with (iii') being 
analogous. 

The condition (ii) implies (6) and (7) on M, and according to (11) and (19) the 
assumption (iii) (a) yields 

(32) (a, - a3) [PA, + Q(Ct + a3K)\ + (bt - b3) [PA2 + Q(C2 + b3K)\ = 

- < _ - n + s(x12 - x21), vn - v22y -
- a2[(3P - 2Q) a2 + Qa4] - p2[(3P - 2_) P2 + oA] + 

+ S[P(aia2 + jS.jS,) + (P + _)(a2a3 + J?2)?3) + Q(<t3<x4 + p3pj] . 

The condition (iii) (b) is expressed by the two last equations of (25) from the proof 
of Theorem 3. Following the proof of Theorem 1, we have the last two equations of 
(26) and adding them we obtain 

(a, - a3) [P(Ct + atK) + QEJ + (bt - b3) [P(C2 + btK) + QE2\ -

= cc^Pcc, - (2P - 3Q) a3] + p3[Ppx - (2P - 3Q) /?3] . 

Using this relation and (32), we get from (22) 

(33) # = <Xtl + S(X12 - X21), Vlt - v22y + 

+ K«i - asXI'ai - Qa3) + (b, - b3)(Pb1 - Qb3)]K-

- a2[(3P - 26) a2 + Qct^ - p2[(3P - 26) P2 + Qh\ -

- a3[Pa i - (2P - 36) a 3 ] - P,[PPi - (2P ~ 36) /33] + 

+ S[P(aia2 + P,p2) + (P+ Q)(*2<x3 + j82/?3) + e(«3«4 + MA)\ 
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and thus the equation (20) has the form (27) with 

W= <Xlt + S(X12 - X21), Vu - V22> + V-

- (3P - 2e) (a2 + Pi) + (2P - 3Q) (a2 + ft) -

- P(ata3 + ptp3) - Q(cc2cc4 + PJ4) + 

+ S[P(aia2 + p,p2) + (P+ e)(a2a3 + p2p3) + Q(ct3<xA + p3p4j] , 

V being the function defined by (21). Using (21) we obtain 

W= <XU + S(X12 - X21), VX1 - V22> + 

+ P[(ar - a3)2 + ^ . - f}3)
2] + Q[(oc2 - «4)

2 + (Pz ~ 0,)2] + 

+ (P + 26) (a2 + Pi) + (2P + Q) (a2 + p\) -

- P(a ia3 + p,p3) - Q(cc2cc4 + p2p4) + 

+ S[P(ata2 + pj2) + (P+ Q)(cc2cc3 + p2p3) + e(a3a4 + /?3/?4)] 

and hence 

(34) w=<x11 + s(x12-x21),v11-v22y + 
+ P[(Kl - | a 3 + iSa2)2 + (/?, - f/?3 + ISP2)

2] + 
+ e[(«4 - ¥2 + is«3)2 + (p4 - \p2 + \sp3y\ + 

+ i P O K «3) + <P(P2, P3)] + iC[>(a3> «2) + <P(P3, l^l)] 
where 

ę(x, y) = (4 - S2) x2 + Юxy + Ъy2 . 

The quadratic form <p(x, y) being non-negative for all x and y in virtue of | s | S \/f> 
we have W =• 0. Considerations analogous to those from the proof of Theorem 1 
imply the validity of our assertion. 

Remark. The special case (P = 1, Q = 1) of the preceding theorem was proved 
in [3] under the supposition that S satisfies the inequality JS| g 4 y/(2) — 5. As 
| < 4 ~y(2) — 5, the result obtained in [3] is a little better than that of Theorem 5. 
However, in the case PQ > 0, we can replace the inequality |SJ ^ /̂f independent 
of P, Q by a more suitable one. In fact, the last two terms on the right-hand side of 
(34) are equal to the sum of two quadratic forms of the type 

(4P + 3Q - PS2) x2 + 10(P + Q) Sxy + (3P + 4Q - QS2) y2 

which are non-negative for all S satisfying 

S2 £ (PQ)-1 [14(P + Qf + PQ] - 2|P + <2l'V[49(P + Q)2 + 4PQ] . 

A special case of Theorem 5 is this 
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Corollary 4. Let M be a surface in E4 possessing the properties (i), (ii) and (iv) 
of Theorem 5. Let 

(iii) X = PVn + 6V22 e N(M), P, Q e ^ , P2 + Q2 > 0, PQ = 0, be such that 

(a) Xii + S(Xi2 — X2i) = 0 0n M, S \M -* M being a function with 
S2

 = § , and 

(b) X2eN(M) is parallel in N(M) 
or 

(iii') X = PVn + QV22EN(M), P9Qe®9 P2 + Q2 > 0, Pg = 0, be swch fhar 

(a') —X22 + S(X12 — X2j) = 0 on M, where S : M -» 0t is a function 
satisfying S2 — | , and 

(b') Xi eN(M) is parallel in N(M). 

Then M is a part of a 2-dimensional sphere in E4. 
From the other special cases of Theorem 5 concerning the vector fields Vn, V22 

we introduce only those restricted by S = 0. 

Corollary 5. Let M be a surface in E4 satisfying the conditions (i), (ii) and (iv) of 
Theorem 5. Let 

(iii) (a) <V i in, Vn - V22> = 0 on M and 

(b) V2U eN(M) be parallel in N(M) 
or 

(a) <Vn22> ^ u - ^22> = 0 on M and 

(b) V222 eN(M) fee para//e/ in N(M) 
or 

(iii') (a') < - V 2 2 n , Vn - V22> = 0 on M and 

(b') Viii eN(M) be parallel in N(M) 
or 

(a') < -V 2 2 2 2 , Vii - V22> ^ 0 on M and 

(W) V122eN(M) be parallel in N(M). 

Then M is a part of a 2-dimensional sphere in E4. 
The result follows from Theorem 5 by Lemma 2 for P = 1, Q = 0 or P = 0, 

Q = 1 and S = 0. 
We complete the assertions of Corollary 5 by 

Theorem 6. Let M be a surface in E4 and dM its boundary. Let 

(i) K > 0 on M; 

(ii) there exist Vl9 V2 e T(M) generating an orthogonal conjugate net on M; 
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(iii) (a) < F i m , VX1 - V22> = 0 on M and 

(b) V222 %N(M) be parallel in N(M) 

or 

(iii') (a') <-v2222. Vii - v22> = 0 on M and 

(b') V1U sN(M) be parallel in N(M); 

(iv) QM consist of umbilical points. 

Then M is a part of a 2-dimensional sphere in E4. 

Proof. We have (6) and (7) on M. From (11), (13) we get 

<r i iu . Vtl - V22> = («i - « 3 R + (b, - b3)A2 + 3(a2
2 + fi\). 

The condition (iii) (b) is expressed by the two last equations of (31) from the proof 
of Theorem 4. Thus (30) implies 

, * = <*MU, ^11 - ^2> - M + «3 + fil + PÍ) pw = \ K 1 U 1 , rll - K 2 2 / - o\y,2 -r cx3 -r t^2 -r / ^ 

and hence 
(35) fi1+fii-2fK = 2W 
where 

W= V+^ = < V 1 H 1 , V 1 1 - V22> + 

+ («i - a3)2 + (a2 - a4)2 + (fi± - j53)
2 + (j82 - j84)

2 + a2 + a2 + p2 + £2 , 

V being defined by (30). The maximum principle completes our proof. 
A generalization of Theorem 5 is given by the following 

Theorem 7. Let M be a surfacejn E4 and dM its boundary. Let 

(i) K > 0 on M; 

(ii) there exist Vl9 V2 e T(M) generating an orthogonal conjugate net of lines 
on M; 

(iii) X = PVU + QV22eN(M)9 P9QeM9 P2 + Q2 > 0, PQ = 0, be such that 

<*n - *22 + s(x12 - x2i)9 vtl - V22> = o 

on M, S : M -» @t being a function with S2
 = f; 

(iv) 3M consist of umbilical points. 

Then M is a part of a 2-dimensional sphere in E4. 

Proof. We choose orthonormal frames in the usual way and we have the relations 
(6) and (7), and the equations (20), (21) and (22) on M, 
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Using (11) and (19) we see that the expression (22) has the form 

* = <XU - X22 + s(xi2 - X21), vlt - V22> + 

+ [(a, - a3)(Pai - Qa3) + (b± - b3)(Pbt - Qb3)]K -

- a2[(3P - 2C)a2 + Qa4] - J?2[(3P - 2Q) p2 + Q/f 4 ] -

- a3[Pai - (2P - 3Q)a3] - p3{Pfi1 - (2P - 3Q)j83] + 

+ S[P(axa2 + ptp2) + (P + Q)(a2a3 + J82JS3) + Q(a3a4 + j?3J?4)] . 

This relation is, however, formally the same as (33), so that we have (27) where W 
is given by (34) when writing Xti — X22 + S(Xi2 — X2i) instead of I u + 
+ S(X12 — K2i)- Thus the assertion is proved. 

First of all let us introduce this trivial 

Corollary 6. Let M be a surface in E4 possessing the properties (i), (ii) and (iv) 
Of Theorem 7. Let 

(in) X = PV1X + QV22eN(M)9 P9Qe0t9 P2 + Q2 > 0, PQ = 0, be such that 
-^n -~ ^22 + S(.X"12 — K21) = 0 on M, S being a real-valued function 
on M such that S2

 = | . 

Then M is a part of a 2-dimensional sphere in E4. 
Theorem 7, as a very special case, contains these two results: 

Corollary 7. Let M be a surface in E4 satisfying the conditions (i), (ii) and (iv) 
of Theorem 1. Let 

("0 <Vtm ~ V22ll, V„ - V22> £ 0 on M 

OГ 

(-"') <^1122 - ^2222, V±1 - V22> = 0 On M. 

Then M is a part of a 2-dimensional sphere in E4. 
Both the assertions follow from Theorem 7 and Lemma 2 for P = 1, Q = 0 or 

p = o, Q = 1 and S = 0. 
We complete again these two results by 

Theorem 8. Let M be a surface in E4 and let 

(i) K > 0 on M; 

(ii) there exist Vi9 V2 e T(M) generating an orthogonal conjugate net on M; 

(iii) <Piiii - *2222, VX1 - V22> = 0 on M; 

(iv) dM consist of umbilical points. 
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Then M is a part of a 2-dimensional sphere in E4. 

Proof. The condition (ii) implies again (6) and (7). From (11) and (13), using (7), 
we obtain 

<vull - v2222, vlt - v22y = 

= (a. - a3) (A, - Et) + (b, - b3) (A2 - E2) + 3(a2 + a2 + j8| + jS2) 

and hence from (30) 

# = < r u l l - v2222, vtl - v22y - 3(a2 + a2 + pi + pi). 

Thus we have the equation (35) with 

w = v + * = <V11U - v2222, vtl - v22y + 

+ (a, - a3)2 + (a2 - a4)2 + (p, - p3)
2 + (p2 - pAf + a2 + a2 + ft + p\ , 

V being again defined by (30). This completes the proof. 
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