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Casopis pro péstovani matematiky, ro&. 107 (1982), Praha

EXISTENCE OF SCHUTTE SEMIAUTOMORPHISMS

ELENA BROZIKOVA

(Received March 24, 1980)

The purpose of this paper is to discuss the existence of Schiitte semiautomorphisms
(i.e., semiautomorphisms of alternative division rings, satisfying Schiitte condition
of orthogonality, [2]). A natural classification of these semiautomorphisms is found
and examples corresponding to each of the types of semiautomorphisms are con-
structed.

1.1. An affine plane is a triple (2, £, 1), where 2 is a set of points, £ a set of
lines and I is an incidence relation, satisfying

1) Any two distinct points Py, P, € 2 lie on exactly one line le & (P, 11, P,11;
denotation: I = P, || P,).

2) Forevery P € 2 and I, € & such that P non I I, there exists exactly one line I, € &
that passes through P and has no point on I, (I, and 1, are parallel; denotation:
Iy | 1,). If P11y, then Iy = I,.

3) There exist three non colinear (not lying on the same line) points.

Herewith a binary relation of parallelity among lines is defined and this relation
is reflexive, symmetric and transitive.

An isomorphism from an affine plane (2, %, 1) onto an affine plane (2, ', T')
is a couple (r, A) of bijective mappings n: 2 - 2, 1: ¥ — &’ such that PI] <
<> P*I' I*. The relation of isomorphism divides the class of all planes into disjoint
classes of mutually isomorphic planes. '

A binary relation on % is called an orthogonality (denoted by 1) if it satisfies the
following axioms:

1) If 1, L1, then I, L 1.
2) If Pe 2 and I, € &, then there is exactly one I, € & such that P11, and [, L I,.

We shall denote by (2, &, I; _L) an affine plane with an orthogonality L. An iso-
morphism from (2, #,1; 1) onto (2, ¥',1'; L") is a couple (m, ) of bijective
mappings n: P —» P, A: ¥ - £ suchthat P11 <P I'Pand |, L1, <1} L' 13,
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The preceding definitions imply:
. Wil, L=l L11.

The Fano condition for an affine plane has the following meaning: For every
quadrangle (4,, 4,, A3, A,) (an ordered quadruple of mutually distinct points),
where A, |] A, ” A3l Ay and 4, L] A, “ A, L) A,, there exists exactly one point
Be 2 such that (4; L] 43) M (4, Ll 4,) = B. (The symbol [ denotes the point
of intersection of two non-parallel lines.)

The trapez condition: Let (4,, A,, A3, A4) and (By, B,, B3, B,) be two quadrangles,
where A, LI A, | A3 LI A4 and By LI B, | B L By, A;, B; € 2. If five of the relations
A; LU A4, LB, B, (1 £i<k < 4)are satisfied, then the remaining sixth relation
is also satisfied.

1.2. An alternative divison ring is a non-void set T together with two binary
operations +, * on T, where (T, +) is an Abelian group with a neutral element
0 (zero), (T~ {0}, +) is a loop with a neutral element 1 (identity) and both distributive
laws as well as both alternative laws are satisfied:

a(b+c)=ab+ac, (a+ b)c=ac+ bc
(ab) b = ab?, a’b = a(ab)

for all a,b,ceT.

The center C of T is the set of all pe T, which commute and associate with all
elements of T:

C= {peT[ (px) y = p(xy), px = xp for every x, yeT}.
A one-to-one mapping o : T - T satisfying (x + y)° = x° + »° is called
1) an automorphism if (xy)” = x°y° for all x, ye T,
2) an antiautomorphism if (xy)” = y°x° for all x, ye T,

3) an semiautomorphism if one of the following pairwise mutually equivalent con-
ditions is fulfilled:
a) (xyx)° = x°y°x° forall x, yeT,
b) (x?)” = (x°)* forall xeT,
) (xy + yx)” = x°y" + y°x° forall x, yeT,
A )y=0p)'fory+0, yeT.
Every automorphism or antiautomorphism is a special kind of semiautomorphism
on T. An alternative non-associative division ring admits semiautomorphisms which
are not automorphisms nor antiautomorphisms.

1.3. Let (T, +, *) be an alternative division ring. We put 2:=T x T, & :=
:=(T x T)uTand define I ¢ # x Z as follows:
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(%, ¥)I(u,v) <>y = ux + v forall x,y,u,veT,

(x;»)Tu<sx =u forall x,y,ueT.
Then (2, &,1) is an affine plane over T. In this plane the Little Desargues condition
holds. If T is associative, then the affine plane satisfies the Desargues condition ([1],

p. 73).

Theorem (K. Schiitte). For every affine plane with an orthogonality (?, £,1; 1)
satisfying the trapez condition there exist an alternative division ring T, a semi-
automorphism 6 : T — T and an element k € T such that (ka°)° = ak holds for every
a € T. Then the affine plane over T with the orthogonality defined by y = ax Ly =
= (ka®)~! x is isomorphic with the original affine plane.

Conversely. Let T be an alternative division ring, 6 : T - T a semiautomorphism
and k € T an element satisfying (ka°)” = ak for every a € T. Then the affine plane
over T provided with the orthogonality y = ax L y = (ka®)™* x satisfies the trapez
condition ([2] — Theorem 9).

1.4. Let F be a field of characteristic #2 and let Q be a quaternion division algebra
over F, consisting of elements of the form x = ay + a,e, + aze, + ase;; a,, a;,
a,, ay € F. The symbol X will denote the conjugate element to x, X = a, — a,e; —
— Qze, — aze;.

A Cayley (Cayley-Dickson) division algebra A over F is a set of the form A =
= Q + gQ with elements x = x; + gx, (x; € Q) and with the following operations:

a) addition is defined by the rule

(1 + gx,;) + (s + gh) =(xy + y1) + g(x; + y2)
for every x;, y; € Q,

b) multiplication is defined by

(x1 + gxz) (.Vl + g}’2) = (x1Y1 + ?}’2’_‘2) + 9(%,y2 + y1%2)
for every x;, y;€ Q, where g> =y + 0, yeF.

The following theorems are known ([1], p. 175, p. 302):

Theorem (L. A. Skornjakov, R. H. Bruck, E. Kleinfeld). If T is an alternative
division ring over F, then either T is associative or T is a Cayley division algebra
over the field F.

Theorem (Wedderburn). A finite alternative division ring is a field.

All automorphisms of an alternative division ring have been described by N.
Jacobson ([5]).

Let T be an alternative non-associative division ring over a field with characteristic
+2. Then T is a Cayley algebra over its center C and there is a basis 1, ey, ..., 4,
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where ee; = —eje; (i + j), ef = —w;, a;€ C. The following result was proved in
[3], Theorems 5, 6:

Theorem (V. Havel). Every semiautomorphism ¢ of an alternative division ring T
over its center C has the following form:

7
(1) ’ eg=za,~kek; i=1,...,7,
k=1

where the constants a; € C satisfy

7

(2 of =Y oai forevery i=1,...,7,
k=1

;
(3) Y wagay =0 forevery i,j=1,..,7, i+j.
k=1

Conversely. Every mapping o with the properties (1), (2) and (3) is a semiauto-
morphism of T. Furthermore, the restriction a¢ is an automorphism on C and if
xeC, yeT, then (xy)° = x°)°.

If C is the field R of real numbers, then og = id, 0° = 0, 17 = 1.
Now we shall investigate the condition

4 (ka°)’ = ak,
where for a = 1 we obtain
(5) k=k.

We shall investigate this condition in single cases.

2.1. Let ke C. Then (4) implies: (ka®)° = ak = k°a”* = ak = ka"* = ka =

2
=2aq" =a=>

(6) 62 =id, but o *id.

If We choose a = e; then from (1) we get -

¢ = () = (;a,-jej)" = ;“?jej' =) a{j8jmen = €
. J,m

or

(7) . Zagjajm = Oim-

J

Now we shall demonstrate on two examples that such a mapping ¢ + id exists.

Example 1. Let T be a Cayley division algebra with a basis 1, e,, ..., e; and the
multiplication table ‘
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el 82 e3 84 e5 36 e7

e, | =1  —ey e, —es e, e; —eg
e, e; —1 —ey —e5 —e4 es es
e; | —e, eg —1 —eq e —€s A
e, es e e; —1 —e; —e; —e,
es | —e, e; —eg e, —1 ey —ey
e | —e; —ey es e, —ey —1 ey
e, € —es —ey e e, —ey —1
Here ¢ = —1, a; = 1.

Let the mapping o be given by the matrix |la;]:

100 0 0O00O
010 0 O0OO
0 0 az3 az;o 0 0 O
lai;| =10 0 a4 ase 0 0 O,
000 O 1 00
000 O O10
000 O O0OT1
where
a33 Q34 *1 0 !
Q43 Ay | 0 il(?l)h )

Thus the mapping is neither an automorphism nor an antiautomorphism:
— 0 __ o o, 0\ __ _
€ = € = (6’193) * (e1e3) = 91(‘13333 + ‘13494) = (3363 — (3485,
— 0 o o\ __ —_
e; = 5 = (e1e3)” + (e3e]) = (aszes + asseq) e = —azse; + azges.

The mapping o is just a semiautomorphism if the constants a;; and their images af;
satisfy

®) Yai =1, Yawap=0, i%j
k k
and
(9) Zagjajm = 6im s a?; =a;;, O +* id .

J

In our case (9) yields aj; = a;;fori =+ 3,40rj+ 3,4. For i, j = 3, 4 the following
identities must be fulfilled:

a g —

(10) a33a33 + a34a43 = 1
g g —

a33a34 + 3,040 =0

a o —
(11) a33033 + a34043 =0
‘123‘134 + aZ4a44 =1
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The determinants of the systems (10) and (11) are

.l a a
D = 33 %43

, D = +1, because the matrix |[a]
Q34 Q44

must be orthogonal. From (8) we get
a§3 + a§4 = 1
(12) ai; +a;, =1
A33043 + G34044 = 0.

We shall investigate the last system in detail:

a§4=l—a§3, az; =1 — aj,

a§3023 = a§4aﬁ4

aj3(1 — al)) = (1 — a3y) af, > al; = al, = a3, = a4
D = a33a44 — a34043 = 1.

The solutions of the systems (10) and (11) are

a —a —a a
¢ _ Qaa o _ 34 ¢ _ 43 o 33
33 =——, Q34 = ———, Q43 = ——, O44 = —.
D D

D D

We distinguish the following cases:
1) 34 = Q43 -
a) Ay = a3
D=a§3—l+a§3=il

I)D=1:20§3=2=>a33= i1=a44, a34=a43=0

+ . . . .
b= _(—)1 _f 1) =1, o¢c = id, o is either an automorphism or an anti-
automorphism.
II) D= -1 :a§3 =0=a33 = a44=0, A34 = Q43 = +1
0 1 . .
b= +1 0 ~—_1’ oc = id, o7 * id,
e = te,, € = *e;, o is a semiautomorphism of T : (e e;)” + efes,
(ere3)” * e3e]
b) a4, = —as;
D=—a};—1+a},=-1
D= } 433 +J/(1 - a33) —

i\/(1 - a§3) —ass3
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oc = id, o is a semiautomorphism of T
g O (- g T
e3e] + (ese3)” + efes
2) 34 = —0u3
a) Aaa = Q33
‘D=a}, +1-a, =1
. 2
D = a33 i\/(l -_ a33) = 1
— 2
+\/(1 - ‘133) as;
— — —_— g — —
a33 = ag4 = A33 = Auq, 34 = G43, G33 = A3,
o is a semiautomorphism of T, o¢ + id
b) 44 = —aszs

I)D=l=>a§3=0=a33=a44=0, a34=—a43=i1
0 1] _
D“|¢1 01°1

oc = id, o is a semiautomorphism of T

II) D = —1:a§3=1:a33= il, Agq = ¢1, a34=a43=0
+1 0
D=7 J_rl‘_—l

0¢ = id, o is an automorphism or an antiautomorphism of T.

It can be easily verified that 6® = id in all the cases investigated. The determinants
from 1)b) and 2)a) have sense only in C, where |/ is defined.

Example 2. Let T be a Cayley division algebra with the multiplication table

€ ) €3 €4 €s €6 €7
e | —ay —e; ae; —es oge4 e —ayeq
e, e3 —a, —0e; —eg —ey N o,es
ey | —aye, o8y  —0 —ey g —0yes ozey
e, es e e, -0y —0e; —0se; —04e,
es | — aie4 e, — oy e ®4e5 —0as o83 —0se,
e | —eq — 0,8, oyes 48y —O04e3 —0g ey
e, 1€ —0,85 —03€, oses ose; —0gey —0n

It is known that we can choose e;, i = 1,...,7 in such a way that ay = a,a,,
U5 = 0104, Og = UpU4, U7 = 0430L504.
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Let ||| be the matrix of the mapping o : T — T. We want to construct an example
with «f #+ «; at least for one i. If we choose a;; = a;; = ay, = a,, = 1 and a;, =
=Gy = O = @ =0 for 1 £m <7 and i,j, k, ¢ mutually diferent, then we
necessarily get of = a; for all i’s, because every «; is either directly some of a;, a3, o4
or some of the products a,a,, a0, d,0,, &;%,0,, and when we express a;, 1 < i < 7,
in terms of «,, a,, a4, then each of the elements a;, «,, o4 occurs in every quadruple
(osr @, 045 @) (i, J, k, g mutually diferent). For example: if a;; = a33 = as5 = a7 =
=1, a;, =03 =as5;=0a7,,=0 for 1 £i <7, then of = a,, af = a;, a§ = a5,
o7 = o5. From

oy = o0, Weget of = afa; =03 = 003 =>0a; =d;;

’
os = o0, = o = ajaf = o5 = oaj0f =>oaf =a, and
Og = 000, => 0g = 0505 => Og = U0y = 0lg = Olg .

Therefore we choose a matrix ||a;;| which contains at most three 1’s in the main
diagonal:

10 0 0 0 00
0 gy a; 0 0 00
0 as;, a;; 0 0O 0 O
lag =110 0 0 aw a5 0 O,
00 0 ag ass 00
00 0 0 0 10
00 0 0 0 01
where
a, a3 ‘il 0 G4a G4s ||,
asz; asz 0 +1(F1) ass ass ||’

¢ is neither an automorphism nor an antiautomorphism:
aa — ( g _ OO0 __
1=y (0p0) = ajaf = aya,
(ag0p00)" = afaal = a 0,0 .
From (1), (2), (3) and (7) we obtain
2 2
%2032 + 002853 = O3
2 2
(13) Uxa3; + A10a33 = 003

2 2 o
|%aGaa + X405 =

2 2
4054 + 01004a55 = 0q0tg

[
& B
K
~N

and consequently

z 22 _ 2 2

(13) “lagz + a;azs = a3, + ,83;3
2 2 2

%1044 + ®1a%s = As54 + 0055

o
(14) ®283203; + A10,d;3033 = 0
04044054 + 01004045055 = 0
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(14) Ay203; + 21d53a33 =0
44054 + ¥1045055 = 0

(15) af; = a;; for (i,j) +(2,2),(2,3),(3,2),(3,3), (4,4), (4,5), (5,4), (5. 5)

a o — a g —

a320z; + a33a3; =1 A34044 + a350s54 = 1
o a — a L4 —_

(16) a3,833 + a33a33 =0 (16)) a3404s + agsass =0
a a _ o ¢ _

a3,0;; + a33a3;, =0 A54044 + a55a54 =0

a g — 4 g —_
a3:a,3 + a33a33 =1 a54a4s + a5sass = 1

The determinants of the systems (16) and (16') are

az; aj;
D, = = 032033 — Q3343;
a3 Asz;
and
sy a
D, =| ** "3*| = g ass — a,sas4, where D;D, = +1.
Q45 Ass

We shall restrict ourselves to i, j € {2, 3}. From (13’) we get

a2

2 _ 2 2 32
a3y = a3, + o433 — —.

oy

We substitute this result in (14):
2 2\ .2 _ .22 (2 2
(a3, + aya33) a3, = ajazs(a3; + a,a3;).
2 2 2 2 2 2 2
Let a3, + aja3; + 0= a3, = ajay; = a3, = t0,a,3 = a3; = a3, = a33 =
= iazz.

The solution of the system (16) is

a a —a —a
as, = =22 a3z = 2, ay; = 2, as, = -2t
D, D, D, D,

Now we shall investigate the possibilities ay; = +4a,,, a3, = +a,4a,;.
distinguish four cases:

1) Q33 = 33, Q33 = A1433,
2 2
Dy = a3; — aya3;.
In this case (14’) reads aya,,a,53 + ®1053a5;, = 0, 2aya55a,3 = 0, oy F 0.

a) a23=a32=0,

a, 0 2 .
Dl= O =a22, Uc*ld:azz*il,
azs
1
o _ o __ c __ 2,
Az = Q33 = —, 03 = Ad3;
azz
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b) a;; =33 =0,

0 azs 2

D, = - = —0a

1 a1023 0 123 »
1 1

o __ o __ g __ 2

a23 - . 032 _ T az - alazazs .
a1a33 asz

2) Qz2 = Q33, G332 = —0yd33,

azz (F) 2 2

D, = = a3, + a;a53 + 0 (as we have already assumed).
—®3a33 Az

Now (14') is satisfied trivially (—a,,0,a,3 + ®1a,3a,5, = 0).

a —a
6 __ 0 __ 22 ac 23
22 = Q833 = —5—— > 7
az; + a;a3; az; + 21833
1433 2 2
c - g
a3, = ——2—, of = a,(a3, + 4,433),

a3, + @433
oc * id <> ay; + 0 and at the same time a,, + +1.

3) a3z = —dajzz, 33 = yAz3,

azz azs
1dz3 —az;

— (a2, + wady) + 0.

(14) is also satisfied trivially,

—asz; az, —dasz3 — 3433

o o o __ o __

az; = y Q33 = s Q3 = sy Q3 = ———,
D, D, D, D,

o« = ay(a3;, + aja3;),
oc# id@Dl 4= _1.

4) a3z = —Qajzz, 33 = —W;ds3.
Now (14') gives aya,,a,5 = 0.

a) a23 = a32 b 0,

a; O 2
D, = = —qa
1 0 —a,, 22
o ] 1 ~
A2 =——, Q33 = — ——, Uy = 00433,
azz azz

Oc £ id=a,, £ +1;

b) a;, =az3 =0,
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Dl = =0 az
—aydy3 0 12
-1 1
o __ o __ o __ 2
az; = s Q33 = —, 0y = A1%y0453 .
®3433 azs

It can be verified by direct computation that ¢* = id in all the cases.

This completes the discussion of all possible choices for a,,, a,3, a3, a33 (6 cases)
such that ¢ + id but ¢ = id. The discussion for a,,, a,s, as,, ass is similar, but
the condition D;D, = +1 must be then fulfilled, while in the preceding part we
imposed no requirements on D;. Now we shall choose concrete values for a,,, azs,
as3,, as3 and the corresponding values for a,g4, a4s, asq, ass so that ¢ = id, 6* = id:

0 az3
aya,3 0

0 ass
1 2 a1a45 0 ’

A4s = ass = 0, asq = aya4s,

_ 2.2 2 _ 2 _
DD, = ajazays = 1=> a5 =

afa§3 .
1 - 1
Let a;5 = , asq =—; then aj; =a,3 =—,
®1433 az3 QAsq4
¢ _ 0,0 __ T __ 2 2 _ G4 |
G54 = 01045 = Q103 , 0Of = Wadig + 004045 = ——
®31433
aj; = a;;, of = o; for the remaining i, j.
The resulting matrix will be
10 0 0 0 00
00 a,; 0 0 00
0 aja,; O 0 0 00
00 0 0 1 00
lay] = ®1d23
00 0 1 0 0
azs
00 0 0 0 10
00 0 0 0 01

2.2. Let k¢ C.

It is known that b e C <> b” € C ([4]). Let us apply this proposition to (4),
replacing a by b e C:

(kb)Y = k°b°* = bk® = bk = bk = b" = b= 62 = id.
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So if the given semiautomorphism satisfies (4), then the respective automorphism o¢
must satisfy oz = id. If C = R, then gg = id = o} = id.

2.2.1. Let us suppose that ¢ is an automorphism of T. Then (4) yields
(17) k’a’* = ak = ka”" = ak =
a” = k™ !(ak) =

0% = id, but g3 + id. ¢? is an inner automorphism determined by the element k
([5])- If 6* = id, then a = k™*(ak) = ka = ak for every ae T = ke C.

Example 3. Let o be an automorphism of the type (17), k¢ C. Let T be a Cayley
algebra from Example 1, C = R. First we shall construct the automorphism o
from the relation (17). We choose an element k,

7
7 ko_zkiei
k=k0+zkieil k_l='$.
Yooi=1

7
2 kj
i=0

The relation (17) must hold for all a e T. If we successively substitute ey, e,, e for a
in (17), we get

ef = —=— [(k§ + ki — k3 — k3 — ki — k¥ — kg — kJ) e, +

Z

+ 2(koks + kik,) e; + 2(—koky + kiks)es +
+ 2(k0k5 + k1k4) e4 + 2(—k0k4 + klks) es +
+ 2(—k0k7 + k1k6) es— + 2(k0k6 + k1k7) 97] Py
5 = [2(—koks + kik;) ey + (k§ — ki + k3 — k3 — ki — ki — ki — K3) .
z 7 |
. ey + 2koky + kyk3) e + 2(koks + kaks) es + 2ok + kyks) es +
+ 2(—k0k4 '*“' k2k6) e6 + 2(—k0k5 + k2k7) e7] Py
e = p@¢2+khpl+4 %h+kzgﬁ+

Z

PR - R K- K== K)ey +
+ 2Akoks + kaky) es + 2(—koks + ksks) es +
+ 2(koks + kike) es + 2(—koks + k3kq)eq].
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From the multiplication table we have eje; = e, = ¢7°¢” = ¢5. We shall try to
choose four the coordinates kg, ..., k; being zero. The choices ky = k, = k4 = kg =
=0,ky =k, =k, = k3 =0,k = k; = ks = k; = 0 are not possible. The choice
k, = ks = kg = k,; = 0Ois suitable. Let us suppose further that k, = k, = k, = kj.
Then

e =€, € =e5, ¢ =¢,
e = H—es +es+ e+ ey,
=H(—es —es —es + ¢q),
el =3—es +es—es—ey),

e =13(—e, —es + e — ;).

If eje; = e,, then ¢’e]” = ¢ for all admissible triples (i,, m), i  j + m =+ i.
We denote by |@;;]| the matrix of the automorphism ¢2. Then

010 O 0 0 0
001 0 O 0 0
1.0 0 O 0 0 0
000:11 11
2 2 2 2
”5:1'”:000__1__1;1 1,
2 2 2 2
000__11__1___1
2 2 2 2
009 —L =1 1 =1
2 2 2 2

kaz=k=ko(1+el+92+es).

Now we shall find the matrix ||a;;|| of the automorphism ¢. For 1 < i,j < 3 we
have

0 0 1|
”ai]” =1 0 0f;
010

further, for i,j = 4 the following implication must hold:

7 7 7 7 .
efnz = (e;)" = Z Api€] = Z a,;a;j€; = dejej = Z Api@ij = Gy ;
i=4 ij=4 i=4

j=4
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7 7
moreover, y a;; = 1and Y a;,a;, = 0, i % j. From this we can derive the matrix

layl: =% - m

001 O 0 0 0
100 O o 0 o
010 O 0O 0 0
000 L L L1
2 2 2 2
]|ai,-l|=000—_11—_11
2 2 2 2
000_—_111—_1
2 2 2 2
000__1__111
2 2 2 2

The matrices ||a;;]| and |@;;|| have determinants equal to 1. It is easy to see that

Zaijﬁji = -1, Zaijaji = -1,
J

;aijdjm = 0, ;ajidmj = 0 for i +=m.

According to [5] every automorphism of a Cayley division algebra is always
inner, thus there must exist an element b e T such that a® = b~'(ab) for all ae T.
Then

a” = (b~1)? (ab?) = k™(ak).

Thus the automorphism ¢ is determined by the element b for which b? = k. Let
b = by + bje; + ... + b,e,. If we write the relation b? = k in coordinates we get

b=+ (___\/gko + \/% (er + &2 + 63))-

2.2.2. Let ¢ be an antiautomorphism of T. Then (4) yields
(ka®)" = ak = a”k" = ak = o> = id .
Besides (1), (2), (3), the relation (7) must hold as well.

Example 4. Let ¢ be an antiautomorphism, T a Cayley division algebra from
Example 1 with C = R (o¢ = id). The matrix |a;;| must represent an antiauto-
morphism, so that e;e; = e, for some triple (i, j, m) implies eje = ey. First we put
ef = e, €] = e, €5 = e;. For the remaining ey, e, ¢, e; the identities e,e, = e;,
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ejeq = e3, eseq = €3, eges = e; must hold and so on. Finally, we can choose
e = e, e5 = e, el = es, e = —eg and we get the matrix

Jasll = , detflay] = —1.

C OO OO =O
SO OO0 OO
S oo OoO = OO0
—_ 0 O 00O OO0
SO~ O OO0 O
O= OO O OO
oo o~=moOoOOoOo

This antiautomorphism ¢ admits the corresponding k in the form k = k, + ke, +
+ kye; + kies + kyses + kses + kye,, with arbitrary ko, ky, k3, k4, ks. Then k7 =
=k, a” =aforallaeT.

2.2.3. Let ¢ be neither an automorphism nor an antiauto.morphism,. but only
a semiautomorphism with a fixed element k = k° and ¢2 = id. Then the fundamental
relation (ka®)’ = ak must hold foralla e T.

Example 5. Let o be a semiautomorphism, T a Cayley division algebra from
Example 1 and C = R, 0. = id. Wechoosek =1 + ¢, + e, + e;and ay; = a;; =
= ay; = 0, i 2 4 for the elements of the matrix ||a;;|, so that

€ = ajie; + ay.6; + agze;,
€5 = azie; + A€, + anes,
€3 = azie; + aze; + azze;.

~ We know that k and a,; must satisfy (4), (5) and (8). From (4) we get
(kef)” = ek for ie{1,2,3}.

After the detailed analysis we see that the only solution different from identity is

A

010
lay] =1{1 0 Of for 1=ij=<3.
001

Similaﬂy we choose e§ = es, €7 = e, and from (4) we get:

(ke3)” = esk = ((1 + ey + e, + e3)es)” =es(1 + ey + e, + e3) =
=>(es+e4—e7+e5)¢=e4+es+es+e7=>

e, +es—e+e =€ +es +e+e,=>e=¢ and e = —e,;.
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Calculation shows that (kej)” = ek for j = 5. The matrix ||a;;| has the form

. 010000 0
100000 O
001000 O

lagl =0 0 0 0 1 0 o
000100 O
000001 0
000000 —1

Let us examine whether ¢ is only a semiautomorphism.

a) If ¢ were an automorphism, then (ese,)’ = (—e;)” would imply efe;
but e,e; + —e; and we get that ¢ is not an automorphism.

b) If ¢ were an antiautomorphism, then (ese,)° = (—e,)” would imply efe = —e7,
but ese; + e, and we get that ¢ is not an antiautomorphism.

o is a semiautomorphism satisfying (1), (2), (3), (4) and (5).

From Schiitte’s definition of orthogonality it follows that the line y = x is ortho-
gonal to the line y = k™ 'x. In this example we have chosen k = 1 + ¢, + e, + es,
1

k1=
1+el+ez+e3

=31—-e —e, —e3),

in such a way that the orthogonality is defined by

y=axly=(ka®)"'x forall aeT.

2.3. As we have seen from the case 2.2.3, the conditions for a;; which guarantee
that ¢ is a Schiitte semiautomorphism, depend on the multiplication table chosen
for the Cayley division algebra T (relation (4)). The existence of Schiitte semiauto-
morphisms is proved by Example 5. The determination of all Schiitte semiauto-
morphisms for a given Cayley division algebra is still an open problem.
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