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Časopis pro pěstování matematiky, roč. 107 (1982), Praha 

EXISTENCE OF SCHUTTE SEMIAUTOMORPHISMS 

ELENA BROŽÍKOVA 

(Received March 24, 1980) 

The purpose of this paper is to discuss the existence of Schutte semiautomorphisms 
(i.e., semiautomorphisms of alternative division rings, satisfying Schutte condition 
of orthogonality, [2]). A natural classification of these semiautomorphisms is found 
and examples corresponding to each of the types of semiautomorphisms are con­
structed. 

1.1. An affine plane is a triple (^, S£91), where & is a set of points, S£ a set of 
lines and I is an incidence relation, satisfying 

1) Any two distinct points Pl9 P2e£P lie on exactly one line / e S£ {Px I /, P2 I /; 
denotation: / = P- U P2)-

2) For every P e 0* and lt e S£ such that P non I \x there exists exactly one line \2 e J£? 
that passes through P and has no point on Z-. (/t and \2 are parallel; denotation: 
lt || \2). If PI/i, then lx = \2. 

3) There exist three non colinear (not lying on the same line) points. 

Herewith a binary relation of parallelity among lines is defined and this relation 
is reflexive, symmetric and transitive. 

An isomorphism from an affine plane {£P9 S£91) onto an affine plane (^ ' , S£', F) 
is a couple (TT, X) of bijective mappings n : 2P -» 0>\ X : S£ -> S£' such that P I / o 
o Pn Y / \ The relation of isomorphism divides the class of all planes into disjoint 
classes of mutually isomorphic planes. 

A binary relation on S£ is called an orthogonality (denoted by _1_) if it satisfies the 
following axioms: 

1) If \Y 1 Z2, then l2±h. 
2) If P G 0> and lx e S£, then there is exactly one l2e S£ such that P I \2 and \2 JL lx. 

We shall denote by (^, S£91; 1 ) an affine plane with an orthogonality J_. An iso­
morphism from (^, S£91; 1 ) onto (^ ' , S£'91'; 1') is a couple (A, X) of bijective 
mappings n\& -* &\X\ ££ -» Se' such that P I / o Pn V \x and \xL\2o \x 1 ' / | . 
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The preceding definitions imply: 

hLl29 /2 H / 3 - ^ . 1 / 3 . 

The Fano condition for an affine plane has the following meaning: For every 
quadrangle (Al9 Al9 A39 A4) (an ordered quadruple of mutually distinct points), 
where Ax U A2 \ A3 U A4 and AY U A4 || A2 U -43, there exists exactly one point 
Be0> such that (At \J A3) VI (A2 U A4) = B. (The symbol VI denotes the point 
of intersection of two non-parallel lines.) 

The trapez condition: Let (Al9 Al9 A3, A4) and (Bl9 B2, B3, B4) be two quadrangles, 
where Ax U A2 \\ A3 U A4 and Bx U B2 || B3 U B49 Ai9 Bt e 0>. If five of the relations 
At U Ak J_ J3f U Bk (l ^ i < k = 4) are satisfied, then the remaining sixth relation 
is also satisfied. 

1.2. An alternative divison ring is a non-void set T together with two binary 
operations +, • on T, where (T, +) is an Abelian group with a neutral element 
0 (zero), (T\ {0}, •) is a loop with a neutral element 1 (identity) and both distributive 
laws as well as both alternative laws are satisfied: 

a(b + c) = ab + ac, (a + b) c = ac + be 

(ab) b = ab2
9 a2b = a(ab) 

for all a9b9ce T. 

The center C of T is the set of all peT, which commute and associate with all 
elements of T: 

C = {p e T J (px) y = p(xy)9 px = xp for every x9 y e T} . 

A one-to-one mapping a :T -+T satisfying (x + y)a = xa + ya is called 

1) an automorphism if (xy)a = xaya for all x9 yeT, 
2) an antiautomorphism if (xy)a = yaxa for all x9yeT9 

3) an semiautomorphism if one of the following pairwise mutually equivalent con­
ditions is fulfilled: 

a) (xyx)a = xayaxa for all x j e T , 
b) (x2)a = (xa)2 for all x e T, 
c) (xy + yx)a = xaya + yaxa for all x9yeT9 
d) (V1)" = (yT1 for y*09 yeT. 

Every automorphism or antiautomorphism is a special kind of semiautomorphism 
on T. An alternative non-associative division ring" admits semiautomorphisms which 
are not automorphisms nor antiautomorphisms. 

1.3. Let (T, +, •) be an alternative division ring. We put ^ : = T x T, if : = 
: = ( T x T ) u T and define I g 0 x ££ as follows: 
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(x, y) I (u9 v) o y = MX + v for all x, y9u9ve T, 
(x9y)\uox = u for all x9y9ue T. 

Then (^, if, I) is an affine plane over T. In this plane the Little Desargues condition 
holds. If T is associative, then the affine plane satisfies the Desargues condition ([1], 
p. 73). 

Theorem (K. Schiitte). For every affine plane with an orthogonality (0>9 <£91; 1 ) 
satisfying the trapez condition there exist an alternative division ring T, a semi-
automorphism G : T -* T and an element k e T such that (kaa)a = ak holds for every 
aeT. Then the affine plane over T with the orthogonality defined by y = ax J_ y = 
= (kaa)~x x is isomorphic with the original affine plane. 

Conversely. Let T be an alternative division ring, a : T -> T a semiautomorphism 
and keT an element satisfying (kaa)a = akfor every aeT. Then the affine plane 
over T provided with the orthogonality y = ax A. y = (ka?)'1 x satisfies the trapez 
condition ([2] — Theorem 9). 

1.4. Let F be a field of characteristic #=2 and let Q be a quaternion division algebra 
over F, consisting of elements of the form x = a0 + axex + a2e2 + a3e3; a09 al9 

a29 a3 e F. The symbol x will denote the conjugate element to x, x = a0 — a1e1 — 
— a2.e2 - a3e3. 

A Cayley (Cayley-Dickson) division algebra A over F is a set of the form A — 
= Q + GQ with elements x = xt + gx2 (xt e Q) and with the following operations: 

a) addition is defined by the rule 

(*i + gx2) + (yt + gy2) = (xt + yj + g(x2 + y2) 

for every xi9 yt e Q, 

b) multiplication is defined by 

(*i + QXi) (yi + gy2) = (*iyi + yyiXi) + g(*iy2 + yi*2) 
for every xi? yt e Q, where g2 = y 4= 0, y e F. 

The following theorems are known ([1], p. 175, p. 302): 

Theorem (L. A. Skornjakov, R. H. Bruck, E. Kleinfeld). / / T is an alternative 
division ring over F, then either T is associative or T is a Cayley division algebra 
over the field F. 

Theorem (Wedderburn). A finite alternative division ring is a field. 
All automorphisms of an alternative division ring have been described by N. 

Jacobson ([5]). 
Let T be an alternative non-associative division ring over a field with characteristic 

4=2. Then T is a Cayley algebra over its center C and there is a basis 1, el9..., e7, 
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where efe,- = — efi{ (i 4= I), e] = — a,-, a,-G C. The following result was proved in 
[3], Theorems 5, 6: 

Theorem (V. Havel). Every semiautomorphism a of an alternative division ring T 
over its center C has the following form: 

7 

(1) «? = ][>***; i = l, . . . , 7 , 
k=\ 

where the constants aike C satisfy 

7 

(2) aT = Z a*<4 f°r every i = i,..., 7 , 

7 

(3) £ ofcflttfljfc = 0 for every i, j = 1, ..., 7 , i # j . 

Conversely. Every mapping a with the properties (1), (2) and (3) is a semiauto­
morphism of T. Furthermore, the restriction ac is an automorphism on C and if 
xeC.yeT, then (xy)a = xaya. 

If C is the field R of real numbers, then uR = id, 0a = 0, la = 1. 
Now we shall investigate the condition 

(4) (kaa)a = ak, 

where for a = 1 we obtain 

(5) ka = fc . 

We shall investigate this condition in single cases. 

2.1. Let keC. Then (4) implies: (kaa)a = ak => kaaa2 = afc => fca*2 = fca => 
=> a*2 = a => 

(6) or2 = id , but o" # id . 

If We choose a = et then from (1) we get 

*? = W = E W = YflW = I «WA. = «i 
1 1 1,m 

or 

(7) Za0^m = <5.m • 
' J 

Now we shall demonstrate on two examples that such a mapping a 4= id exists. 

Example 1. Let T be a Cayley division algebra with a basis 1, eu ..., e7 and the 
multiplication table 
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Єl e2 
Єз e* e5 eв 

Єi 

Єi - 1 -e3 
e2 

-e5 e* Єl -eв 

e2 Єз - 1 -*i - e 6 -en ЄAr e5 

e3 -e2 Єi -1 -Є! Єб -e5 e* 
e* e5 e6 

Єl - 1 -Єí -e2 -e3 

e5 -e* Єl -Єб Єi - 1 eъ 
-e2 

e6 
-e7 -e4 

e5 e2 -eъ 
- 1 Єi 

Єl e6 
-e5 -u Єз e2 

-ex 
- 1 

Here e\ = - 1 , a,- = 1. 

Let the mapping a be given by the matrix | | a 0 | | 

1 0 0 0 0 0 0 
0 ] l 0 0 0 0 0 

11 = 
0 0 a 3 3 a34 

0 0 a 4 3 a44 

0 0 0 0 

0 
0 
1 

0 0 
0 0 
0 0 

0 0 0 0 0 1 0 

0 ( 3 0 0 0 0 1 

« 3 3 

Й43 

<t34 

a44 

* 
± 1 

0 ± 

0 

1(+ 1) 

1 
where 

Thus the mapping is neither an automorphism nor an antiautomorphism: 

e2 = e9

2 = (e^y 4= (e\eQ = ei(a33^3 + 034*4) = 033*2 - a3^e5 , 

e2 = ea

2 = (e^y * (eaea) = (a 3 3 e 3 + a 3 4 e 4 ) ex = -a 3 3*2 + a3^e5 . 

The mapping a is just a semiautomorphism if the constants atJ and their images aa

u 

satisfy 

(8) 

and 

(9) 

Z*?* = 1> Z*-**;* = o > í * j 

Za<ljajm = sim, aa] = aiS , (T =)= ia . 

In our case (9) yields aa
i} = ai} for i 4= 3, 4 o r ; #= 3, 4. For i,j = 3, 4 the following 

identities must be fulfilled: 

(10) 

(11) 

| a 3 3 a 3 3 + 034^43 = 1 
1^33^34 + ^4«44 = 0 

í«43a33 + <4«43 = 0 
|a23a34 + <4«44 = 1 * 
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The determinants of the systems (10) and (11) are 

D = * 3 3 " 4 3 

a 3 4 a 4 4 

must be orthogonal. From (8) we get 

, D = ± 1 , because the matrix | |a 0 | | 

(12) 
| a 3 3 + aІ4 = 1 
!a 4 3 + a 4 4 = 1 
[^33^43 + ^34^44 = ° • 

We shall investigate the last system in detail: 

a\л =• 1 - a * 3 4 

aUaL = aLa2 

33 9 

2 
3 4 ű 4 4 

a\% -1 - a\ 

2 (A „2 \ _ (A „2 \ „2 _ 2 _ 2 
" 3 3 — " 4 

*33"43 

^33(1 - a^4) = (1 - allait 

D — a33a44. — a34a43 = ±1 . 

The solutions of the Systems (10) and (11) are 

Я34 = a 4 3 

ű зз = 
£44 
D ' a34 = 

— a 34 

D a43 = 
- < * 4 3 

D 
* 4 4 

" 3 3 

D 

We distinguish the following cases: 

1) «34 = <*43 

a) a44 = a33 

D = a|з - 1 + 0*3 = ± 1 

I) D = 1 : 2a^3 = 2 => a 3 3 = ± 1 = a4 4, a 3 4 = a 4 3 = 0 

D = ± 1 0 
0 +1 = 1, ac — id, a is either an automorphism or an anti-

automorphism. 

H) D - -1 : a2

33 = 0 => a33 = a 4 4 = 0, a 3 4 = a 4 3 = ± 1 

0 +1 
D = 

± 1 0 -= —1, <тc = id, <гT Ф řá, 

e"3 = ± e 4 , ej'= ± e 3 , a is a semiautomorphism of T:(eie3)
a #= e\e%, 

(eie3y * efej 

b) a 4 4 = - a 3 3 

D = -a^з - 1 + a^3 = - 1 

D = a 3 3 ±V(1 - «Із) 
± 7 ( 1 - a^) - a 3 3 

= - 1 
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GC = id, G is a semiautomorphism of T 

e\e\ * (eie3y * e?^ 

2) G34 = - « 4 3 

a) a44 = a 3 3 

*33 D = a\ъ + 1 - a^ = 1 

D *зз 

+ 7(1 - Язз) a 

±V(1 - ah) 
33 

1 

<т ^ n<т 
aъъ = a. 4 4 0 3 3 — a 4 4 » ö 3 4 — 0435 Я4З — ű 3 4 

G is a semiautomorphism of T, GC #= id 

b) a44 = - a 3 3 

D= -a2
3 + 1 - a | 3 = ± 1 

I) D = 1 *зз = 0=> a зз = 0, a 3 4 = - я 4 3 = + 1 

D = 

0 ^Ľ! 
+ 1 0 ! 

crc = id, G is a semiautomorphism of T 

II) Ð = - l : в | 3 = l •зз = ± 1 , a 4 4 = + 1 , a 3 4 = a 4 3 = 0 

D = 
± 1 0 
0 T l 

- 1 

GC = id, G is an automorphism or an antiautomorphism of T. 

It can be easily verified that G2 = id in all the cases investigated. The determinants 
from l)b) and 2)a) have sense only in C, where yj is defined. 

Examp le 2. Let T be a Cayley division algebra with the multiplication table 

e2 eъ 
Є4 eв 

Єi 

e2 

Єx -

e5 -
e* -

- « 1 -eъ 
a^

2 -e5 «1*4 e7 
- a i e 6 

eъ - « 2 — a
2
вi -e6 -ei «2*4 a

2
e

5 

-*\e2 a 2 e i -a
3 

-Є7 
*ie6 

-cc2e5 a 3 e 4 

e* e6 Єl -a
4 

- a 4 e i - a
4
e

2 
- a

4
e

3 

- a i e 4 Єl -<*ie6 
a

4
e

5 -a
5 

a
4
e

3 
- a

5
e

2 

-en - a 2 e 4 
ct2e5 a

4
e

2 
- a 4 e 3 -a

6 
<*6Єl 

*\Є6 - a 2 ß 5 -<*ЪЄ4 a
4
e

3 
a

5
e

2 
-a

6
вi -a

7 

It is known that we can choose ei9 i = 1,..., 7 in such a way that a3 = a ^ , 
a5 = aia4, a6 = a2a4, a7 = aia2a4. 
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Let ||a lV|| be the matrix of the mapping o : T -> T. We want to construct an example 
with a? 4= af at least for one i. If we choose aH = au = akk = aqq = 1 and aim = 

= a* = 0 for 1 = m 5̂  7 and i, j , K q mutually diferent, then we = ain, = a кm 
necessarily get a? = af for all fs, because every txi is either directly some of a1? a2, a4 

or some of the products a ^ , a1a4, a2a4, axa2a4, and when we express och 1 ^ / = 7, 
in terms of al9 a2, a4, then each of the elements ccl9 a2, a4 occurs in every quadruple 
(oLt, OLJ, cck9 aq) (i,j, k, q mutually diferent). For example: if a u = a 3 3 = a55 = a 7 7 = 
= 1, au = a3i = a5i = a 7 i = 0 for 1 = i = 7, then a" = a з = aз> as = a 5» 

a7 = a7 
From 

a з = a,a 2 we j ?et «з = 
: a^a2 => a з = « 1 « 2 => a 2 = « 2 ; 

a 5 = a l a 4 => a 5 = a î a 4 => a 5 = (XiXІ =t >al = = a 4 аnd 

a 6 = a 2 a 4 => a£ = ajaj => cŕв = = a 2 a 4 => « б = a 6 . 

Therefore we choose а mаtrix Цâ Ц which contаins аt most three ľ s 
diаgonаl: 

1 0 0 0 0 0 0 

\ы\\ = 
0 a22 

0 a 3 2 

0 0 
0 0 
0 0 

Ö23 

tЬз 
0 
0 
0 

0 
0 
a 4 4 

a 5 4 

0 

0 0 
0 0 
a 4 5 0 
a 5 5 0 
0 1 

0 
0 
0 
0 
0 

> 

0 0 0 0 0 0 1 
where 

0 2 2 ö 2 3 

Ö32 ű 3 3 
* 

±1 
0 

0 
± 1 ( + 1 ) 

Ф 
a 4 4 

a 5 4 

Ű45 

Ö55 
» 

ex is neither an automorphism nor an antiautomorphism: 

a l = a l ( a 2 a 4 ) f f = a 2 a 4 = a 2 a 4 

(a1a2a4)
<T = aja2a4 = a x a 2 a 4 . 

From (1), (2), (3) and (7) we obtain 

a 2 a 2 2 + a^i2a\ъ = cč2 

Ѓ13Ì cc2a\2 + a ^ a ^ = a i a
2 

v 1 ^ a 4 ű 4 4 + a l a 4 Л 4 5 = a 4 
a 4 « 5 4 + a l a 4 « 5 5 = a l < 

and consequently 

(13') 
\^a\г + a\a\ъ = a\2 + oLxa\ъ (13') 
[ccialt + <x\a\5 = a2

54. + a i a 5 5 

(14) 'Га 2 а 2 2 а 3 2 + а^Одевзз = О 
| а 4 а 4 4 а 5 4 + а 1 а 4 а 4 5 а 5 5 = О 
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(14') 
Га 2 2 а 3 2 + а1Я23Язз = О 

[ а 4 4 а 5 4 + а 1 а 4 5 « 5 5 = О 

(15) alj^aij for (i,j)Ф (2, 2), (2,3), (3,2), (3,3), (4, 4), (4, 5), (5, 4), (5, 5) 

(16) 

fl22fl22 + fl^зflзг = 1 

aa

22a2Ъ + fl23fl3з = 0 
fl32fl22 + fl?заз2 = 0 
a\гalъ + fl?3fl33 = 1 

(iбO 

Я44Я44 + A45 а 54 = ! 

A 4 > 4 5 + ^45^55 = 0 

fl54«44 + fl?5Л54 = 0 

flLfl45 + fl^cfl 5 5 u 5 5 1 

The determinants of the systems (16) and (16') are 

Dг = 
fl*22 а 3 2 

= flттflm — fl~.lfl -*22u33 23 u 32 

and 

D, 
а 4 4 а 5 4 

«45 ^55 
= 044055 — 045a54» where D!D2 = + 1 

We shall restrict ourselves to i,j e {2, 3}. From (13') we get 

2 2 2 
033 = а 2 2 + а l f l 2 3 

* 3 2 

We substitute this result in (14'): 

(a2

22 + a-fl^) a\2 = ocla2

23(a2

22 + *ya\z) 

a%1 = a,fl ' 3 2 Let A 2 2 + ccta23 + 0 

= ±fl 2 2-
The Solution of the System (16) is 

2 „ 2 
l u 2 3 * 3 2 + ^ ^ 2 3 => ^ 3 3 = fl22 => fl33 = 

fl 
033 

22 — ~~~~ 9 " 3 3 
D\ 

a* - ^ ď - ~ a - 3 

0.33 — ^ 9 « 2 3 — — " 
a-*? — — fl 32 

9 "Ъ2 
Di 

Now we shall investigate the possibilities A 3 3 = + fl22, 032 = + a i0 2 3- We 
distinguish four cases: 

1) A 3 3 = fl22, A 3 2 = a! f l 2 3, 

Dl = 022 - a 1 0 2 3 -

In this case (14') reads a!fl22fl23 + a1fl23fl22 = 0, 2a1fl22fl23 = 0, ax + 0. 

a) A 2 3 = A 3 2 = 0 , 

= 0 2 2 9 <~C * i d => 022 * + 1 9 D1 = 

a22 0 

0 а 2 2 

1 
*22 — " 3 3 , a.2 — ct2a22 ; 

«22 
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Ь) fl22 = aзз = 0 . 

0 ^ a23 

aia2l 0 
D . = = - a i ű г з 

a\г = 9 032 = 9 a 2 = a l a 2 0 2 3 
a 1 0 2 3 032 

2) a22 = ÖЗЗ» flз2 = - a i Û 2 з > 

I>1 = 
022 023 

- a 1 0 2 3 022 
= 022 + ai023 + 0 ( a s w e ^ a v e already assumed), 

Now (14') is satisfied trivially ( — 022
ai023 + ai023a22 = 0)-

022 n -023 
022 = 033 = 

022 +
 a
1023 

a^ = 
022 +

 al ű23 

a\i = 
a1023 

*32 2 , 2 
022 + a1023 

• a2 = a2\022 + a1023) » 

crc =(= id<->023 + O and at the samé time 0 2 2 + + 1 . 

3) 033 = — 0 2 2 J 032 = a1023» 

I>i = 
* 2 2 0 2 3 
a 1 0 2 3 —022 

(14') is also satisfied trivially, 

= - ( 0 2 2 + a i 0 2 з ) + 0 . 

022 = 
— a 2 2 ' 2 2 — a iъ 

* 3 3 
Dx Dx 

a 2 = a 2 ( 0 2 2 + a 1 0 2 3 ) 9 

<rc + id o Di 4= — 1. 

4) 033 = - 0 2 2 » 032 = - a 1 0 2 3 -

Now (14') gives 0^022023 = 0 

a) 0 2 3 = 032 = °> 

'23 

01 
ű 3 2 = 

— OCi0 l " 2 3 

Dx 

Di = 
022 0 

0 - Ű 2 2 
= — ø 22 9 

л * — n<* — /vff — /v л 2 

022 — 9 033 — ~~ 9 a 2 — a 2 ű 2 2 
0 2 2 022 

< T C * І d * 2 2 * ± i ; 

Ь) 0 2 2 = 033 = 0 9 
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D. = 

a23 = 

0 
-ociíiгз 

- 1 

Ű23 
0 = a i a 1"23 ' 

1 
a 3 2 = — , a 2 = a^a^a^з 

" 2 3 
a l " 2 3 

It can be verified by direct computation that a2 = id in all the cases. 

This completes the discussion of all possible choices for a22, a 2 3 , a 3 2 , a 3 3 (6 cases) 
such that crc =f= id but a2 = id. The discussion for a 4 4 , a 4 5 , a 5 4 , a 5 5 is similar, but 
the condition DXD2 = ±1 must be then fulfilled, while in the preceding part we 
imposed no requirements on Dt. Now we shall choose concrete values for a22, a 2 3 , 
a 3 2 , a 3 3 and the corresponding values for a 4 4 , a 4 5 , a 5 4 , a 5 5 so that GC = id, a2 = f J : 

ö i 
0 a 2 3 

a t a „ 0 

a 4 4 

*l"23 

*55 = >̂ a 5 4 = a l " 4 5 > 

D* = 
0 
a l " 4 5 0 

* 4 5 

DľD2 
„2^,2 „2 
a l " 2 3 " 4 5 = 1 => a 2 = 4 5 2 Л 2 

aтa 1"23 

Let a 4 5 = 
a t a 1"23 

1 1 
"54 = — ; then a°45 = a 2 3 = — , 

a23 "54 

"54 = aí"45 = al"23 > a4 = a4"44 + ala4"45 = ^ 
al"23 

a^. = fli7j af = af for the remaining i,j. 

The resulting matrix will be 

в i i = 

1 0 0 0 0 
0 0 Ű23 0 0 
0 aц.23 0 0 0 

0 0 0 0 1 
Otlt.23 

0 0 0 1 
<*23 

0 

0 0 0 0 0 
0 0 0 0 0 

0 0 
0 0 
0 0 

0 0 

0 0 

1 0 
0 1 

2.2. Let k $ C. 

It is known that b e C •=• b" e C ([4]). Let us apply this proposition to (4), 
replacing a by b e C: 

(kb")' = k'b'1 = b'2k' = b"2k = bk=> b'1 = b => <£ = id. 
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So if the given semiautomorphism satisfies (4), then the respective automorphism ac 

must satisfy ac = id. If C = R, then aR = id => a\ = id. 

2.2.1. Let us suppose that a is an automorphism of T. Then (4) yields 

(17) kaa°2 = ak=> ka°2 = ak => 

a*2 = k-\ak)=> 

ac = id, but a\ 4= id. a2 is an inner automorphism determined by the element fc 

([5]). If a2 = id, then a = fc_1(afc) => ka = ak for every aeT => keC. 

E x a m p l e 3. Let a be an automorphism of the type (17), fc $ C. Let T be a Cayley 

algebra from Example 1, C = R. First we shall construct the automorphism a2 

from the relation (17). We choose an element fc, 

7 

7 k0 — 2^ k^i 

k = k0 + 2̂  ki^i » fc = 7 • 

z*j 
1 = 0 

The relation (17) must hold for all aeT. If we successively substitute e1 ? e2, e3 for a 

in (17), we get 

«f = - ^ 7 - K*S + fc? - fci - ^ - fci - fci - fc? - fc7)*i + 
J' = 0 

+ 2(fc0fc3 + fc.fc2)e2 + 2(-fc0fc2 + fc.fc3)e3 + 

+ 2(fc0fc5 + fcifc4) e 4 + 2(-fc0fc4 + fcifc5) e5 + 

+ 2(-fc0fc7 + fcxfc6) e6- + 2(k0k6 + fc.fc7) e 7] , 

e - 2 = " ^ 7 1 [ 2(" f cofc 3 + fcifc2) «i + (fco ~ fci + fcl - fcs " fc' " fcs - fce - fc?) , 
l k j 

j=o 

. e2 + 2(k0kt + k2k3) e3 + 2(k0k6 + fc2fc4) e 4 + 2(fc0fc7 + fc2fc5) e 5 + 

+ 2(-fc 0k 4 + k2k6)e6 + 2(-fc0fc5 + fc2fc7)e7] , 

e'i = ~=TZ l2(feofc2 + fcifcs) «i + -(-fe-fc, + fc2fc3) e2 + 
L kj 

j = 0 

+ (k2

0 -k\-k\ + k\-kl-k\-k\- fc7) e3 + 
+ 2(fe0fc7 + fc3fc4) e 4 + 2(-fc0fcб + fc3fc5) e5 + 

+ 2(fc0fc5 + k3fc6) e6 + 2(-fc0fc4 + fc3fc7) e 7] . 
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From the multiplication table we have exe3 = e2 => efef = e2
2. We shall try to 

choose four the coordinates k0,..., k7 being zero. The choices k0 = k2 = k4 = k6 = 
= 0, k0 = k! = k2 = k3 = 0, kj = k3 = k5 = k7 = 0 are not possible. The choice 
^4 = ^5 = ^6 = ki = 0 is suitable. Let us suppose further that k0 = kt = k2 = k3. 
Then 

ei = e2 > e2 = 3̂ > 3̂ = *1 > 

* f = i ( - ^ 4 + 5̂ + 6̂ + *7)> 

*? = ± ( - * 4 - 5̂ - 6̂ + £7)> 

* f = i ( " 6 4 + 5̂ - 6̂ " C7), 

* f = i ( - * 4 - 5̂ + 6̂ - C7). 

If efey = em9 then e?2eJ2 = e*2 for all admissible triples (i, j , m), i 4= j =f= m =f= i. 
We denote by ||alV|| the matrix of the automorphism a2. Then 

ati\ = 

0 1 0 0 0 0 0 
0 0 1 0 0 0 0 
1 0 0 0 0 0 0 

- 1 1 1 1 
0 0 0 

2 2 2 2 
- 1 - 1 - 1 1 

0 0 0 
2 2 2 2 

- 1 1 - 1 - 1 
0 0 0 

~T 2 ~т ~т 
2 2 2 2 

k"г = k = fc0(l + в! + e2 + e3). 

Now we shall find the matrix | |a y | | of the automorphism a. For 1 ^ i,j ^ 3 we 
have 

< . . . = 

0 0 1 
1 0 0 
0 1 0 

further, for i,j ^ 4 the following implication must hold: 

7 7 7 7 -
em = («£)* = I *«**? = Z <tmi<tijej = Z ^m^J => I <**»*.; = *«J J 

i = 4 i,7 = 4 j = 4 i = 4 

155 



7 7 

moreover, £ a?. = 1 and £ a^a,-,, = 0, i + j . From this we can derive the matrix 

m 
1 = 4 m = 4 

0 0 1 0 0 0 0 
1 0 0 0 0 0 0 
0 1 0 0 0 0 0 

1 1 1 1 
0 0 0 

2 2 2 2 
- 1 1 - 1 1 

0 0 0 
2 2 ~г 2 

- 1 1 1 - 1 
0 0 0 

~2 2 2 ~2~ 
- 1 - 1 1 1 

0 0 0 
2 ~T 2 2 

The matrices ||ay|| and ||a,7|| have determinants equal to 1. It is easy to see that 

YaiJdJi = -*1 - Za*A* = - 1 > 
1 * 

Zflyajm = °> EaJ A../ = 0 for i + m. 
1 1 

According to [5] every automorphism of a Cayley division algebra is always 
inner, thus there must exist an element beT such that a* = b~1(ab) for all aeT. 
Then 

a'~ = (b~1)2(ab2) = k-1(ak). 

Thus the automorphism a is determined by the element b for which b2 = fc. Let 
& = b0 + biCj + ... + bnen. If we write the relation b2 = fc in coordinates we get 

»--(^ •£<••+<.• 4 
2.2.2. Let a be an antiautomorphism of T. Then (4) yields 

(kd'Y = afc => a ' V = afc => <x2 = id . 

Besides (l), (2), (3), the relation (7) must hold as well. 

Example 4. Let a be an antiautomorphism, T a Cayley division algebra from 
Example 1 with C = R («rc = id). The matrix ||a0|| must represent an antiauto­
morphism, so that etej = em for some triple (i, j9 m) implies eje? = e°. First we put 
ei = 2̂> *S =* eu e% = e3- F°r the remaining e4, £5, e6, e1 the identities e7e4 = e3, 
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*4*7 = *3, ese6 = e3, eae\ — e3 must hold and so on. Finally, we can choose 
el = el9 e° = e4, e\ = e5, e% = — e6 and we get the matrix 

0 1 0 0 0 0 0 
1 0 0 0 0 0 0 
0 0 1 0 0 0 0 

a,j\\ =- 0 0 0 0 0 0 1 
0 0 0 0 1 0 0 
0 0 0 0 0 - 1 0 
0 0 0 1 0 0 0 

detK| = - l . 

This antiautomorphism (7 admits the corresponding fc in the form fc = fc0 + kxeY + 
+ kxe2 + k3e3 + fc4e4 + fc5e5 + fc4e7, with arbitrary fc0, kl9 fc3, fc4, fc5. Then k? = 
= fc, a*2 = a for all aeT. 

2.2.3. Let a be neither an automorphism nor an antiautomorphism, but only 
a semiautomorphism with a fixed element fc = ka and ac = id. Then the fundamental 
relation (ka*)* = afc must hold for all aeT. 

Example 5. Let a be a semiautomorphism, T a Cay ley division algebra from 
Example 1 and C = R,GC = id. We choose fc = 1 + et + e2 + e3 and a x i = a 2 i = 
= a 3 i = 0, i _̂  4 for the elements of the matrix ||ay||, so that 

*1 = 011*1 + «12*2 + 013*3 > 

*2 = fl21*l + a 2 2 * 2 + 023*3 > 

*3 = 031*1 + 032*2 + 033*3 • 

We know that fc and atj must satisfy (4), (5) and (8). From (4) we get 

(ke<T

i)
a = eik for i e {1,2,3} . 

After the detailed analysis we see that the only solution different from identity is 

- . 1 = 

0 1 0 
1 0 0 
0 0 1 

foг 1 = í,j = 3 

Similarly we choose e4 = e5, el = e4 and from (4) we get: 

(keiy = e4fc => ((1 + et + e2 + e3) esy = e4(l + ex + e2 + e3) -=> 

=> (e5 + e4 - e7 + eg)* = e4 + *5 + *6 + *7 => 

=> *4 + *5 - *7 + *£ = *4 + *5 + *6 + *7 => *6 = *6 a n d *" = - * 7 
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Calculation shows that (keff = e}k for./ ^ 5. The matrix ||al7|| has the form 

0 1 0 0 0 0 0 
1 0 0 0 0 0 0 
0 0 1 0 0 0 0 

|| a * ,|| = 0 0 0 0 1 0 0 
0 0 0 1 0 0 0 
0 0 0 0 0 1 0 
0 0 0 0 0 0 - 1 

Let us examine whether a is only a semiautomorphism. 

a) If a were an automorphism, then (eie2)
ff = (~e$f would imply e\e2 = — e3, 

but e2e\ =¥ —e3 and we get that a is not an automorphism. 
b) If a were an antiautomorphism, then (e3e4)

(T = (—e7)
ff would imply eje3 = — e°, 

but ese3 4= en and we get that G is not an antiautomorphism. 
a is a semiautomorphism satisfying (1), (2), (3), (4) and (5). 

From Schutte's definition of orthogonality it follows that the line y = x is ortho­
gonal to the line y = k~xx. In this example we have chosen k = 1 + e1 + e2 + e3, 

fe-1^ i 

1 + ex + e2 + e3 

in such a way that the orthogonality is defined by 

y = ax 1 y = (fca*)"1 x for all 

= І Í 1 - <?i - eг - e3), 

aєT. 

2.3. As we have seen from the case 2.2.3, the conditions for atj which guarantee 
that G is a Schutte semiautomorphism, depend on the multiplication table chosen 
for the Cayley division algebra T (relation (4)). The existence of Schutte semiauto-
morphisms is proved by Example 5. The determination of all Schutte semiauto-
morphisms for a given Cayley division algebra is still an open problem. 
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