Časopis pro pěstování matematiky

Milan Štědrý

On quasiperiodic motions in a one-dimensional two-phase Stefan problem

Časopis pro pěstování matematiky, Vol. 107 (1982), No. 3, 257--266

Persistent URL: http://dml.cz/dmlcz/118133

Terms of use:

© Institute of Mathematics AS CR, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

ON QUASIPERIODIC MOTIONS IN A ONE-DIMENSIONAL TWO-PHASE STEFAN PROBLEM

Milan Štědrý, Praha
(Received December 8, 1980)

1. INTRODUCTION

A function $\varphi: R \rightarrow R$ is called quasiperiodic with basic frequencies v_{1}, \ldots, v_{n} if it can be represented in the form

$$
\varphi(t)=\Phi\left(v_{1} t, \ldots, v_{n} t\right)
$$

where $\Phi\left(\theta_{1}, \ldots, \theta_{n}\right)$ is a continuous function of period 2π in $\theta_{1}, \ldots, \theta_{\dot{n}}$.
In recent years, the existence of quasiperiodic solutions to partial differential equations has bee investigated in a number of papers. For some references in this respect we refer to [1].

In this paper, we extend the result of [2], where the existence of ω-periodic solutions to a Stefan problem was studied. We shall deal with the system

$$
\begin{equation*}
U_{1 t}-a_{1}^{2} U_{1 x x}=0, \quad 0<x<s(t), \quad t \in R, \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
U_{1}(t, 0)=T_{1}+\chi_{1}(t), \quad t \in R, \tag{1.2}
\end{equation*}
$$

$$
U_{1}(t, s(t))=0, \quad t \in R
$$

$$
\begin{equation*}
U_{2 t}-a_{2}^{2} U_{2 x x}=0, \quad s(t)<x<b, \quad t \in R, \tag{1.4}
\end{equation*}
$$

$$
\begin{equation*}
U_{2}(t, s(t))=0, \quad t \in R \tag{1.5}
\end{equation*}
$$

$$
\begin{equation*}
U_{2}(t, b)=-T_{2}+\chi_{2}(t), \quad t \in R, \tag{1.6}
\end{equation*}
$$

$$
\begin{align*}
& s^{\prime}(t)=m_{2} U_{2 x}(t, s(t))-m_{1} U_{1 x}(t, s(t)), \quad t \in R, \tag{1.7}\\
& 0<s(t)<b, \quad t \in R . \tag{1.8}
\end{align*}
$$

We shall suppose that
a_{j}, m_{j}, T_{j} and b are positive constants and that χ_{j} are quasiperiodic functions with basic frequencies v_{1}, \ldots, v_{n}, i.e., $\chi_{j}(t)=h_{j}\left(v_{1} t, \ldots, v_{n} t\right)$, where the functions $h_{j}\left(\theta_{1}, \ldots, \theta_{n}\right)$ are smooth and 2π-periodic in $\theta_{1}, \ldots, \theta_{n}$.

Let us denote

$$
\begin{array}{ll}
s_{0}=T_{1} m_{1} b /\left(T_{1} m_{1}+T_{2} m_{2}\right), \tag{1.9}\\
u_{1}^{s t}(x)=\left\{T_{1} m_{1}(b-x)-T_{2} m_{2} x\right\} / b m_{1} & \text { for } \\
0 \leqq x \leqq s_{0}, \\
u_{2}^{s t}(x)=\left\{T_{1} m_{1}(b-x)-T_{2} m_{2} x\right\} \mid b m_{2} & \text { for } \\
s_{0} \leqq x \leqq b
\end{array}
$$

It is obvious that
(1.12) if $\chi_{1}=\chi_{2}=0$, then $s=s_{0}, U_{j}(t, x)=u_{j}^{s t}(x), j=1,2$, is a solution to (1.1)-(1.8).

The functions s, U_{1} and U_{2} which are to satisfy (1.1)-(1.8) will be represented in the form
(1.13) $s(t)=\sigma\left(v_{1} t, \ldots, v_{n} t\right)$,

$$
\begin{align*}
& U_{1}(t, x)=u_{1}\left(v_{1} t, \ldots, v_{n} t, s_{0} x / s(t)\right) \tag{1.14}\\
& U_{2}(t, x)=u_{2}\left(v_{1} t, \ldots, v_{n} t, b-\left(b-s_{0}\right)(b-x) /(b-s(t))\right) \tag{1.15}
\end{align*}
$$

where the functions $\sigma\left(\theta_{1}, \ldots, \theta_{n}\right), u_{1}\left(\theta_{1}, \ldots, \theta_{n}, \xi\right), u_{2}\left(\theta_{1}, \ldots, \theta_{n}, \xi\right)$ are defined respectively on $R^{n}, R^{n} \times\left[0, s_{0}\right], R^{n} \times\left[s_{0}, b\right]$ and periodic in $\theta_{1}, \ldots, \theta_{n}$ with period 2π.

We shall prove that for every h_{1}, h_{2} which are 2π-periodic in $\theta_{1}, \ldots, \theta_{n}$, sufficiently smooth and close to zero, there exist smooth functions s, U_{1} and $U_{2}, 2 \pi$ periodic in $\theta_{1}, \ldots, \theta_{n}$, close to $s_{0}, u_{1}^{s t}$ and $u_{2}^{s t}$, respectively, and such that s, U_{1} and U_{2} given by (1.13)-(1.15) satisfy (1.1)-(1.8). This shows that the function s, describing the position of the phase interface, is quasiperiodic with basic frequencies v_{1}, \ldots, v_{n}. In other words, it will be proved that small quasiperiodic perturbations of constant boundary temperatures give rise to quasiperiodic changes of the position of the phase interface.

The main result of the paper is formulated and proved in Section 5 as a consequence of the Implicit Function Theorem applied in the spaces introduced in Section 3. In section 2, the transformation of the spatial variable indicated by (1.13)-(1.15) is accomplished and the system (1.1)-(1.8) is converted to a system of equations for functions on fixed spatial intervals. Some auxiliary results are derived in Section 4.

2. TRANSFORMATIONS OF VARIABLES

Throughout the paper we will denote

$$
D_{\theta}=\sum_{j=1}^{n} v_{j} \frac{\partial}{\partial \theta_{j}}
$$

Inserting the expresions (1.13)-(1.15) for s, U_{1} and U_{2} into (1.1)-(1.8), we obtain the following system of equations:

$$
\begin{align*}
& D_{\theta} u_{1}-\left\{a_{1} s_{0} / \sigma\right\}^{2} u_{1 \xi \xi}-\left(D_{\theta} \sigma\right) \xi u_{1 \xi} / \sigma=0 \text { for } 0<\xi<s_{0}, \tag{2.1}\\
& u_{1}(\cdot, 0)=T_{1}+h_{1} \tag{2.2}\\
& u_{1}\left(\cdot, s_{0}\right)=0 \tag{2.3}\\
& D_{\theta} u_{2}-\left\{a_{2}\left(b-s_{0}\right) /(b-\sigma)\right\}^{2} u_{2 \xi \xi}-\left(D_{\theta} \sigma\right)(b-\xi) u_{2 \xi} /(b-\sigma)=0 \tag{2.4}\\
& \text { for } s_{0}<\xi<b, \\
& u_{2}\left(\cdot, s_{0}\right)=0 \tag{2.5}\\
& u_{2}(\cdot, b)=-T_{2}+h_{2}, \tag{2.6}\\
& D_{\theta} \sigma+m_{1} s_{0} u_{1 \xi}\left(\cdot, s_{0}\right) / \sigma-m_{2}\left(b-s_{0}\right) u_{2 \xi}\left(\cdot, s_{0}\right) /(b-\sigma)=0 \tag{2.7}\\
& 0<\sigma<b \tag{2.8}
\end{align*}
$$

Conversely, if the functions u_{1}, u_{2} and σ are solutions to (2.1) $-(2.8)$, then it is easy to verify that the functions U_{1}, U_{2} and s given by (1.13)-(1.15) satisfy (1.1)-(1.8).
In this perturbation study, it is convenient to look for the functions u_{1}, u_{2} and σ in the form

$$
\begin{align*}
u_{1}(\theta, \xi) & =v_{1}(\theta, \xi)+u_{1}^{s t}(\xi)+h_{1}(\theta)\left(s_{0}-\xi\right) / s_{0} \tag{2.9}\\
u_{2}(\theta, \xi) & =\dot{v_{2}}(\theta, \xi)+u_{2}^{s t}(\xi)+h_{2}(\theta)\left(\xi-s_{0}\right) /\left(b-s_{0}\right) \tag{2.10}\\
\sigma(\theta) & =s_{0}+r(\theta) \tag{2.11}
\end{align*}
$$

Inserting these relations into (2.1)-(2.8), we obtain a number of equations which v_{1}, v_{2} and r are to satisfy. Four of them say that the boundary values of the functions v_{1} and v_{2} are zero and together with the conditions of 2π-periodicity in $\theta_{1}, \ldots, \theta_{n}$ they will be used when introducing the spaces involved.

Denoting

$$
T=T_{1} m_{1}+T_{2} m_{2}, \quad A_{j}=T / b m_{j}, \quad j=1,2,
$$

we find that the functions v_{1}, v_{2} and r, all 2π-periodic in $\theta_{1}, \ldots, \theta_{n}$, are to satisfy the system

$$
\begin{align*}
& G_{1}\left(v_{1}, r, h_{1}\right) \equiv D_{\theta} v_{1}-\left\{a_{1} s_{0} /\left(s_{0}+r\right)\right\}^{2} v_{1 \xi \xi}- \tag{2.12}\\
& -\left(D_{\theta} r\right) \xi\left(v_{1 \xi}-A_{1}\right) /\left(s_{0}+r\right)+\left(D_{\theta} h_{1}\right)\left(s_{0}-\xi\right) / s_{0}+ \\
& +\left(D_{\theta} r\right) h_{1} \xi /\left\{\left(s_{0}+r\right) s_{0}\right\}=0, \quad 0<\xi<s_{0} \\
& v_{1}(\cdot, 0)=v_{1}\left(\cdot, s_{0}\right)=0 \tag{2.13}
\end{align*}
$$

$$
\begin{align*}
& G_{2}\left(v_{2}, r, h_{2}\right) \equiv D_{\theta} v_{2}-\left\{a_{2}\left(b-s_{0}\right) /\left(b-s_{0}-r\right)\right\}^{2} v_{2 \xi \xi}- \tag{2.14}\\
& -\left(D_{\theta} r\right)(b-\xi)\left(v_{2 \xi}-A_{2}\right) /\left(b-s_{0}-r\right)+\left(D_{\theta} h_{2}\right)\left(\xi-s_{0}\right) /\left(b-s_{0}\right)- \\
& -\left(D_{\theta} r\right) h_{2}(b-\xi) /\left\{\left(b-s_{0}-r\right)\left(b-s_{0}\right)\right\}=0, s_{0}<\xi<b, \\
& v_{2}\left(\cdot, s_{0}\right)=v_{2}(\cdot, b)=0, \\
& G_{3}\left(v_{1}, v_{2}, r, h_{1}, h_{2}\right) \equiv D_{\theta} r+\operatorname{Tr} /\left\{\left(s_{0}+r\right)\left(b-s_{0}-r\right)\right\}+ \\
& +m_{1} s_{0} v_{1 \xi}\left(\cdot, s_{0}\right) /\left(s_{0}+r\right)-m_{2}\left(b-s_{0}\right) v_{2 \xi}\left(\cdot, s_{0}\right) /\left(b-s_{0}-r\right)- \\
& -m_{1} h_{1} /\left(s_{0}+r\right)-m_{2} h_{2} \mid\left(b-s_{0}-r\right)=0, \\
& |r|<\min \left(s_{0}, b-s_{0}\right) . \tag{2.17}
\end{align*}
$$

We shall return to this system in Section 5 when the function spaces introduced in the next section and some auxiliary results of Section 4 will be available. This section is concluded with one obvious remark.
(2.18) If $h_{1}=h_{2}=0$, then $v_{1}=0, v_{2}=0$ and $r=0$ satisfy (2.12) -(2.17).

3. FUNCTION SPACES

We shall denote by Z^{+}the set of nonnegative integers and by N the set of positive integers. For $n \in N$, we put

$$
T_{n}=[0,2 \pi]^{n} .
$$

In what follows the following standard notation will be used: $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in$ $\epsilon\left(Z^{+}\right)^{n},|\alpha|=\sum_{j=1}^{n} \alpha_{j}$, and $D_{\theta}^{\alpha}=D_{\theta_{1}}^{\alpha_{1}} \ldots D_{\theta_{n}}^{\alpha_{n}}$. Given a $k \in Z^{+}$, we denote by P_{k} the space of all real-valued functions $\sigma\left(\theta_{1}, \ldots, \theta_{n}\right)$ of period 2π in $\theta_{1}, \ldots, \theta_{n}$, such that their generalized derivatives $D_{\theta}^{\alpha} \sigma$ are locally square-integrable on R^{n} for all $\alpha,|\alpha| \leqq k$. The space P_{k} is a Hilbert space if equipped with the inner product

$$
\langle\sigma, \eta\rangle_{P_{k}}=\sum_{|\alpha| \leqq k}\left\langle D_{\theta}^{\alpha} \sigma, D_{\theta}^{\alpha} \eta\right\rangle_{P_{0}},
$$

where

$$
\langle\sigma, \eta\rangle_{P_{0}}=\int_{T_{n}} \sigma(\theta) \eta(\theta) \mathrm{d} \theta_{1} \ldots \mathrm{~d} \theta_{n} .
$$

The corresponding norm in P_{k} is given by

$$
\|\sigma\|_{P_{k}}=\langle\sigma, \sigma\rangle_{P_{k}}^{1 / 2} .
$$

Further, we denote by \mathscr{P}_{k} the space consisting of all functions $\sigma \in P_{k}$ such that $D_{\rho} \sigma \in P_{k} . \mathscr{P}_{k}$ will be equipped with the inner product

$$
\langle\sigma, \eta\rangle_{\mathscr{G}_{k}}=\langle\sigma, \eta\rangle_{P_{k}}+\left\langle D_{\theta} \sigma, D_{\theta} \eta\right\rangle_{P_{k}}
$$

and the norm

$$
\|\sigma\|_{\mathscr{P}_{k}}=\langle\sigma, \sigma\rangle_{\mathscr{P}_{k}}^{1 / 2} .
$$

Given s_{0} and $b, 0<s_{0}<b$, we put

$$
I_{1}=\left[0, s_{0}\right] \quad \text { and } \quad I_{2}=\left[s_{0}, b\right] .
$$

Thus, $\partial I_{1}=\left\{0, s_{0}\right\}$ and $\partial I_{2}=\left\{s_{0}, b\right\}$. To simplify the notation we denote by ${ }_{j} H^{0}$ the space of all real-valued functions on $R^{n} \times I_{j}$ which have period 2π in first n variables and are square-integrable on $T_{n} \times I_{j}$. For $u, v \in_{j} H^{0}$, we put

$$
\langle u, v\rangle_{j H^{0}}=\int_{T_{n}} \int_{I_{j}} u(\theta, \xi) v(\theta, \xi) \mathrm{d} \xi \mathrm{~d} \theta_{1} \ldots \mathrm{~d} \theta_{n}
$$

and

$$
\|u\|_{j H^{0}}=\langle u, u\rangle_{j H^{0}}^{1 / 2} .
$$

The space consisting of all functions $u \in{ }_{j} H^{0}$ for which

$$
\|u\|_{j H^{k}} \equiv\left\{\sum_{|\alpha|+\beta \leqq k}\left\|D_{\theta}^{\alpha} D_{\xi}^{\beta} u\right\|_{j H^{0}}^{2}\right\}^{1 / 2}
$$

is finite will be denoted by ${ }_{,} H^{k}$. We denote by \mathscr{C}_{j} the space of all real-valued and smooth functions $u(\theta, \xi)$ on $R^{n} \times I_{j}$ which have period 2π in $\theta_{1}, \ldots, \theta_{n}$ and vanish for $\xi \in \partial I_{j}$. Let B_{j} be the completion of \mathscr{C}_{j} with respect to the norm

$$
\|u\|\|\equiv\| u\left\|_{j H^{0}}+\right\| D_{\xi}^{1} u \|_{j H^{0}} .
$$

Finally, we denote by ${ }_{j} \mathscr{H}^{k}$ the space consisting of all functions u satisfying $u \in$ $\in_{j} H^{k} \cap B_{j}, D_{\theta} u \in{ }_{J} H^{k}, D_{\xi}^{2} u \in{ }_{j} H^{k}$. The space ${ }_{j} \mathscr{H}^{k}$ will be equipped with the norm

$$
\|u\|_{j \mathscr{H}^{k}}=\left\{\|u\|_{j H^{k}}^{2}+\left\|D_{\theta} u\right\|_{j H^{k}}^{2}+\left\|D_{\xi}^{2} u\right\|_{j H^{k}}^{2}\right\}^{1 / 2} .
$$

4. AUXILIARY ASSERTIONS

Lemma 4.1. Let $p \in Z^{+}$and $j=1$ or 2. For every $g \in_{j} H^{p}$, there exists a unique $w \in{ }_{j} \mathscr{H}^{p}$ such that

$$
\left(D_{\theta}-a_{j}^{2} D_{\xi}^{2}\right) w=g .
$$

Moreover,

$$
\begin{equation*}
\|w\|_{j \mathscr{\mu}^{p}} \leqq c_{p, j}\|g\|_{j H^{p}} \tag{4.1}
\end{equation*}
$$

with $c_{p, j}$ independent of g.
Proof. We can restrict ourselves to the case $j=1$ and $s_{0}=\pi$, i.e., $I_{1}=(0, \pi)$. To begin with, let us suppose $p=0$. If the functions g and w are written in the form

$$
g(\theta, \xi)=\sum_{l \in Z^{n}} \sum_{k \in N} g_{l \mathrm{k}} \mathrm{e}^{\mathrm{il} \mathrm{\theta}} \sin k \xi, \quad w(\theta, \xi)=\sum_{l \in \mathbb{Z}^{n}} \sum_{k \in N} w_{l \mathrm{k}} \mathrm{e}^{\mathrm{il} \mathrm{\theta}} \sin k \xi
$$

we immediately obtain

$$
w_{l k}=g_{l k}\left\{\left\{i v l+k^{2}\right\},\right.
$$

where $l=\left(l_{1}, \ldots, l_{n}\right), v l=v_{1} l_{1}+\ldots+v_{n} l_{n}$ and Z stands for the set of integers. The last relation implies $w \in{ }_{1} \mathscr{H}^{0}$ and the lemma is proved for $p=0$. Further, we shall proceed by induction with respect to p. Let (4.1) be satisfied for $p-1$, $p \in N$. Given any $g \in{ }_{1} H^{p}$, we have $D_{\theta_{j}}^{1} g \in{ }_{1} H^{p-1}$ for $j=1, \ldots, n$. We now apply the difference operators in the variables $\theta_{1}, \ldots, \theta_{n}$, in which all the functions are 2π periodic. Let δ_{h}^{J} be the difference operator in the variable θ_{j}, i.e.,

$$
\left(\delta_{h}^{j} v\right)(\theta, x)=\left\{v\left(\theta+h e^{j}, x\right)-v(\theta, x)\right\} / h,
$$

where $e^{j}=\left(\delta_{j 1}, \ldots, \delta_{j n}\right)$ and $\delta_{j k}$ stands for the Kronecker symbol. Applying the difference operator to the equation in question, we get

$$
\left(D_{\theta}-a_{1}^{2} D_{\xi}^{2}\right) \delta_{h}^{j} w=\delta_{h}^{j} g
$$

and therefore, by the induction hypothesis,

$$
\left\|\delta_{h}^{j} w\right\|_{1} \varkappa_{p-1} \leqq c_{p-1,1}\left\|\delta_{h}^{j} g\right\|_{1 H^{p-1}}
$$

As

$$
\left\|\delta_{h}^{j} g\right\|_{1 H^{p-1}} \leqq\left\|D_{\theta_{j}}^{1} g\right\|_{1 H^{p-1}}
$$

we immediately get $D_{\theta_{j}}^{1} w \in{ }_{1} \mathscr{H}^{p-1}$ and

$$
\left\|D_{\theta_{j}}^{1} w\right\|_{1 \nless r p-1} \leqq c_{p-1,1}\left\|D_{\theta_{j}}^{1} g\right\|_{1 H^{p-1}} .
$$

A a consequence, the right-hand side of the equation

$$
D_{\xi}^{p+2} w=D_{\theta} D_{\xi}^{p} w-D_{\xi}^{p} g
$$

is an element of ${ }_{1} H^{0}$. Hence, $D_{\xi}^{p+2} w \in{ }_{1} H^{0}$. This relation and the inequality show that the inductive step is completed and the lemma is proved.

The next lemma immediately follows from the preceding one.
Lemma 4.2. The operator $D_{\theta}-a_{j}^{2} D_{\xi}^{2}$ is a linear homeomorphism of ${ }_{j} \mathscr{H}^{k}$ onto ${ }_{j} H^{k}$. The following lemma is standard.

Lemma 4.3. The mapping $w \rightarrow w_{\xi}\left(\cdot, s_{0}\right)$ is a linear continuous mapping of ${ }_{j} \mathscr{H}^{k}$ into P_{k} for both $j=1$ and 2.

For the proof see Lemma 3.3 of [2].
Let $d>0$ be fixed. We denote

$$
L p=D_{\theta} p+d p+m_{1} w_{1 \xi}\left(\cdot, s_{0}\right)-m_{2} w_{2 \xi}\left(\cdot, s_{0}\right)
$$

for $p \in \mathscr{P}_{k}$ and $w_{j} \in_{j} \mathscr{H}^{k}$ satisfying

$$
\begin{equation*}
\left(D_{\theta}-a_{1}^{2} D_{\xi}^{2}\right) w_{1}=-A_{1} \xi\left(D_{\theta} p\right) / s_{0}, \tag{4.2}
\end{equation*}
$$

$$
\begin{equation*}
\left(D_{\theta}-a_{2}^{2} D_{\xi}^{2}\right) w_{2}=-A_{2}(b-\xi)\left(D_{\theta} p\right) /\left(b-s_{0}\right) \tag{4.3}
\end{equation*}
$$

Lemma 4.4. For every $p \in \mathscr{P}_{0}$, we have

$$
\begin{equation*}
\left\langle L p, D_{\theta} p+p\right\rangle_{P_{0}} \geqq\left\|D_{\theta} p\right\|_{P_{0}}^{2}+\|p\|_{P_{0}}^{2} \tag{4.4}
\end{equation*}
$$

Proof. We begin by showing that

$$
\begin{equation*}
(-1)^{j+1}\left\langle w_{j \xi}\left(\cdot, s_{0}\right), D_{\theta} p\right\rangle_{P_{0}} \geqq 0, \tag{4.5}
\end{equation*}
$$

for both $j=1$ and 2. Multiplying (4.2) by $-w_{1 \xi \xi}$ and integrating over $T_{n} \times I_{1}$, we get

$$
\begin{equation*}
-\left\langle w_{1 \xi \xi}, D_{\theta} w_{1}\right\rangle_{1 H^{0}}+a_{1}^{2}\left\|w_{1 \xi \xi}\right\|_{1 H^{0}}^{2}=A s_{0}^{-1}\left\langle w_{1 \xi \xi}, \xi D_{\theta} p\right\rangle_{1 H^{0}} . \tag{4.7}
\end{equation*}
$$

We now have

$$
\begin{equation*}
\left\langle w_{1 \xi \xi}, D_{\theta} w_{1}\right\rangle_{1 H^{0}}=-\sum_{j=1}^{n} v_{j}\left\langle D_{\theta_{j}}^{1} w_{1 \xi}, w_{1 \xi}\right\rangle_{1 H^{0}}=0 \tag{4.8}
\end{equation*}
$$

in virtue of the 2π-periodicity in θ_{j}. Further, since $w_{j}(\theta, \xi)$ vanishes for $(\theta, \xi) \in R^{n} \times$ $\times \partial I_{j}$, we have

$$
\left\langle w_{1 \xi}, D_{\theta} p\right\rangle_{1 H^{0}}=\left\langle\int_{0}^{s_{0}} w_{1 \xi}(\cdot, \xi) \mathrm{d} \xi, D_{\theta} p\right\rangle_{P_{0}}=\left\langle 0, D_{\theta} p\right\rangle_{P_{0}}=0
$$

and therefore

$$
\begin{gather*}
\left\langle w_{1 \xi \xi}, \xi D_{\theta} p\right\rangle_{1 H^{0}}=\left\langle\left(\xi w_{1 \xi}\right)_{\xi}-w_{1 \xi}, D_{\theta} p\right\rangle_{1 H^{0}}= \tag{4.9}\\
=\left\langle\int_{0}^{s_{0}}\left(\xi w_{1 \xi}\right)_{\xi} \mathrm{d} \xi, D_{\theta} p\right\rangle_{P_{0}}=s_{0}\left\langle w_{1 \xi}\left(\cdot, s_{0}\right), D_{\theta} p\right\rangle_{P_{0}} .
\end{gather*}
$$

Using (4.8) and (4.9) in (4.7), we immediately get (4.5) for $j=1$. To prove (4.6) with $j=1$ we shall proceed similarly. Multiplying (4.2) by w_{1} and integrating over $T_{n} \times T_{1}$, we get

$$
\left\langle D_{\theta} w_{1}, w_{1}\right\rangle_{1 H^{0}}-a_{1}^{2}\left\langle w_{1 \xi \xi}, w_{1}\right\rangle_{1 H^{0}}=-A_{1} s_{0}^{-1}\left\langle w_{1}, \xi D_{\theta} p\right\rangle_{1 H^{0}},
$$

which after some arrangements similar to those used above, turns out to be

$$
a_{1}^{2}\left\|w_{1 \xi}\right\|_{1 H^{0}}^{2}=A_{1} s_{0}^{-1}\left\langle\xi D_{\theta} w_{1}, p\right\rangle_{1 H^{0}} .
$$

By (4.2), $D_{\theta} w_{1}=a_{1}^{2} w_{1 \xi \xi}-A_{1} s_{0}^{-1} \xi D_{\theta} p$ which we substitute into the last relation and thus obtain

$$
\begin{gathered}
a_{1}^{2}\left\|w_{1 \xi}\right\|_{1 H^{0}}^{2}=A_{1} a_{1}^{2} s_{0}^{-1}\left\langle\xi w_{1 \xi \xi}, p\right\rangle_{1 H^{0}}-A_{1}^{2} s_{0}^{-2}\left\langle\xi^{2} p, D_{\theta} p\right\rangle_{H^{0}}= \\
=A_{1} a_{1}^{2} s_{0}^{-1}\left\langle\left(\xi w_{1 \xi}\right)_{\xi}-w_{1 \xi}, p\right\rangle_{1 H^{0}}=A_{1} a_{1}^{2}\left\langle w_{1 \xi}\left(\cdot, s_{0}\right), p\right\rangle_{P_{0}},
\end{gathered}
$$

since $\left\langle\xi^{2} p, D_{\theta} p\right\rangle_{1^{0}}=0$ in virtue of the periodicity in θ. The last equation proves (4.6) with $j=1$. As far as $j=2$ is concerned, (4.5) and (4.6) can be proved similarly
when, instead of (4.2), equation (4.3) is taken into consideration. By (4.5) and (4.6), we easily get

$$
\begin{gathered}
\left\langle L p, D_{\theta} p+p\right\rangle_{P_{0}}=\left\|D_{\theta} p\right\|_{P_{0}}^{2}+\|p\|_{P_{0}}^{2}+ \\
+\sum_{j=1}^{2} m_{j}(-1)^{j+1}\left\{\left\langle w_{j \xi}\left(\cdot, s_{0}\right), p\right\rangle_{P_{0}}+\left\langle w_{j \xi}\left(\cdot, s_{0}\right), D_{\theta} p\right\rangle_{P_{0}}\right\} \geqq \\
\geqq\left\|D_{\theta} p\right\|_{P_{0}}^{2}+\|p\|_{P_{0}}^{2} .
\end{gathered}
$$

This completes the proof.
Lemma 4.5. The operator L is a linear homeomorphism of \mathscr{P}_{k} onto P_{k} for every $k \in Z^{+}$.

Proof. By Lemmas 4.2 and 4.3, the operator L is a linear continuous mapping of \mathscr{P}_{k} into P_{k}. Lemma 4.4 implies that L is a one-to-one mapping. The lemma will be proved as soon as we show that $\mathbb{P}(L)$, the range of L, is equal to P_{k}. We shall proceed in two steps. Firstly we take up the case $k=0$. By (4.4), we have

$$
\|L p\|_{P_{0}} \geqq\left\{\left\|D_{\theta} p\right\|_{P_{0}}^{2}+\|p\|_{P_{0}}\right\}^{1 / 2} / \sqrt{ } 2 .
$$

Thus, $\mathbb{R}(L)$ is a closed subspace of P_{0}. In fact, $\mathbb{R}(L)=P_{0}$ since otherwise we could take $q \in P_{0}, q \neq 0$, such that $\langle y, q\rangle_{P_{0}}=0$ for every $y \in \mathbb{R}(L)$. Writing q as a Fourier series, $q(\theta)=\sum_{l \in \mathbb{Z}^{n}} q_{l} \mathrm{e}^{i l \theta}$, we find that the function $p(\theta)=\sum_{l \in Z^{n}} q_{l}(i v l+1)^{-1} \mathrm{e}^{i l \theta}$ satisfies $p \in \mathscr{P}_{0}$ and $D_{\theta} p+p=q$. By (4.4), we have

$$
0=\langle L p, q\rangle_{P_{0}}=\left\langle L p, D_{\theta} p+p\right\rangle_{P_{0}} \geqq\left\|D_{\theta} p\right\|_{P_{0}}^{2}+\|p\|_{P_{0}}^{2}
$$

and therefore $p=0$ which contradicts $q \neq 0$. Hence, $\mathbb{R}(L)=P_{0}$ which proves that L is a linear homeomorphism between \mathscr{P}_{0} and P_{0}. Secondly, if $g \in P_{k}$ for some $k \in N$, we know, by the above reasoning, that there is a $p \in \mathscr{P}_{0}$ satisfying $L p=g$. Using differences in the variables $\theta_{1}, \ldots, \theta_{n}$ as in the proof of Lemma 4.1, we easily find that p is actually an element of \mathscr{P}_{k}. This completes the proof.

5. THE MAIN RESULT

Let us put

$$
k_{0}=(n+1) / 2
$$

The following theorem is the main result of the paper.
Theorem 5.1. Let the numbers $T_{1}, T_{2}, m_{1}, m_{2}, v_{1}, \ldots, v_{n}$ be positive. Let s_{0} be defined by (1.9) and $k>k_{0}, k \in Z$. Then there exist two open sets $K \subset \mathscr{P}_{k} \times \mathscr{P}_{k}$ and $H \subset{ }_{1} \mathscr{H}^{k} \times{ }_{2} \mathscr{H}^{k} \times \mathscr{P}_{k}$ such that $(0,0) \in K,(0,0,0) \in H$, and for every $\left(h_{1}, h_{2}\right) \in K$ there is a unique $\left(v_{1}, v_{2}, r\right) \in H$ which satisfies (2.12), (2.14) and (2.16). The correspondence $S:\left(h_{1}, h_{2}\right) \rightarrow\left(v_{1}, v_{2}, r\right)$ is a smooth mapping of K into H satisfying $S(0,0)=(0,0,0)$.

Proof. We put

$$
B=\left\{r \in \mathscr{P}_{k} ; \max _{\theta}|r(\theta)|<\min \left(s_{0}, b-s_{0}\right)\right\}
$$

the topology on B being that induced from \mathscr{P}_{k},

$$
\mathscr{D}={ }_{1} \mathscr{H}^{k} \times{ }_{2} \mathscr{H}^{k} \times B \times \mathscr{P}_{k} \times \mathscr{P}_{k}
$$

and

$$
G=\left(G_{1}, G_{2}, G_{3}\right)
$$

It is not difficult to verify that $G: \mathscr{D} \rightarrow{ }_{1} H^{k} \times{ }_{2} H^{k} \times P_{k}$ is continuously Frèchet differentiable. Obviously, $G(0,0,0,0,0)=(0,0,0)$. For brevity we denote by $M=\left(M_{1}, M_{2}, M_{3}\right)$ the partial Frèchet derivative of G with respect to $\left(v_{1}, v_{2}, r\right)$ at the point $(0,0,0,0,0)$. Under our assumptions

$$
\begin{gathered}
M\left(w_{1}, w_{2}, p\right)=\left.\frac{\mathrm{d}}{\mathrm{~d} t} G\left(0+t w_{1}, 0+t w_{2}, 0+t p, 0,0\right)\right|_{t=0}= \\
=\left(M_{1}\left(w_{1}, p\right), M_{2}\left(w_{2}, p\right), M_{3}\left(w_{1}, w_{2}, p\right)\right),
\end{gathered}
$$

where

$$
\begin{aligned}
M_{1}\left(w_{1}, p\right) & =\left(D_{\theta}-a_{1}^{2} D_{\xi}^{2}\right) w_{1}+A_{1} \xi\left(D_{\theta} p\right) / s_{0}, \\
M_{2}\left(w_{2}, p\right) & =\left(D_{\theta}-a_{2}^{2} D_{\xi}^{2}\right) w_{2}+A_{2}(b-\xi)\left(D_{\theta} p\right) /\left(b-s_{0}\right), \\
M_{3}\left(w_{1}, w_{2}, p\right) & =D_{\theta} p+d p+m_{1} w_{1 \xi}\left(\cdot, s_{0}\right)-m_{2} w_{2 \xi}\left(\cdot, s_{0}\right)
\end{aligned}
$$

and

$$
d=T /\left\{\left(b-s_{0}\right) s_{0}\right\} .
$$

We shall show that M is a linear homeomorphism between ${ }_{1} \mathscr{H}^{k} \times{ }_{2} \mathscr{H}^{k} \times \mathscr{P}_{k}$ and ${ }_{1} H^{k} \times{ }_{2} H^{k} \times P_{k}$. To this end we put

$$
\Lambda_{j}=\left(D_{\theta}-a_{j}^{2} D_{\xi}^{2}\right)^{-1}
$$

which, by Lemma 4.2, is a linear homeomorphism between ${ }_{j} \mathscr{H}^{k}$ and ${ }_{j} H^{k}$. Given any $\left(y_{1}, y_{2}, z\right) \in{ }_{1} H^{k} \times{ }_{2} H^{k} \times P_{k}$, we must find $\left(w_{1}, w_{2}, p\right) \in{ }_{1} \mathscr{H}^{k} \times{ }_{2} \mathscr{H}^{k} \times \mathscr{P}_{k}$ satisfying $M\left(w_{1}, w_{2}, p\right)=\left(y_{1}, y_{2}, z\right)$, i.e.,

$$
\begin{aligned}
& \left(D_{\theta}-a_{1}^{2} D_{\xi}^{2}\right) w_{1}=y_{1}-A_{1} \xi\left(D_{\theta} p\right) / s_{0} \\
& \left(D_{\theta}-a_{2}^{2} D_{\xi}^{2}\right) w_{2}=y_{2}-A_{2}(b-\xi)\left(D_{\theta} p\right) /\left(b-s_{0}\right) \\
& D_{\theta} p+d p+m_{1} w_{1 \xi}\left(\cdot, s_{0}\right)-m_{2} w_{2 \xi}\left(\cdot, s_{0}\right)=z
\end{aligned}
$$

The first two equations yield

$$
\begin{align*}
& w_{1}=\Lambda_{1} y_{1}-A_{1} s_{0}^{-1} \Lambda_{1}\left(\xi D_{\theta} p\right) \tag{5.1}\\
& w_{2}=\Lambda_{2} y_{2}-A_{2}\left(b-s_{0}\right)^{-1} \Lambda_{2}\left((b-\xi) D_{\theta} p\right) \tag{5.2}
\end{align*}
$$

which substituted into the third gives

$$
\begin{gather*}
D_{\theta} p-m_{1} A_{1} s_{0}^{-1}\left\{\Lambda_{1}\left(\xi D_{\theta} p\right)\right\}_{\xi}\left(\cdot, s_{0}\right)+m_{2} A_{2}\left(b-s_{0}\right)^{-1} . \tag{5.3}\\
\cdot\left\{\Lambda_{2}\left((b-\xi) D_{\theta} p\right)\right\}_{\xi}\left(\cdot, s_{0}\right)=z+\sum_{j=1}^{2}(-1)^{j} m_{j}\left\{\Lambda_{,} y_{j}\right\}_{\xi}\left(\cdot, s_{0}\right) .
\end{gather*}
$$

Obviously, the right-hand side of this equation is an element of P_{k} and the left-hand side is $L p$, as defined in the preceding section. By Lemma 4.5, there is a unique $p \in \mathscr{P}_{k}$ satisfying (5.3). Hence, by (5.1), (5.2) and Lemma 4.2, we get a unique (w_{1}, w_{2}, p) \in $\epsilon_{1} \mathscr{H}^{k} \times{ }_{2} \mathscr{H}^{k} \times \mathscr{P}_{k}$ such that $M\left(w_{1}, w_{2}, p\right)=\left(y_{1}, y_{2}, z\right)$. Applying the Implicit Function Theorem, we complete the proof.

References

[1] L. Hermann, O. Vejvoda: Periodic and quasiperiodic solutions of abstract differential equations. An. Sti. Univ. "Al. I. Cuza" Iaşi Sect. I a Mat. 28 (1982), 103-108.
[2] M. Štédrý, O. Vejvoda: Time periodic solutions of a one -dimensional two-face Stefan problem. Annali di Matematica pura ed applicata (IV), 127 (1981), 67-78.

Author's address: 11567 Praha 1, Žitná 25 (Matematický ústav ČSAV).

