Časopis pro pěstování matematiky

Elena Brožíková
Existence of Schütte semiautomorphisms

Časopis pro pěstování matematiky, Vol. 107 (1982), No. 2, 143--158
Persistent URL: http://dml.cz/dmlcz/118116

Terms of use:

© Institute of Mathematics AS CR, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

EXISTENCE OF SCHÜTTE SEMIAUTOMORPHISMS

Elena Brožíková

(Received March 24, 1980)

The purpose of this paper is to discuss the existence of Schütte semiautomorphisms (i.e., semiautomorphisms of alternative division rings, satisfying Schütte condition of orthogonality, [2]). A natural classification of these semiautomorphisms is found and examples corresponding to each of the types of semiautomorphisms are constructed.
1.1. An affine plane is a triple $(\mathscr{P}, \mathscr{L}, \mathrm{I})$, where \mathscr{P} is a set of points, \mathscr{L} a set of lines and I is an incidence relation, satisfying

1) Any two distinct points $P_{1}, P_{2} \in \mathscr{P}$ lie on exactly one line $l \in \mathscr{L}\left(P_{1} \mathrm{I} l, P_{2} \mathrm{I} l\right.$; denotation: $l=P_{1} \sqcup P_{2}$).
2) For every $P \in \mathscr{P}$ and $l_{1} \in \mathscr{L}$ such that P non I l_{1} there exists exactly one line $l_{2} \in \mathscr{L}$ that passes through P and has no point on $l_{1}\left(l_{1}\right.$ and l_{2} are parallel; denotation: $l_{1} \| l_{2}$). If $P \mathrm{I} l_{1}$, then $l_{1}=l_{2}$.
3) There exist three non colinear (not lying on the same line) points.

Herewith a binary relation of parallelity among lines is defined and this relation is reflexive, symmetric and transitive.

An isomorphism from an affine plane ($\mathscr{P}, \mathscr{L}, \mathrm{I}$) onto an affine plane ($\left.\mathscr{P}^{\prime}, \mathscr{L}^{\prime}, \mathrm{I}^{\prime}\right)$ is a couple (π, λ) of bijective mappings $\pi: \mathscr{P} \rightarrow \mathscr{P}^{\prime}, \lambda: \mathscr{L} \rightarrow \mathscr{L}^{\prime}$ such that $P \mathrm{I} l \Leftrightarrow$ $\Leftrightarrow P^{\pi} I^{\prime} l^{\lambda}$. The relation of isomorphism divides the class of all planes into disjoint classes of mutually isomorphic planes.

A binary relation on \mathscr{L} is called an orthogonality (denoted by \perp) if it satisfies the following axioms:

1) If $l_{1} \perp l_{2}$, then $l_{2} \perp l_{1}$.
2) If $P \in \mathscr{P}$ and $l_{1} \in \mathscr{L}$, then there is exactly one $l_{2} \in \mathscr{L}$ such that P I l_{2} and $l_{2} \perp l_{1}$. We shall denote by $(\mathscr{P}, \mathscr{L}, \mathrm{I} ; \perp)$ an affine plane with an orthogonality \perp. An isomorphism from ($\mathscr{P}, \mathscr{L}, \mathrm{I} ; \perp$) onto ($\left.\mathscr{P}^{\prime}, \mathscr{L}^{\prime}, \mathrm{I}^{\prime} ; \perp^{\prime}\right)$ is a couple (π, λ) of bijective mappings $\pi: \mathscr{P} \rightarrow \mathscr{P}^{\prime}, \lambda: \mathscr{L} \rightarrow \mathscr{L}^{\prime}$ such that $P \mathrm{I} l \Leftrightarrow P^{\pi} \mathrm{I}^{\prime} l^{\lambda}$ and $l_{1} \perp l_{2} \Leftrightarrow l_{1}^{\lambda} \perp^{\prime} l_{2}^{\lambda}$.

The preceding definitions imply:

$$
l_{1} \perp l_{2}, \quad l_{2} \| l_{3} \Rightarrow l_{1} \perp l_{3}
$$

The Fano condition for an affine plane has the following meaning: For every quadrangle $\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$ (an ordered quadruple of mutually distinct points), where $A_{1} \sqcup A_{2} \| A_{3} \sqcup A_{4}$ and $A_{1} \sqcup A_{4} \| A_{2} \sqcup A_{3}$, there exists exactly one point $B \in \mathscr{P}$ such that $\left(A_{1} \sqcup A_{3}\right) \sqcap\left(A_{2} \sqcup A_{4}\right)=B$. (The symbol \sqcap denotes the point of intersection of two non-parallel lines.)

The trapez condition: Let $\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$ and $\left(B_{1}, B_{2}, B_{3}, B_{4}\right)$ be two quadrangles, where $A_{1} \sqcup A_{2} \| A_{3} \sqcup A_{4}$ and $B_{1} \sqcup B_{2} \| B_{3} \sqcup B_{4}, A_{i}, B_{i} \in \mathscr{P}$. If five of the relations $A_{i} \sqcup A_{k} \perp B_{i} \sqcup B_{k}(1 \leqq i<k \leqq 4)$ are satisfied, then the remaining sixth relation is also satisfied.
1.2. An alternative divison ring is a non-void set \boldsymbol{T} together with two binary operations + , on T, where $(T,+)$ is an Abelian group with a neutral element 0 (zero), $(T \backslash\{0\}, \cdot)$ is a loop with a neutral element 1 (identity) and both distributive laws as well as both alternative laws are satisfied:

$$
\begin{array}{ll}
a(b+c)=a b+a c, & (a+b) c=a c+b c \\
(a b) b=a b^{2}, & a^{2} b=a(a b)
\end{array}
$$

for all $a, b, c \in \boldsymbol{T}$.
The center C of \boldsymbol{T} is the set of all $p \in T$, which commute and associate with all elements of \boldsymbol{T} :

$$
\boldsymbol{C}=\{p \in \boldsymbol{T} \mid(p x) y=p(x y), p x=x p \text { for every } x, y \in \boldsymbol{T}\}
$$

A one-to-one mapping $\sigma: \boldsymbol{T} \rightarrow \boldsymbol{T}$ satisfying $(x+y)^{\sigma}=x^{\sigma}+y^{\sigma}$ is called

1) an automorphism if $(x y)^{\sigma}=x^{\sigma} y^{\sigma}$ for all $x, y \in T$,
2) an antiautomorphism if $(x y)^{\sigma}=y^{\sigma} x^{\sigma}$ for all $x, y \in T$,
3) an semiautomorphism if one of the following pairwise mutually equivalent conditions is fulfilled:
a) $(x y x)^{\sigma}=x^{\sigma} y^{\sigma} x^{\sigma}$ for all $x, y \in T$,
b) $\left(x^{2}\right)^{\sigma}=\left(x^{\sigma}\right)^{2}$ for all $x \in T$,
c) $(x y+y x)^{\sigma}=x^{\sigma} y^{\sigma}+y^{\sigma} x^{\sigma}$ for all $x, y \in T$,
d) $\left(y^{-1}\right)^{\sigma}=\left(y^{\sigma}\right)^{-1}$ for $y \neq 0, y \in T$.

Every automorphism or antiautomorphism is a special kind of semiautomorphism on T. An alternative non-associative division ring admits semiautomorphisms which are not automorphisms nor antiautomorphisms.
1.3. Let $(T,+, \cdot)$ be an alternative division ring. We put $\mathscr{P}:=T \times T, \mathscr{L}:=$ $:=(\mathbf{T} \times \mathbf{T}) \cup \boldsymbol{T}$ and define $\mathrm{I} \cong \mathscr{P} \times \mathscr{L}$ as follows:

$$
\begin{aligned}
& (x, y) \mathrm{I}(u, v) \Leftrightarrow y=u x+v \text { for all } x, y, u, v \in \boldsymbol{T}, \\
& (x, y) \mathrm{I} u \Leftrightarrow x=u \text { for all } x, y, u \in \boldsymbol{T} .
\end{aligned}
$$

Then $(\mathscr{P}, \mathscr{L}, \mathrm{I})$ is an affine plane over \mathbf{T}. In this plane the Little Desargues condition holds. If \boldsymbol{T} is associative, then the affine plane satisfies the Desargues condition ([1], p. 73).

Theorem (K. Schütte). For every affine plane with an orthogonality ($\mathscr{P}, \mathscr{L}, \mathrm{I} ; \perp$) satisfying the trapez condition there exist an alternative division ring \mathbf{T}, a semiautomorphism $\sigma: \boldsymbol{T} \rightarrow \boldsymbol{T}$ and an element $k \in \boldsymbol{T}$ such that $\left(k a^{\sigma}\right)^{\sigma}=a k$ holds for every $a \in \boldsymbol{T}$. Then the affine plane over \boldsymbol{T} with the orthogonality defined by $y=a x \perp y=$ $=\left(k a^{\sigma}\right)^{-1} x$ is isomorphic with the original affine plane.

Conversely. Let \mathbf{T} be an alternative division ring, $\sigma: \mathbf{T} \rightarrow \boldsymbol{T}$ a semiautomorphism and $k \in \boldsymbol{T}$ an element satisfying $\left(k a^{\sigma}\right)^{\sigma}=a k$ for every $a \in \boldsymbol{T}$. Then the affine plane over T provided with the orthogonality $y=a x \perp y=\left(k a^{\sigma}\right)^{-1} x$ satisfies the trapez condition ([2] - Theorem 9).
1.4. Let \boldsymbol{F} be a field of characteristic $\neq 2$ and let \mathbf{Q} be a quaternion division algebra over F, consisting of elements of the form $x=a_{0}+a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3} ; a_{0}, a_{1}$, $a_{2}, a_{3} \in F$. The symbol \bar{x} will denote the conjugate element to $x, \bar{x}=a_{0}-a_{1} e_{1}-$ $-a_{2}: e_{2}-a_{3} e_{3}$.

A Cayley (Cayley-Dickson) division algebra \boldsymbol{A} over \boldsymbol{F} is a set of the form $\boldsymbol{A}=$ $=\mathrm{Q}+g \mathrm{Q}$ with elements $x=x_{1}+g x_{2}\left(x_{i} \in \mathbf{Q}\right)$ and with the following operations:
a) addition is defined by the rule
$\left(x_{1}+g x_{2}\right)+\left(y_{1}+g y_{2}\right)=\left(x_{1}+y_{1}\right)+g\left(x_{2}+y_{2}\right)$
for every $x_{i}, y_{i} \in \mathbf{Q}$,
b) multiplication is defined by
$\left(x_{1}+g x_{2}\right)\left(y_{1}+g y_{2}\right)=\left(x_{1} y_{1}+\gamma y_{2} \bar{x}_{2}\right)+g\left(\bar{x}_{1} y_{2}+y_{1} x_{2}\right)$
for every $x_{i}, y_{i} \in \mathbf{Q}$, where $g^{2}=\gamma \neq 0, \gamma \in F$.
The following theorems are known ([1], p. 175, p. 302):
Theorem (L. A. Skornjakov, R. H. Bruck, E. Kleinfeld). If \boldsymbol{T} is an alternative division ring over F , then either T is associative or \mathbf{T} is a Cayley division algebra over the field \boldsymbol{F}.

Theorem (Wedderburn). A finite alternative division ring is a field.
All automorphisms of an alternative division ring have been described by N . Jacobson ([5]).

Let \boldsymbol{T} be an alternative non-associative division ring over a field with characteristic $\neq 2$. Then T is a Cayley algebra over its center C and there is a basis $1, e_{1}, \ldots, e_{7}$,
where $e_{i} e_{j}=-e_{j} e_{i}(i \neq j), e_{i}^{2}=-\alpha_{i}, \alpha_{i} \in C$. The following result was proved in [3], Theorems 5, 6:

Theorem (V. Havel). Every semiautomorphism σ of an alternative division ring \mathbf{T} over its center \mathbf{C} has the following form:

$$
\begin{equation*}
e_{i}^{\sigma}=\sum_{k=1}^{7} a_{i k} e_{k} ; \quad i=1, \ldots, 7 \tag{1}
\end{equation*}
$$

where the constants $a_{i k} \in \boldsymbol{C}$ satisfy

$$
\begin{equation*}
\alpha_{i}^{\sigma}=\sum_{k=1}^{7} \alpha_{k} a_{i k}^{2} \quad \text { for every } \quad i=1, \ldots, 7 \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k=1}^{7} \alpha_{k} a_{i k} a_{j k}=0 \quad \text { for every } \quad i, j=1, \ldots, 7, \quad i \neq j \tag{3}
\end{equation*}
$$

Conversely. Every mapping σ with the properties (1), (2) and (3) is a semiautomorphism of \boldsymbol{T}. Furthermore, the restriction σ_{c} is an automorphism on C and if $x \in C, y \in T$, then $(x y)^{\sigma}=x^{\sigma} y^{\sigma}$.

If \boldsymbol{C} is the field \boldsymbol{R} of real numbers, then $\sigma_{R}=\mathrm{id}, 0^{\sigma}=0,1^{\sigma}=1$.
Now we shall investigate the condition

$$
\begin{equation*}
\left(k a^{\sigma}\right)^{\sigma}=a k \tag{4}
\end{equation*}
$$

where for $a=1$ we obtain

$$
\begin{equation*}
k^{\sigma}=k \tag{5}
\end{equation*}
$$

We shall investigate this condition in single cases.
2.1. Let $k \in$ C. Then (4) implies: $\left(k a^{\sigma}\right)^{\sigma}=a k \Rightarrow k^{\sigma} a^{\sigma^{2}}=a k \Rightarrow k a^{\sigma^{2}}=k a \Rightarrow$ $\Rightarrow a^{\sigma^{2}}=a \Rightarrow$

$$
\begin{equation*}
\sigma^{2}=\text { id }, \text { but } \sigma \neq \text { id } \tag{6}
\end{equation*}
$$

If We choose $a=e_{i}$ then from (1) we get

$$
e_{i}^{\sigma^{2}}=\left(e_{i}^{\sigma}\right)^{\sigma}=\left(\sum_{j} a_{i j} e_{j}\right)^{\sigma}=\sum_{j} a_{i j}^{\sigma} e_{j}^{\sigma}=\sum_{j, m} a_{i j}^{\sigma} a_{j m} e_{m}=e_{i}
$$

or

$$
\begin{equation*}
\sum_{j} a_{i j}^{\sigma} a_{j m}=\delta_{i m} \tag{7}
\end{equation*}
$$

Now we shall demonstrate on two examples that such a mapping $\sigma \neq \mathrm{id}$ exists.
Example 1. Let T be a Cayley division algebra with a basis $1, e_{1}, \ldots, e_{7}$ and the multiplication table

$$
\begin{aligned}
& \\
& e_{1} \\
& e_{2} \\
& e_{3} \\
& e_{4} \\
& e_{5} \\
& e_{6} \\
& e_{7}
\end{aligned} \begin{array}{rrrrrrr}
e_{1} & e_{2} & e_{3} & e_{4} & e_{5} & e_{6} & e_{7} \\
-1 & -e_{3} & e_{2} & -e_{5} & e_{4} & e_{7} & -e_{6} \\
e_{3} & -1 & -e_{1} & -e_{6} & -e_{7} & e_{4} & e_{5} \\
e_{5} & e_{1} & -1 & -e_{7} & e_{6} & -e_{5} & e_{4} \\
-e_{4} & e_{7} & -e_{6} & e_{1} & -e_{1} & -e_{2} & -e_{3} \\
-e_{7} & -e_{4} & e_{5} & e_{2} & -e_{3} & -1 & -e_{2} \\
e_{6} & -e_{5} & -e_{4} & e_{3} & e_{2} & -e_{1} & -1 \\
\hline
\end{array}
$$

Here $e_{i}^{2}=-1, \alpha_{i}=1$.
Let the mapping σ be given by the matrix $\left\|a_{i j}\right\|$:

$$
\left\|a_{i j}\right\|=\left\|\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & a_{33} & a_{34} & 0 & 0 & 0 \\
0 & 0 & a_{43} & a_{44} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right\|,
$$

where

$$
\left\|\begin{array}{ll}
a_{33} & a_{34} \\
a_{43} & a_{44}
\end{array}\right\| \neq\left\|\begin{array}{cc}
\pm 1 & 0 \\
0 \pm 1(\mp 1)
\end{array}\right\| .
$$

Thus the mapping is neither an automorphism nor an antiautomorphism:

$$
\begin{aligned}
& e_{2}=e_{2}^{\sigma}=\left(e_{1} e_{3}\right)^{\sigma} \neq\left(e_{1}^{\sigma} e_{3}^{\sigma}\right)=e_{1}\left(a_{33} e_{3}+a_{34} e_{4}\right)=a_{33} e_{2}-a_{34} e_{5}, \\
& e_{2}=e_{2}^{\sigma}=\left(e_{1} e_{3}\right)^{\sigma} \neq\left(e_{3}^{\sigma} e_{1}^{\sigma}\right)=\left(a_{33} e_{3}+a_{34} e_{4}\right) e_{1}=-a_{33} e_{2}+a_{34} e_{5} .
\end{aligned}
$$

The mapping σ is just a semiautomorphism if the constants $a_{i j}$ and their images $a_{i j}^{\sigma}$ satisfy

$$
\begin{equation*}
\sum_{k} a_{i k}^{2}=1, \quad \sum_{k} a_{i k} a_{j k}=0, \quad i \neq j \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j} a_{i j}^{\sigma} a_{j m}=\delta_{i m}, \quad a_{i j}^{\sigma^{2}}=a_{i j}, \quad \sigma \neq i d \tag{9}
\end{equation*}
$$

In our case (9) yields $a_{i j}^{\sigma}=a_{i j}$ for $i \neq 3,4$ or $j \neq 3$, 4 . For $i, j=3,4$ the following identities must be fulfilled:

$$
\begin{align*}
& \left\{\begin{array}{l}
a_{33}^{\sigma} a_{33}+a_{34}^{\sigma} a_{43}=1 \\
a_{33}^{\sigma} a_{34}+a_{34}^{\sigma} a_{44}=0
\end{array}\right. \tag{10}\\
& \left\{\begin{array}{l}
a_{43}^{\sigma} a_{33}+a_{44}^{\sigma} a_{43}=0 \\
a_{43}^{\sigma} a_{34}+a_{44}^{\sigma} a_{44}=1 .
\end{array}\right.
\end{align*}
$$

The determinants of the systems (10) and (11) are

$$
D=-\left|\begin{array}{ll}
a_{33} & a_{43} \\
a_{34} & a_{44}
\end{array}\right|, \quad D= \pm 1, \text { because the matrix } \quad\left\|a_{i j}\right\|
$$

must be orthogonal. From (8) we get

$$
\left\{\begin{array}{l}
a_{33}^{2}+a_{34}^{2}=1 \tag{12}\\
a_{43}^{2}+a_{44}^{2}=1 \\
a_{33} a_{43}+a_{34} a_{44}=0
\end{array}\right.
$$

We shall investigate the last system in detail:

$$
\begin{aligned}
& a_{34}^{2}=1-a_{33}^{2}, \quad a_{43}^{2}=1-a_{44}^{2} \\
& a_{33}^{2} a_{43}^{2}=a_{34}^{2} a_{44}^{2} \\
& a_{33}^{2}\left(1-a_{44}^{2}\right)=\left(1-a_{33}^{2}\right) a_{44}^{2} \Rightarrow a_{33}^{2}=a_{44}^{2} \Rightarrow a_{34}^{2}=a_{43}^{2} \\
& D=a_{33} a_{44}-a_{34} a_{43}= \pm 1
\end{aligned}
$$

The solutions of the systems (10) and (11) are

$$
a_{33}^{\sigma}=\frac{a_{44}}{D}, \quad a_{34}^{\sigma}=\frac{-a_{34}}{D}, \quad a_{43}^{\sigma}=\frac{-a_{43}}{D}, \quad a_{44}^{\sigma}=\frac{a_{33}}{D} .
$$

We distinguish the following cases:

1) $a_{34}=a_{43}$
a) $a_{44}=a_{33}$ $D=a_{33}^{2}-1+a_{33}^{2}= \pm 1$
I) $D=1: 2 a_{33}^{2}=2 \Rightarrow a_{33}= \pm 1=a_{44}, a_{34}=a_{43}=0$
$D=\left|\begin{array}{cc} \pm 1 & 0 \\ 0 & \pm 1\end{array}\right|=1, \sigma_{c}=i d, \sigma$ is either an automorphism or an antiautomorphism.
II) $D=-1: a_{33}^{2}=0 \Rightarrow a_{33}=a_{44}=0, a_{34}=a_{43}= \pm 1$

$$
\begin{aligned}
D= & \left|\begin{array}{cc}
0 & \pm 1 \\
\pm 1 & 0
\end{array}\right|=-1, \sigma_{c}=i d, \sigma_{T} \neq i d, \\
& e_{3}^{\sigma}= \pm e_{4}, e_{4}^{\sigma}= \pm e_{3}, \sigma \text { is a semiautomorphism of } T:\left(e_{1} e_{3}\right)^{\sigma} \neq e_{1}^{\sigma} e_{3}^{\sigma},
\end{aligned}
$$

b) $a_{44}=-a_{33}$

$$
\begin{aligned}
& D=-a_{33}^{2}-1+a_{33}^{2}=-1 \\
& D=\left|\begin{array}{cc}
a_{33} & \pm \sqrt{ }\left(1-a_{33}^{2}\right) \\
\pm \sqrt{ }\left(1-a_{33}^{2}\right) & -a_{33}
\end{array}\right|=-1
\end{aligned}
$$

$\sigma_{c}=i d, \sigma$ is a semiautomorphism of T

$$
e_{3}^{\sigma} e_{1}^{\sigma} \neq\left(e_{1} e_{3}\right)^{\sigma} \neq e_{1}^{\sigma} e_{3}^{\sigma}
$$

2) $a_{34}=-a_{43}$
a) $a_{44}=a_{33}$

$$
D=a_{33}^{2}+1-a_{33}^{2}=1
$$

$$
D=\left|\begin{array}{cc}
a_{33} & \pm \sqrt{ }\left(1-a_{33}^{2}\right) \\
\mp \sqrt{ }\left(1-a_{33}^{2}\right) & a_{33}
\end{array}\right|=1
$$

$a_{33}^{\sigma}=a_{44}^{\sigma}=a_{33}=a_{44}, a_{34}^{\sigma}=a_{43}, a_{43}^{\sigma}=a_{34}$
σ is a semiautomorphism of $\boldsymbol{T}, \sigma_{\boldsymbol{c}} \neq i d$
b) $a_{44}=-a_{33}$
$D=-a_{33}^{2}+1-a_{33}^{2}= \pm 1$
I) $D=1 \Rightarrow a_{33}^{2}=0 \Rightarrow a_{33}=a_{44}=0, a_{34}=-a_{43}= \pm 1$

$$
\begin{aligned}
D & =\left|\begin{array}{cc}
0 & \pm 1 \\
\mp 1 & 0
\end{array}\right|=1 \\
\sigma_{c} & =i d, \sigma \text { is a semiautomorphism of } T
\end{aligned}
$$

II) $D=-1: a_{33}^{2}=1 \Rightarrow a_{33}= \pm 1, a_{44}=\mp 1, a_{34}=a_{43}=0$

$$
D=\left|\begin{array}{cc}
\pm 1 & 0 \\
0 & \mp 1
\end{array}\right|=-1
$$

$\sigma_{C}=i d, \sigma$ is an automorphism or an antiautomorphism of \boldsymbol{T}.
It can be easily verified that $\sigma^{2}=i d$ in all the cases investigated. The determinants from 1)b) and 2)a) have sense only in C, where $\sqrt{ }$ is defined.

Example 2. Let \boldsymbol{T} be a Cayley division algebra with the multiplication table

It is known that we can choose $e_{i}, i=1, \ldots, 7$ in such a way that $\alpha_{3}=\alpha_{1} \alpha_{2}$, $\alpha_{5}=\alpha_{1} \alpha_{4}, \alpha_{6}=\alpha_{2} \alpha_{4}, \alpha_{7}=\alpha_{1} \alpha_{2} \alpha_{4}$.

Let $\left\|a_{i j}\right\|$ be the matrix of the mapping $\sigma: T \rightarrow T$. We want to construct an example with $\alpha_{i}^{\sigma} \neq \alpha_{i}$ at least for one i. If we choose $a_{i i}=a_{j j}=a_{k k}=a_{q q}=1$ and $a_{i m}=$ $=a_{j m}=a_{k m}=a_{q m}=0$ for $1 \leqq m \leqq 7$ and i, j, k, q mutually diferent, then we necessarily get $\alpha_{i}^{\sigma}=\alpha_{i}$ for all i 's, because every α_{i} is either directly some of $\alpha_{1}, \alpha_{2}, \alpha_{4}$ or some of the products $\alpha_{1} \alpha_{2}, \alpha_{1} \alpha_{4}, \alpha_{2} \alpha_{4}, \alpha_{1} \alpha_{2} \alpha_{4}$, and when we express $\alpha_{i}, 1 \leqq i \leqq 7$, in terms of $\alpha_{1}, \alpha_{2}, \alpha_{4}$, then each of the elements $\alpha_{1}, \alpha_{2}, \alpha_{4}$ occurs in every quadruple $\left(\alpha_{i}, \alpha_{j}, \alpha_{k}, \alpha_{q}\right)(i, j, k, q$ mutually diferent $)$. For example: if $a_{11}=a_{33}=a_{55}=a_{77}=$ $=1, a_{1 i}=a_{3 i}=a_{5 i}=a_{7 i}=0$ for $1 \leqq i \leqq 7$, then $\alpha_{1}^{\sigma}=\alpha_{1}, \alpha_{3}^{\sigma}=\alpha_{3}, \alpha_{5}^{\sigma}=\alpha_{5}$, $\alpha_{7}^{\sigma}=\alpha_{7}$. From

$$
\begin{aligned}
& \alpha_{3}=\alpha_{1} \alpha_{2} \text { we get } \alpha_{3}^{\sigma}=\alpha_{1}^{\sigma} \alpha_{2}^{\sigma} \Rightarrow \alpha_{3}=\alpha_{1} \alpha_{2}^{\sigma} \Rightarrow \alpha_{2}^{\sigma}=\alpha_{2} ; \\
& \alpha_{5}=\alpha_{1} \alpha_{4} \Rightarrow \alpha_{5}^{\sigma}=\alpha_{1}^{\sigma} \alpha_{4}^{\sigma} \Rightarrow \alpha_{5}=\alpha_{1} \alpha_{4}^{\sigma} \Rightarrow \alpha_{4}^{\sigma}=\alpha_{4} \text { and } \\
& \alpha_{6}=\alpha_{2} \alpha_{4} \Rightarrow \alpha_{6}^{\sigma}=\alpha_{2}^{\sigma} \alpha_{4}^{\sigma} \Rightarrow \alpha_{6}^{\sigma}=\alpha_{2} \alpha_{4} \Rightarrow \alpha_{6}^{\sigma}=\alpha_{6} .
\end{aligned}
$$

Therefore we choose a matrix $\left\|a_{i j}\right\|$ which contains at most three 1 's in the main diagonal:

$$
\left\|a_{i j}\right\|=\left\|\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & a_{22} & a_{23} & 0 & 0 & 0 & 0 \\
0 & a_{32} & a_{33} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & a_{44} & a_{45} & 0 & 0 \\
0 & 0 & 0 & a_{54} & a_{55} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right\|,
$$

where

$$
\left\|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right\| \neq\left\|\begin{array}{cc}
\pm 1 & 0 \\
0 & \pm 1(\mp 1)
\end{array}\right\| \neq\left\|\begin{array}{ll}
a_{44} & a_{45} \\
a_{54} & a_{55}
\end{array}\right\| ;
$$

σ is neither an automorphism nor an antiautomorphism:

$$
\begin{gathered}
\alpha_{1}^{\sigma}=\alpha_{1} \quad\left(\alpha_{2} \alpha_{4}\right)^{\sigma}=\alpha_{2}^{\sigma} \alpha_{4}^{\sigma}=\alpha_{2} \alpha_{4} \\
\left(\alpha_{1} \alpha_{2} \alpha_{4}\right)^{\sigma}=\alpha_{1}^{\sigma} \alpha_{2}^{\sigma} \alpha_{4}^{\sigma}=\alpha_{1} \alpha_{2} \alpha_{4}
\end{gathered}
$$

From (1), (2), (3) and (7) we obtain

$$
\left\{\begin{array}{l}
\alpha_{2} a_{22}^{2}+\alpha_{1} \alpha_{2} a_{23}^{2}=\alpha_{2}^{\sigma} \tag{13}\\
\alpha_{2} a_{32}^{2}+\alpha_{1} \alpha_{2} a_{33}^{2}=\alpha_{1} \alpha_{2}^{\sigma} \\
\alpha_{4} a_{44}^{2}+\alpha_{1} \alpha_{4} a_{45}^{2}=\alpha_{4}^{\sigma} \\
\alpha_{4} a_{54}^{2}+\alpha_{1} \alpha_{4} a_{55}^{2}=\alpha_{1} \alpha_{4}^{\sigma}
\end{array}\right.
$$

and consequently

$$
\begin{align*}
& \left\{\begin{array}{l}
\alpha_{1} a_{22}^{z}+\alpha_{1}^{2} a_{23}^{2}=a_{32}^{2}+\alpha_{1} a_{33}^{2} \\
\alpha_{1} a_{44}^{2}+\alpha_{1}^{2} a_{45}^{2}=a_{54}^{2}+\alpha_{1} a_{55}^{2}
\end{array}\right. \tag{13'}\\
& \left\{\begin{array}{l}
\alpha_{2} a_{22} a_{32}+\alpha_{1} \alpha_{2} a_{23} a_{33}=0 \\
\alpha_{4} a_{44} a_{54}+\alpha_{1} \alpha_{4} a_{45} a_{55}=0
\end{array}\right. \tag{14}
\end{align*}
$$

$$
\left\{\begin{array}{l}
a_{22} a_{32}+\alpha_{1} a_{23} a_{33}=0 \\
a_{44} a_{54}+\alpha_{1} a_{45} a_{55}=0
\end{array}\right.
$$

(15) $a_{i j}^{\sigma}=a_{i j}$ for $(i, j) \neq(2,2),(2,3),(3,2),(3,3),(4,4),(4,5),(5,4),(5,5)$

$$
\left\{\begin{array} { l }
{ a _ { 2 2 } ^ { \sigma } a _ { 2 2 } + a _ { 2 3 } ^ { \sigma } a _ { 3 2 } = 1 } \tag{16}\\
{ a _ { 2 2 } ^ { \sigma } a _ { 2 3 } + a _ { 2 3 } ^ { \sigma } a _ { 3 3 } = 0 } \\
{ a _ { 3 2 } ^ { \sigma } a _ { 2 2 } + a _ { 3 3 } ^ { \sigma } a _ { 3 2 } = 0 } \\
{ a _ { 3 2 } ^ { \sigma } a _ { 2 3 } + a _ { 3 3 } ^ { \sigma } a _ { 3 3 } = 1 }
\end{array} \quad (1 6 ^ { \prime }) \quad \left\{\begin{array}{l}
a_{44}^{\sigma} a_{44}+a_{45}^{\sigma} a_{54}=1 \\
a_{44}^{\sigma} a_{45}+a_{45}^{\sigma} a_{55}=0 \\
a_{54}^{\sigma} a_{44}+a_{55}^{\sigma} a_{54}=0 \\
a_{54}^{\sigma} a_{45}+a_{55}^{\sigma} a_{55}=1
\end{array}\right.\right.
$$

The determinants of the systems (16) and (16^{\prime}) are

$$
D_{1}=\left|\begin{array}{ll}
a_{22} & a_{32} \\
a_{23} & a_{33}
\end{array}\right|=a_{22} a_{33}-a_{23} a_{32}
$$

and

$$
D_{2}=\left|\begin{array}{ll}
a_{44} & a_{54} \\
a_{45} & a_{55}
\end{array}\right|=a_{44} a_{55}-a_{45} a_{54}, \text { where } D_{1} D_{2}= \pm 1
$$

We shall restrict ourselves to $i, j \in\{2,3\}$. From (13') we get

$$
a_{33}^{2}=a_{22}^{2}+\alpha_{1} a_{23}^{2}-\frac{a_{32}^{2}}{\alpha_{1}}
$$

We substitute this result in (14^{\prime}):

$$
\left(a_{22}^{2}+\alpha_{1} a_{23}^{2}\right) a_{32}^{2}=\alpha_{1}^{2} a_{23}^{2}\left(a_{22}^{2}+\alpha_{1} a_{23}^{2}\right)
$$

Let $a_{22}^{2}+\alpha_{1} a_{23}^{2} \neq 0 \Rightarrow a_{32}^{2}=\alpha_{1}^{2} a_{23}^{2} \Rightarrow a_{32}= \pm \alpha_{1} a_{23} \Rightarrow a_{33}^{2}=a_{22}^{2} \Rightarrow a_{33}=$ $= \pm a_{22}$.

The solution of the system (16) is

$$
a_{22}^{\sigma}=\frac{a_{33}}{D_{1}}, \quad a_{33}^{\sigma}=\frac{a_{22}}{D_{1}}, \quad a_{23}^{\sigma}=\frac{-a_{23}}{D_{1}}, \quad a_{32}^{\sigma}=\frac{-a_{32}}{D_{1}} .
$$

Now we shall investigate the possibilities $a_{33}= \pm a_{22}, a_{32}= \pm \alpha_{1} a_{23}$. We distinguish four cases:

1) $a_{33}=a_{22}, a_{32}=\alpha_{1} a_{23}$,
$D_{1}=a_{22}^{2}-\alpha_{1} a_{23}^{2}$.
In this case (14') reads $\alpha_{1} a_{22} a_{23}+\alpha_{1} a_{23} a_{22}=0,2 \alpha_{1} a_{22} a_{23}=0, \alpha_{1} \neq 0$.
a) $a_{23}=a_{32}=0$,

$$
\begin{aligned}
& D_{1}=\left|\begin{array}{ll}
a_{22} & 0 \\
0 & a_{22}
\end{array}\right|=a_{22}^{2}, \quad \sigma_{c} \neq i d \Rightarrow a_{22} \neq \pm 1, \\
& a_{22}^{\sigma}=a_{33}^{\sigma}=\frac{1}{a_{22}}, \quad \alpha_{2}^{\sigma}=\alpha_{2} a_{22}^{2}
\end{aligned}
$$

b) $a_{22}=a_{33}=0$,

$$
\begin{aligned}
& D_{1}=\left|\begin{array}{ll}
0 & a_{23} \\
\alpha_{1} a_{23} & 0
\end{array}\right|=-\alpha_{1} a_{23}^{2}, \\
& a_{23}^{\sigma}=\frac{1}{\alpha_{1} a_{23}}, \quad a_{32}^{\sigma}=\frac{1}{a_{32}}, \quad \alpha_{2}^{\sigma}=\alpha_{1} \alpha_{2} a_{23}^{2} .
\end{aligned}
$$

2) $a_{22}=a_{33}, a_{32}=-\alpha_{1} a_{23}$,

$$
D_{1}=\left|\begin{array}{ll}
a_{22} & a_{23} \\
-\alpha_{1} a_{23} & a_{22}
\end{array}\right|=a_{22}^{2}+\alpha_{1} a_{23}^{2} \neq 0 \text { (as we have already assumed). }
$$

Now (14') is satisfied trivially $\left(-a_{22} \alpha_{1} a_{23}+\alpha_{1} a_{23} a_{22}=0\right)$.

$$
\begin{aligned}
& a_{22}^{\sigma}=a_{33}^{\sigma}=\frac{a_{22}}{a_{22}^{2}+\alpha_{1} a_{23}^{2}}, \quad a_{23}^{\sigma}=\frac{-a_{23}}{a_{22}^{2}+\alpha_{1} a_{23}^{2}}, \\
& a_{32}^{\sigma}=\frac{\alpha_{1} a_{23}}{a_{22}^{2}+\alpha_{1} a_{23}^{2}}, \quad \alpha_{2}^{\sigma}=\alpha_{2}\left(a_{22}^{2}+\alpha_{1} a_{23}^{2}\right), \\
& \sigma_{c} \neq i d \Leftrightarrow a_{23} \neq 0 \text { and at the same time } a_{22} \neq \pm 1 .
\end{aligned}
$$

3) $a_{33}=-a_{22}, a_{32}=\alpha_{1} a_{23}$,
$D_{1}=\left|\begin{array}{ll}a_{22} & a_{23} \\ \alpha_{1} a_{23} & -a_{22}\end{array}\right|=-\left(a_{22}^{2}+\alpha_{1} a_{23}^{2}\right) \neq 0$.
$\left(14^{\prime}\right)$ is also satisfied trivially,
$a_{22}^{\sigma}=\frac{-a_{22}}{D_{1}}, \quad a_{33}^{\sigma}=\frac{a_{22}}{D_{1}}, \quad a_{23}^{\sigma}=\frac{-a_{23}}{D_{1}}, \quad a_{32}^{\sigma}=\frac{-\alpha_{1} a_{23}}{D_{1}}$,
$\alpha_{2}^{\sigma}=\alpha_{2}\left(a_{22}^{2}+\alpha_{1} a_{23}^{2}\right)$,
$\sigma_{c} \neq i d \Leftrightarrow D_{1} \neq-1$.
4) $a_{33}=-a_{22}, a_{32}=-\alpha_{1} a_{23}$.

Now (14') gives $\alpha_{1} a_{22} a_{23}=0$.
a) $a_{23}=a_{32}=0$,

$$
\begin{aligned}
& D_{1}=\left|\begin{array}{cc}
a_{22} & 0 \\
0 & -a_{22}
\end{array}\right|=-a_{22}^{2}, \\
& a_{22}^{\sigma}=\frac{1}{a_{22}}, \quad a_{33}^{\sigma}=-\frac{1}{a_{22}}, \alpha_{2}^{\sigma}=\alpha_{2} a_{22}^{2}, \\
& \sigma_{C} \neq i d \Rightarrow a_{22} \neq \pm 1 ;
\end{aligned}
$$

b) $a_{22}=a_{33}=0$,

$$
\begin{aligned}
& D_{1}=\left|\begin{array}{cc}
0 & a_{23} \\
-\alpha_{1} a_{23} & 0
\end{array}\right|=\alpha_{1} a_{23}^{2}, \\
& a_{23}^{\sigma}=\frac{-1}{\alpha_{1} a_{23}}, \quad a_{32}^{\sigma}=\frac{1}{a_{23}}, \quad \alpha_{2}^{\sigma}=\alpha_{1} \alpha_{2} a_{23}^{2} .
\end{aligned}
$$

It can be verified by direct computation that $\sigma^{2}=i d$ in all the cases.
This completes the discussion of all possible choices for $a_{22}, a_{23}, a_{32}, a_{33}$ (6 cases) such that $\sigma_{\mathrm{C}} \neq$ id but $\sigma^{2}=i d$. The discussion for $a_{44}, a_{45}, a_{54}, a_{55}$ is similar, but the condition $D_{1} D_{2}= \pm 1$ must be then fulfilled, while in the preceding part we imposed no requirements on $\overline{D_{1}}$. Now we shall choose concrete values for a_{22}, a_{23}, a_{32}, a_{33} and the corresponding values for $a_{44}, a_{45}, a_{54}, a_{55}$ so that $\sigma_{c}=i d, \sigma^{2}=i d$:

$$
D_{1}=\left|\begin{array}{ll}
0 & a_{23} \\
\alpha_{1} a_{23} & 0
\end{array}\right|, \quad D_{2}=\left|\begin{array}{ll}
0 & a_{45} \\
\alpha_{1} a_{45} & 0
\end{array}\right|
$$

$a_{44}=a_{55}=0, a_{54}=\alpha_{1} a_{45}$,

$$
D_{1} D_{2}=\alpha_{1}^{2} a_{23}^{2} a_{45}^{2}=1 \Rightarrow a_{45}^{2}=\frac{1}{\alpha_{1}^{2} a_{23}^{2}}
$$

Let $a_{45}=\frac{1}{\alpha_{1} a_{23}}, \quad a_{54}=\frac{1}{a_{23}} ;$ then $a_{45}^{\sigma}=a_{23}=\frac{1}{a_{54}}$,
$a_{54}^{\sigma}=\alpha_{1}^{\sigma} a_{45}^{\sigma}=\alpha_{1} a_{23}, \quad \alpha_{4}^{\sigma}=\alpha_{4} a_{44}^{2}+\alpha_{1} \alpha_{4} a_{45}^{2}=\frac{\alpha_{4}}{\alpha_{1} a_{23}^{2}} ;$
$a_{i j}^{\sigma}=a_{i j}, \alpha_{i}^{\sigma}=\alpha_{i}$ for the remaining i, j.
The resulting matrix will be

$$
\left\|a_{i j}\right\|=\left\|\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & a_{23} & 0 & 0 & 0 & 0 \\
0 & \alpha_{1} a_{23} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{\alpha_{1} a_{23}} & 0 & 0 \\
0 & 0 & 0 & \frac{1}{a_{23}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right\| .
$$

2.2. Let $k \notin \mathbf{C}$.

It is known that $b \in \boldsymbol{C} \Leftrightarrow b^{\sigma} \in \boldsymbol{C}$ ([4]). Let us apply this proposition to (4), replacing a by $b \in C$:

$$
\left(k b^{\sigma}\right)^{\sigma}=k^{\sigma} b^{\sigma^{2}}=b^{\sigma^{2}} k^{\sigma}=b^{\sigma^{2}} k=b k \Rightarrow b^{\sigma^{2}}=b \Rightarrow \sigma_{c}^{2}=i d .
$$

So if the given semiautomorphism satisfies (4), then the respective automorphism σ_{C} must satisfy $\sigma_{C}^{2}=i d$. If $C=R$, then $\sigma_{R}=i d \Rightarrow \sigma_{R}^{2}=i d$.
2.2.1. Let us suppose that σ is an automorphism of \boldsymbol{T}. Then (4) yields

$$
\begin{gather*}
k^{\sigma} a^{\sigma^{2}}=a k \Rightarrow k a^{\sigma^{2}}=a k \Rightarrow \tag{17}\\
a^{\sigma^{2}}=k^{-1}(a k) \Rightarrow
\end{gather*}
$$

$\sigma_{c}^{2}=i d$, but $\sigma_{T}^{2} \neq i d . \sigma^{2}$ is an inner automorphism determined by the element k ([5]). If $\sigma^{2}=i d$, then $a=k^{-1}(a k) \Rightarrow k a=a k$ for every $a \in \boldsymbol{T} \Rightarrow k \in \mathbf{C}$.

Example 3. Let σ be an automorphism of the type (17), $k \notin C$. Let \boldsymbol{T} be a Cayley algebra from Example $1, \boldsymbol{C}=\boldsymbol{R}$. First we shall construct the automorphism σ^{2} from the relation (17). We choose an element k,

$$
k=k_{0}+\sum_{i=1}^{7} k_{i} e_{i}, \quad k^{-1}=\frac{k_{0}-\sum_{i=1}^{7} k_{i} e_{i}}{\sum_{j=0}^{7} k_{j}^{2}}
$$

The relation (17) must hold for all $a \in T$. If we successively substitute e_{1}, e_{2}, e_{3} for a in (17), we get

$$
\begin{aligned}
& e_{1}^{\sigma^{2}=}=\frac{1}{\sum_{j=0} k_{j}^{2}} {\left[\left(k_{0}^{2}+k_{1}^{2}-k_{2}^{2}-k_{3}^{2}-k_{4}^{2}-k_{5}^{2}-k_{6}^{2}-k_{7}^{2}\right) e_{1}+\right.} \\
&+2\left(k_{0} k_{3}+k_{1} k_{2}\right) e_{2}+2\left(-k_{0} k_{2}+k_{1} k_{3}\right) e_{3}+ \\
&+2\left(k_{0} k_{5}+k_{1} k_{4}\right) e_{4}+2\left(-k_{0} k_{4}+k_{1} k_{5}\right) e_{5}+ \\
&\left.+2\left(-k_{0} k_{7}+k_{1} k_{6}\right) e_{6}+2\left(k_{0} k_{6}+k_{1} k_{7}\right) e_{7}\right], \\
& e_{2}^{\sigma^{2}=}=\frac{1}{\sum_{j=0} k_{j}^{2}}\left[2\left(-k_{0} k_{3}+k_{1} k_{2}\right) e_{1}+\left(k_{0}^{2}-k_{1}^{2}+k_{2}^{2}-k_{3}^{2}-k_{4}^{2}-k_{5}^{2}-k_{6}^{2}-k_{7}^{2}\right) .\right. \\
& \quad e_{2}+2\left(k_{0} k_{1}+k_{2} k_{3}\right) e_{3}+2\left(k_{0} k_{6}+k_{2} k_{4}\right) e_{4}+2\left(k_{0} k_{7}+k_{2} k_{5}\right) e_{5}+ \\
&\left.+2\left(-k_{0} k_{4}+k_{2} k_{6}\right) e_{6}+2\left(-k_{0} k_{5}+k_{2} k_{7}\right) e_{7}\right]
\end{aligned} \quad \begin{aligned}
e_{3}^{\sigma^{2}=}=\frac{1}{\sum_{j=0} k_{j}^{2}} & {\left[2\left(k_{0} k_{2}+k_{1} k_{3}\right) e_{1}+2\left(-k_{0} k_{1}+k_{2} k_{3}\right) e_{2}+\right.} \\
& +\left(k_{0}^{2}-k_{1}^{2}-k_{2}^{2}+k_{3}^{2}-k_{4}^{2}-k_{5}^{2}-k_{6}^{2}-k_{7}^{2}\right) e_{3}+ \\
& +2\left(k_{0} k_{7}+k_{3} k_{4}\right) e_{4}+2\left(-k_{0} k_{6}+k_{3} k_{5}\right) e_{5}+ \\
& \left.+2\left(k_{0} k_{5}+k_{3} k_{6}\right) e_{6}+2\left(-k_{0} k_{4}+k_{3} k_{7}\right) e_{7}\right] .
\end{aligned}
$$

From the multiplication table we have $e_{1} e_{3}=e_{2} \Rightarrow e_{1}^{\sigma^{2}} e_{3}^{\sigma^{2}}=e_{2}^{\sigma^{2}}$. We shall try to choose four the coordinates k_{0}, \ldots, k_{7} being zero. The choices $k_{0}=k_{2}=k_{4}=k_{6}=$ $=0, k_{0}=k_{1}=k_{2}=k_{3}=0, k_{1}=k_{3}=k_{5}=k_{7}=0$ are not possible. The choice $k_{4}=k_{5}=k_{6}=k_{7}=0$ is suitable. Let us suppose further that $k_{0}=k_{1}=k_{2}=k_{3}$. Then

$$
\begin{aligned}
& e_{1}^{\sigma^{2}}=e_{2}, \quad e_{2}^{\sigma^{2}}=e_{3}, \quad e_{3}^{\sigma^{2}}=e_{1}, \\
& e_{4}^{\sigma^{2}}=\frac{1}{2}\left(-e_{4}+e_{5}+e_{6}+e_{7}\right), \\
& e_{5}^{\sigma^{2}}=\frac{1}{2}\left(-e_{4}-e_{5}-e_{6}+e_{7}\right), \\
& e_{6}^{\sigma^{2}}=\frac{1}{2}\left(-e_{4}+e_{5}-e_{6}-e_{7}\right), \\
& e_{7}^{\sigma^{2}}=\frac{1}{2}\left(-e_{4}-e_{5}+e_{6}-e_{7}\right),
\end{aligned}
$$

If $e_{i} e_{j}=e_{m}$, then $e_{i}^{\sigma^{2}} e_{j}^{\sigma^{2}}=e_{m}^{\sigma^{2}}$ for all admissible triples $(i, j, m), i \neq j \neq m \neq i$. We denote by $\left\|\tilde{a}_{i j}\right\|$ the matrix of the automorphism σ^{2}. Then

$$
\begin{aligned}
\left\|\tilde{a}_{i j}\right\| & \left\|\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{-1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & \frac{-1}{2} & \frac{-1}{2} & \frac{-1}{2} & \frac{1}{2} \\
0 & 0 & 0 & \frac{-1}{2} & \frac{1}{2} & \frac{-1}{2} & \frac{-1}{2} \\
0 & 0 & 0 & \frac{-1}{2} & \frac{-1}{2} & \frac{1}{2} & \frac{-1}{2}
\end{array}\right\|, \\
k^{\sigma^{2}} & =k=k_{0}\left(1+e_{1}+e_{2}+e_{3}\right) .
\end{aligned}
$$

Now we shall find the matrix $\left\|a_{i j}\right\|$ of the automorphism σ. For $1 \leqq i, j \leqq 3$ we have

$$
\left\|a_{i j}\right\|=\left\|\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right\|
$$

further, for $i, j \geqq 4$ the following implication must hold:

$$
e_{m}^{\sigma^{2}}=\left(e_{m}^{\sigma}\right)^{\sigma}=\sum_{i=4}^{7} a_{m i} e_{i}^{\sigma}=\sum_{i, j=4}^{7} a_{m i} a_{i j} e_{j}=\sum_{j=4}^{7} \tilde{a}_{m j} e_{j} \Rightarrow \sum_{i=4}^{7} a_{m i} a_{i j}=\tilde{a}_{m j} ;
$$

moreover, $\sum_{j=4}^{7} a_{i j}^{2}=1$ and $\sum_{m=4}^{7} a_{i m} a_{j m}=0, i \neq j$. From this we can derive the matrix
$\left\|a_{i j}\right\|$:

$$
\left\|a_{i j}\right\|=\left\|\begin{array}{ccccccc}
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & \frac{-1}{2} & \frac{1}{2} & \frac{-1}{2} & \frac{1}{2} \\
0 & 0 & 0 & \frac{-1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{-1}{2} \\
0 & 0 & 0 & \frac{-1}{2} & \frac{-1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right\| .
$$

The matrices $\left\|a_{i j}\right\|$ and $\left\|\tilde{a}_{i j}\right\|$ have determinants equal to 1 . It is easy to see that

$$
\begin{aligned}
& \sum_{j} a_{i j} \tilde{a}_{j i}=-1, \quad \sum_{i} a_{i j} \tilde{a}_{j i}=-1 \\
& \sum_{j} a_{i j} \tilde{a}_{j m}=0, \quad \sum_{j} a_{j i} \tilde{a}_{m j}=0 \text { for } i \neq m
\end{aligned}
$$

According to [5] every automorphism of a Cayley division algebra is always inner, thus there must exist an element $b \in \boldsymbol{T}$ such that $a^{\sigma}=b^{-1}(a b)$ for all $a \in T$. Then

$$
a^{\sigma^{2}}=\left(b^{-1}\right)^{2}\left(a b^{2}\right)=k^{-1}(a k)
$$

Thus the automorphism σ is determined by the element b for which $b^{2}=k$. Let $b=b_{0}+b_{1} e_{1}+\ldots+b_{7} e_{7}$. If we write the relation $b^{2}=k$ in coordinates we get

$$
b= \pm\left(\frac{\sqrt{ } 6 k_{0}}{2}+\sqrt{\frac{k_{0}}{6}}\left(e_{1}+e_{2}+e_{3}\right)\right)
$$

2.2.2. Let σ be an antiautomorphism of T. Then (4) yields

$$
\left(k \dot{a}^{\sigma}\right)^{\sigma}=a k \Rightarrow a^{\sigma^{2}} k^{\sigma}=a k \Rightarrow \sigma^{2}=i d
$$

Besides (1), (2), (3), the relation (7) must hold as well.
Example 4. Let σ be an antiautomorphism, \boldsymbol{T} a Cayley division algebra from Example 1 with $C=\boldsymbol{R}\left(\sigma_{c}=i d\right)$. The matrix $\left\|a_{i j}\right\|$ must represent an antiautomorphism, so that $e_{i} e_{j}=e_{m}$ for some triple (i, j, m) implies $e_{j}^{\sigma} e_{i}^{\sigma}=e_{m}^{\sigma}$. First we put $e_{1}^{\sigma}=e_{2}, e_{2}^{\sigma}=e_{1}, e_{3}^{\sigma}=e_{3}$. For the remaining $e_{4}, e_{5}, e_{6}, e_{7}$ the identities $e_{7} e_{4}=e_{3}$,
$e_{4}^{\sigma} e_{7}^{\sigma}=e_{3}, e_{5} e_{6}=e_{3}, e_{6}^{\sigma} e_{5}^{\sigma}=e_{3}$ must hold and so on. Finally, we can choose $e_{4}^{\sigma}=e_{7}, e_{7}^{\sigma}=e_{4}, e_{5}^{\sigma}=e_{5}, e_{6}^{\sigma}=-e_{6}$ and we get the matrix

$$
\left\|a_{i j}\right\|=\left\|\begin{array}{rrrrrrr}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right\|, \quad \operatorname{det}\left\|a_{i j}\right\|=-1
$$

This antiautomorphism σ admits the corresponding k in the form $k=k_{0}+k_{1} e_{1}+$ $+k_{1} e_{2}+k_{3} e_{3}+k_{4} e_{4}+k_{5} e_{5}+k_{4} e_{7}$, with arbitrary $k_{0}, k_{1}, k_{3}, k_{4}, k_{5}$. Then $k^{\sigma}=$ $=k, a^{\sigma^{2}}=a$ for all $a \in T$.
2.2.3. Let σ be neither an automorphism nor an antiautomorphism, but only a semiautomorphism with a fixed element $k=k^{\sigma}$ and $\sigma_{c}^{2}=i d$. Then the fundamental relation $\left(k a^{\sigma}\right)^{\sigma}=a k$ must hold for all $a \in \mathbf{T}$.

Example 5. Let σ be a semiautomorphism, \boldsymbol{T} a Cayley division algebra from Example 1 and $\boldsymbol{C}=\boldsymbol{R}, \sigma_{C}=i d$. We choose $k=1+e_{1}+e_{2}+e_{3}$ and $a_{1 i}=a_{2 i}=$ $=a_{3 i}=0, i \geqq 4$ for the elements of the matrix $\left\|a_{i j}\right\|$, so that

$$
\begin{aligned}
& e_{1}^{\sigma}=a_{11} e_{1}+a_{12} e_{2}+a_{13} e_{3}, \\
& e_{2}^{\sigma}=a_{21} e_{1}+a_{22} e_{2}+a_{23} e_{3}, \\
& e_{3}^{\sigma}=a_{31} e_{1}+a_{32} e_{2}+a_{33} e_{3} .
\end{aligned}
$$

We know that k and $a_{i j}$ must satisfy (4), (5) and (8). From (4) we get

$$
\left(k e_{i}^{\sigma}\right)^{\sigma}=e_{i} k \quad \text { for } \quad i \in\{1,2,3\}
$$

After the detailed analysis we see that the only solution different from identity is

$$
\left\|a_{i j}\right\|=\left\|\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right\| \text { for } 1 \leqq i, j \leqq 3
$$

Similarly we choose $e_{4}^{\sigma}=e_{5}, e_{5}^{\sigma}=e_{4}$ and from (4) we get:

$$
\begin{gathered}
\left(k e_{4}^{\sigma}\right)^{\sigma}=e_{4} k \Rightarrow\left(\left(1+e_{1}+e_{2}+e_{3}\right) e_{5}\right)^{\sigma}=e_{4}\left(1+e_{1}+e_{2}+e_{3}\right) \Rightarrow \\
\Rightarrow\left(e_{5}+e_{4}-e_{7}+e_{6}\right)^{\sigma}=e_{4}+e_{5}+e_{6}+e_{7} \Rightarrow \\
\Rightarrow e_{4}+e_{5}-e_{7}^{\sigma}+e_{6}^{\sigma}=e_{4}+e_{5}+e_{6}+e_{7} \Rightarrow e_{6}^{\sigma}=e_{6} \text { and } e_{7}^{\sigma}=-e_{7} .
\end{gathered}
$$

Calculation shows that $\left(k e_{j}^{\sigma}\right)^{\sigma}=e_{j} k$ for $j \geqq 5$. The matrix $\left\|a_{i j}\right\|$ has the form

$$
\left\|a_{i j}\right\|=\left\|\begin{array}{rrrrrrr}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1
\end{array}\right\| .
$$

Let us examine whether σ is only a semiautomorphism.
a) If σ were an automorphism, then $\left(e_{1} e_{2}\right)^{\sigma}=\left(-e_{3}\right)^{\sigma}$ would imply $e_{1}^{\sigma} e_{2}^{\sigma}=-e_{3}^{\sigma}$, but $e_{2} e_{1} \neq-e_{3}$ and we get that σ is not an automorphism.
b) If σ were an antiautomorphism, then $\left(e_{3} e_{4}\right)^{\sigma}=\left(-e_{7}\right)^{\sigma}$ would imply $e_{4}^{\sigma} e_{3}^{\sigma}=-e_{7}^{\sigma}$, but $e_{5} e_{3} \neq e_{7}$ and we get that σ is not an antiautomorphism.
σ is a semiautomorphism satisfying (1), (2), (3), (4) and (5).
From Schütte's definition of orthogonality it follows that the line $y=x$ is orthogonal to the line $y=k^{-1} x$. In this example we have chosen $k=1+e_{1}+e_{2}+e_{3}$,

$$
k^{-1}=\frac{1}{1+e_{1}+e_{2}+e_{3}}=\frac{1}{4}\left(1-e_{1}-e_{2}-e_{3}\right),
$$

in such a way that the orthogonality is defined by

$$
y=a x \perp y=\left(k a^{\sigma}\right)^{-1} x \text { for all } a \in \mathbf{T} .
$$

2.3. As we have seen from the case 2.2 .3 , the conditions for $a_{i j}$ which guarantee that σ is a Schütte semiautomorphism, depend on the multiplication table chosen for the Cayley division algebra \boldsymbol{T} (relation (4)). The existence of Schütte semiautomorphisms is proved by Example 5. The determination of all Schütte semiautomorphisms for a given Cayley division algebra is still an open problem.

References

[1] G. Pickert: Projective Ebenen, Berlin-Göttingen-Heidelberg 1955.
[2] K. Schütte: Schließungssätze für orthogonale Abbildungen euklidischer Ebenen. Math. Ann. 132 (1956), 106-120.
[3] V. Havel: К теории полуавтоморфизмов алтернативных тел. Czech. Math. J. 12 (87) 1962, 110-117.
[4] M. Smilley: Von Staudt projectivities of Moufang planes, Algebr. and topological foundations of geometry. Oxford-London-N. York - Paris 1962, 165-166.
[5] N. Jacobson: Composition algebras and their automorphisms. Rend. Circ. Mat. Palermo, 7 (serie 2) 1958, 55-80.

Author's address: 12135 Praha 2, Karlovo nám. 13 (Strojni fakulta ČVUT).

