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Časopis pro pěstování matematiky., roč. 107 (1982), Praha 

ON CONABILITY OF SINGLEVALUED MAPPINGS 

LE VAN HOT, Praha 

(Received February 27, 1981) 

INTRODUCTION 

The theory of conability of singlevalued mapping in the sense of J. Durdil [2] 
M. Fabian [3] is developed in locally convex topological linear spaces. The main 
results are Theorem 1 and 2, which give the connections between the Gateaux 
conability, uniform conability and Frechet differentiability of mappings. 

1. DEFINITIONS AND NOTATIONS 

We recall the definition of calibration for a family of locally convex spaces, which 
was introduced by S. Yamamuro [4]. A calibration for a locally convex space E 
is a set of continuous seminorms, which induces the topology in E. The set P(E) of 
all continuous seminorms on E is obviously the largest calibration for E. 

Let E = {Ex: a eI} be an indexed family of locally convex spaces. A seminorm 
map on £ is a map p defined on I whose value pE at a e I belongs to P(Ea). We call 
a set F of semiborm maps on E a calibration for E if for each CCEI, the set rEv = 
= {PEK : P e F} is a calibration for Ea. We shall also say that E is a F-family. Through
out this paper E denotes a family of locally convex spaces, F is a calibration for E. 

For two seminorm maps p, q on E we write p ^ q if px ^ qx for all X e E. Let 
per, XEE, YEE. Put 

PxXY(*, y) = Px(x) + My ) for all (x9 y) eX x Y. 

Throughout this paper we assume that the following assumptions are satisfied: 

1. Each normed space (E, || ||) belongs to E and px = || || for all p e F. 
2. If X e E, YeE and {pXxY : P e F} is a calibration for X x YthenX x YeE. 
3. For X e E, pe T, qe T there exists r e F such that px ^ rx, qx ^ rx. 

Definition 1.1. By a cone in linear space X we understand every subset C of X 
such that C + 0, C =»= {0} and tx e C for all x e C, t ^ 0. 
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Definition 1.2 (J. DaneS, J. Durdil [1]). Let X e E, C be a cone in X. Put 

VPtt(C) = {x e X : 3c e C, p(x - c) ^ e p(x)} for each p e P , e > 0 . 

Then, of course, VPtB(C) is a cone again. 

Definition 1.3 (M. Fabian [3]). Let X e E, Ye E. For each cone C i n l x Y we 
define (taking 1/0 = oo, 0/0 = 0) 

p(C)x = sup I^JZJ : (x, y)eCy 

Definition 1.4 (S. Yamamuro [4]). Let X e E, YeE, peT. We say that a map / 
of X into yis p-continuous at x0eX if for each s > 0 there exists d(p, e) > 0 such 
that 

M / M - f(xo)) < £ for all x e X , px(x - x0) < 5(p, e) . 

We say that / is T-continuous at x0 if / is p-continuous at x0 for all p e P. If Pis 
a linear map of X into Y, then Tis p-continuous if and only if 

p(T) -= sup {pY(Tx)} < oo . 
Px(x)Zl 

Lp(Xy Y) denotes the set of all linear p-continuous maps of X into Y. It is easy to see 
that a linear map TofX into yis P-continuous if and only if p(T) < oo for all peT. 
Lj(X, Y) denotes the set of all linear P-continuous maps of X into Y. Then Lr(X, Y) — 
= f) Lp(X, Y). We note that if Te LP(X, Y) then G(T) = {(x, Tx)} is a cone in X x Y 

per 
and p(G(T))x = p(T). 

Definition 1.5. Let X, Y be linear spaces. A map / of X into Y is called positive 
homogeneous iff(tx) -= tf(x) for all xeX and t ^ 0. 

Definition 1.6. Let X e E, Ye E, Q c X, x0 e Q, f: Q -* Y, p e P. A map <p of X 
into yis called a map of good p-approximation for f at x0 if <p is p-continuous at 0 
and for each e > 0 there exists 5(p, e) > 0 such that py(/(x0 + h) — f(x0) — (p(h)) ̂  
g e p(h) for all heX, Px(h) < S(p, e). A map (p is called a map of good T-approxi-
mation for f at x0 if q> is a map of good p-approximation for / at x0 for all p e P. 

Definition 1.7. Let Z e £, Ye E, Q c K, / : Q -> y We say that / is T-Frechet 
differentiate at x0 if there exists a map <p e Lr(X, Y) such that cp is a map of good 
P-approximation for /a t x0. 

Definition 1.8 (J. Durdil [2]). Let X e E and let / be a net, {CJiei a family of cones 
in X. A closed cone C in X is said to be the conic limit of {C^i€l if for each p e P 
and each e > 0 there exists x(p, e)el such that 
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C s VPst(Q and C, s VP,£(C) for all i e / , i ^ x(p, e) . 

Notation: C = lim C. or C{-* C. 
iel 

Let XeE, yeE , and let C be a cone in X x Y. For each heX, h * 0, put 
C(/i) = {(x, y) : x = fh, 16 R, (x, j ) e C } . One can see that C = U C(h) if (0, y) £ C 
for all y e Y, y * 0. *e* 

Definition 1.9 (J. Durdil [2]). Let X e E, Ye E, X x y e £, Q s K, p G T and let 
/ : Q -> ybe a p-continuous map at x0 G .Q. For each / I G X , / I 4=0 put 

CJ.r(/, x0, h) = Wrh,/(x0 + ffe) - /(x0)) : A = 0, p(fft) = r} . 

We say that a cone C in X x yis a cone of good p-approximation for f at x0 in a di
rection h if C(h) = C and for each e > 0 there exists <5(p, e, h) > 0 such that for all r, 
0 < r < 5(p, e, h)implies q,r(/> x0, A) s VP>£(C) and C c Vp,e(CJ,r(/, x0, ft)). We say 
that / is T-Gateaux conable at x0 if/ is P-continuous at x0 and for each heX, 
h =t= 0 there exists a closed cone Cg(/, x0, h) in X x Ysuch that Cg(/, x0, h) is a cone 
of good p-approximation for / at x0 in the direction h for all pe T. Notation: 

C0(/, x0) = U Cg(/, x0, h) . 
hєX 

Now we generalize Proposition 1.8 [3]. 

Proposition 1.1. Let X eE, YeE, X x YeE, peT. Let C be a cone in X x Y 
such that p(C)x ^ K. Then we have 

p(Vpt(C))^K + (l+K)e for all £ : 0 < £ < — ! — . V P,V " 1 - (1 - X) e 1 + JC 

Proof. Let (x, y) e Vp,.(c). There exists (a, b) e C such that p((x, y) — (a, 6)) = 
= p(x — a) + p(y — fe) :g e(p(x) + J>(.y)). Further, we have 

p{y) ^ P{y -b) + p{b) ^p(y-b) + K p(a) ^ p(>-&) + K{p(x - a) + p(x)) ^ 

IS (1 + X) (p(x - a) + p(>- - b)) + K p{x) £(1+K) e(p(x) + p(y)) + K p(x) , 

hence [1 — (1 + K) s] p(y) g [X + (1 + K) e] p(x) and rewriting it in the form 

, w K + ( l + K ) e , , 

^ l - f t + K ) , * 3 0 , 

we can see that 

Remark. 1. It is clear that if X e E and C is a cone in X, then 

n nvpic) = c. 
per 8>0 
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2. If/ is T-Gateaux conable at x0, then 

Co{/, *o, h) = n n CJ,r(/, x* fc) for all fceJT, fc + 0 . 
per r > 0 

Proof. It is clear that for all p e T we obtain 

C9
PtS(f, x0, h) S q,r(f, x0, h) if 0 < s < r . 

Definition 1.9 implies that Cg(f, x0, h) c Vp,E(C£>r(f, x0, h)) for all s > 0, r > 0. 
Let p G F, g e F. If P(/i) = 0, then of course we have: C{JJ9 x0, h) S C9

PtT(f, x0, h). 
Hence Cg(f, x0, h) s V,,£(q,r(f, x0, h)) s V,,e(Cp>r(f, x0', h)). If q(h) = 0, then 
#(/(*o + *&) ~ /(•*<>)) = 0 for all t G R, so f is q-continuous at x0. Hence 
q(C9

qtr(f, x0, h))x = 0 for all r > 0. Since Cg(f, x0, h) S VqtE(C9
qtT(f, x0, h)) for s, 

0 < 8 < 1 and some r > 0 by Proposition 1.1, it follows that q(Cg
0(f, x0, h)) ^ 

g e/(l •-- e). This means that q(y) = 0 for all y with (fh, y) G Cg(f, x0, h). Hence 
C9

0(f, x0, h) S VqtE(Cg
Ptr(f, x0, h)) for all e > 0 and r > 0. If p(h) > 0 and a(h) > 0, 

then it is easy to verify that 

Cptr\fi *0> h) = C4i(q(*)/p(|i))rV 5 *0» " ) » 

which means that 

C0(f, %0, fc) s V,,£(Cf,(€(,)/p(ft))r(f, x0, ft)) S V,,e(Cp,r(f, x0, h)) . 

Hence 

Co(/,x0,fc)sn n n n ^(c j , ( / . *0,/»)) s 
peT r > 0 geT £>0 

s n n c*,(I, x0, *). 
per r>0 

On the other hand, we obviously have 

n n <?,//, x09 h) s n n^,£(cP,r(f,x0,h)) = cg(f,x0,h)( 
per r>0 per e > 0 

2. SOME PROPOSITIONS 

Let X e E, Ye E and let C be a cone in X x Y Denote (FC(h))+ = {y : (h, y)eC}, 
(TC(h))' = {y : (-ft, - j ) G C } = - ( r c ( - f t ) ) + , TC(/t) = {y/r : t * 0, (fft, y) e 
eC} = (TC(h))+ V(TC(h)Y for all ft GX, ft * 0. 

Let A, B be p-bounded subsets of X, p e T (i.e. sup {p(x) : x G A} < co, 
sup {p(y) : y e B} < oo}. Put 

dp(A, B) = inf {t > 0, A S B + fSp, J5 s A. + *SP} = 

= max {sup inf p(x — y), sup inf ^(y — x)} , 
xeAyeB yeB xe,-t 

where Sp = {xeX : p(x) g 1}. 
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Definition 2.1. Let X e E, YeE,peT and let {Ci}ieI be a family of cones in X x Y 
such that (0, y) $ Cf for all y e Y, y #= 0 and all i e I. We say that {Ci} i6/ p-uniformly 
converges to a cone C0 if (0, y) $ C0 for y e Y, y 4= 0 and (TC,(fc))+ * 0, (TC0(fe))+ 4= 
=)= 0 for all h e X and all i e I, and for each e > 0 there exists x e J such that 

Ct(h) cz VPtE(C0(h)) and C0(fc) £ Vp>E(C0(h)) for ail i = x and all fee K. 

Proposition 2.1. Let X e E, YeE, X x Ye £, P e F. Lef C0 fee a cone in X x Y, 
\Ci}iei a net °f cones in x x Yand p(C()x = K, p(C0)x = Kfor all i. Then {Ct}i€r 

p-uniformly converges to C0 if and only if dp((TCt(h))+, (TC0(h))+) uniformly 
converges to 0 on the set {h eX : p(h) = l} . In addition, if for some e > 0, e < 1, 
i el, h eX the inclusions 

Ct{h) £ Vp,(£/(1+K)Z)(C0(h)), C0(h) £ V„,(,/(1+K)2)(C.(h)) 

hold, then 

dp((TCi(h)r,((Tc0(h)r)^EP(h). 
Proof. 1. Suppose that {Ci} ie/ p-uniformly converges to C0. Let ee (0 , 1) be 

arbitrary. Put ex = e\(l + K)2. Choose x e I such that for all iel, i ^ K implies 
C0(h) = Vp>El(Ci(h)) and Ct(h) c VPtEl(C0(h)). a) If h eX is such that p(h) = 0 then 
P(yd = P(y) = 0 for all yt e (TCt(h))+ and y e (TC0(/z))+. Hence p(yt - y) = 0, 
which implies that dp((TCi(h))+, (TC0(h))+) = 0. b) Let h e X be such that p(h) > 0. 
Let bt be an arbitrary element of the set (TCt(h))+. Then there exists (th, y) e C0(h), 
t e K, such that p((h, bt) - (th, y)) = et(p(h) + p(bi)), |l - t\ p(h) + p(bi - y) = 

-S £i(P(ft) + Kp(h)). Hence |l - f| ^ ex(l + K) < 1, which implies that t > 0. 
Then y\t e (TC0(h))+ and p(bt - y\t) = p(bt - y) + p(y - y\t) = £ l ( l + K p(h) + 
+ e1(l + K)Kp(h) = et(l + K)2 p(h) = e p(h). In the same way one can verify 
that for each b e (TC0(h))+ there exists yt e (TCt(h))+ such that p(b - yf) = 6 p(h). 
Hence dp((TCt(h))+,(TC0(h))+) = e p(h). 

2. Suppose that dp((TCt(h))+, (TC0(h))+) = e for all heX, p(h) = 1. Then 
dp((TCi(/z))-,(TC0(/z))-) = e for all heX, p(h) = 1. a) If heX and p(/i) = 0 
then for each (th, yt) e Ct(h), (h, y) e C0(h) we obtain p((h, yt) — (h, y)) = 
= P(yi - y) = 0. Hence Ct(h) = VPtE(C0(h)) and C0(h) c Vp,6(Ci(/i)) for all e > 0. 
b) If h e X and p(h) > 0, then for each (th, y) e Ct(h), t 4= 0, for instance t > 0, 
it follows that bt = y\tp(h)e(TCi(h\p(h))))+ and there exists b e(TC0(h\p(h)))+ 

such that p(bi - b) = e. Therefore p((f/i, tp(h) b) - (f/i, fP(/z) b) = tp(h) . 
. p(bt - b) = etp(h) = e(P(r/z) + p(y)). This shows that (th, y) e VPtE(C0(h)). Hence 
Ci(h) = VPiE(C0(h)). Similarly we have C0(h) = Vp>E(Ci(h)). This completes the proof 
of Proposition 2.1. 

Proposition 2.2. Suppose that X( e E, Yte E, Xk x Yte E, i = 1,2, pe T. Let 
TX(T2) be a linear p-continuous mapping of XX(X2) into YX(Y2) such that there 
exist positive numbers a,/?, a satisfying the inclusions ap(x) = p(Txx) = j5p(x), 
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p(T2) ^ a. Then for every cone C in Xx x Yx such that p(C)Xl ^ b and for each e, 
0<s< 1/2(6 + 1), we have (Tx x T2)(V„(C)) s Vp§2a-Hfi+anb+1)t(Tt x T2(C)\ 

Proof. Let (x, y) be an arbitrary element of Vpt(C). Proposition 1.1 implies that 

Ky)<(ft + (6 + 1)%(x). 
PKy)-(l-(l + b)e)PK) 

Thus, there exists (u, v)e C such that p((x, y) - (u, v)) = p(x - u) + p(y - b) ^ 
^ e(p(x) + P(y)). Therefore 

p(Tx x F2(x, y) - Fx x T2(u, v)) = 

= (P(TL) + P(F2)) (P(x - u) + />(>> - b)) ^ £(/? + a) (p(x) + p(y)) ^ 

g.e(/j + a) ( l + *+%+}}*) p(x) = 2e(jJ + a) (1 + b) a"1 p(T,x) = 
V 1 - (1 + b) s J 

= 2e(p + a) (1 + b) a"1 KF, x T2(x, y)) . 

Hence Tx x T2(x, y)eVPfA(Tl x r2(C)), where A = 2E(P + a)(l + 6) a"1. There
fore 7̂  x r2(Vp>e(C)) £ Vp,^(Fi x T2(C)) and this completes the proof of Proposi
tion 2.2. 

Remark. If X is a normed space, Ye E, Q £ X and/is a map of Q into Y, which 
is F-Gateaux conable at x0 e Q, we write CJ(/, x0, h) instead of C9

Ptr(f, x0, h). 

Proposition 2.3. Let X e E, YeE, X x Ye £, .Q c X, p e F and let f: Q -> Y 
be a T-Gateaux conable mapping at x0 and p(C9

0(f, x0)) g K. Then for all y' e 
eLp(Y,R) = Yp, heX, h 4= 0, the function fy>th(t) = <y',/(x0 + th)} is conable 
at 0 and 

C0(fy',H,0) = (lhxy)(C9
0(f,X0,h)), 

whereIh : {th :teR} -> R is the mapping defined by Ih(th) = t, te R. 

Proof. 1. If h e X and p(h) = 0 then p(th) = 0 for all teR. As / is F-continuous 
at x0, we have p(f(x0 + th) - f(x0)) = 0. Moreover, p(y) ^ K\t\ p(h) = 0 for 
(th, y) e Cg

0(f, x0, h). Hence for all y' e Yp, 

ffJt) ~ fy'M = </(*o + th) - /(x0), / > = 0 . 

Then we evidently have 

<%ifr» °) = {('• 0):teR}= (Ihxy
f) (Cg(/, x0, h)) . 

2. If s = p(h) > 0, then it is clear that C9
/s(fyih, 0) = (Ihxy

f) (C9
Ptt(f, x0, h)). 

Let e > 0 be arbitrary and put 

es 
£i = 

2(K + 1) (p(/) + 5" 2(K + 1) (p(y') s + 1) 
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Choose 5 > 0 such that Cg
p>r(f, x0, h) <= Vp>H(C0(f, x0, h)) for all re(0,5). Therefore 

C3
p,Xf, xo, ft) £ (Vp^^of, *o, *))) (*)• Then for all r e (0, 5/s), we have 

Cl(fy,h, 0) = ( W ) ((Cp,rs(L x0. h)) £ ( W ) ((V,.ei(cS(L *o, *))) 00) • 

Using Proposition 2.2 for a = s - 1 , /? = s - 1 , a = p(y'), b = X we have 

C?(L,)(), 0) £ Vp>e((lhxy') (O0(f, x0, ft))) £ VP,.((W) (C0(f, Xo, h))) . 

On the other hand one can see that: 

( W ) W . *o. !0) £ ( W ) (CJД/, *o, h)) = 

= C»(L,,», 0) s n(C§(/ ,̂„ 0)) for all e > 0 , r > 0 . 
Hence 

c8(t,^.o) = (W)(c,5(/,*o.*)), 

and the proof of Proposition 2.3 is complete. 

Let A c R, 5 c K. We write _4 = 5 if for all a e A, b e B the inequality a = b 
holds. If C is a cone in R x R, we write TC instead of TC(l). 

Proposition 2.4. Suppose that f is a real continuous function on (c, d) z> [a, b]. 
Lef ||Co(/j x)|| < +°o for a// x e [a, b]. Then rhcrc cx/sf points c+ e [a, b), cj~ e 
G (a, b], i = 1, 2, sweh that 

(TC0(f, c+))+

 = ffiz/W = ( r C S ( / , c +))+ , 
b — a 

(TC0(f, c;))~ zM-M = (TCo(f, cj))-. 

b — a 

Proof. We can suppose thatf(a) = f(b) = 0; otherwise we can put 

g(x) = f(x) - MzM (x-a)- f(a) 
b — a 

and note that 

(TCl(f, x)y - f(b)-f(") = (TC0(g, x)y 
b — a 

and 

(TC%(f, x))~ - f(b] " f ^ = (TCl(g, x))~ for all X E [ « , J ] . 
b — a 

Choose c+ e [a, b) cf e (a, b], i = 1, 2, such that f(c+) = maxf(x) = f(cj), 
*e[a,fc] 

f(cj-) = minf(x) = f(c+). Then for all r > 0 we have (TC?(f, c+))+

 = 0, 
jce[a,ft] 

(TC"r(f, d)y = o, (rcr(L c;)y = o, (rc?(L c2

-))- = o. 
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Therefore (TC»0(f, c
+))+ ^ 0, (TC0{f, c2

+))+ £ 0, (Tcg(L c;))~ < 0, 
(rcg(t, c2-))-^o. 

Corollary 2.1* Let f be a real continuous function on (a, b) and \C9
0(f, X)\ ^ K 

for all Xe(a, b). Then 

(0 \f(s) - / W | = K\s - r| /or 5 e (a, b), r e (a, b), 
(ii) / is differentiate almost everywhere on (a, b). 

Proof. Recall that ||Cg(fx)|| = sup {\y\ : y e(TC9
0(f,x}. Then by Proposition 

2.4 there exist points cl9 c2 such that 

-K =g (rcg(L Cl))
+ ^ / ( s ) ~ / ( r ) S TCS(/, c2) g K, 

s — r 

which implies that \f(s) — f(r)\ ^ K\s — r|. Furthermore, / being Lipschitzian 
on (a, b) with the constant K,f is differentiate a.e. on (a, b). 

Proposition 2.5. Let X e E, YeE, X x YeE, Q c X, p e F, let f: Q-+Y be 
a T-Gateaux, conable mapping on Q (i.e., f is T-Gateaux conable at every point 
x e Q). Suppose that p(C9

0(f, x)) ^ K for all xeQ. Then p(f(x2) - / (x j ) = 

^ Kp(x2 — xx) for xx e Q, x2 e Q, thus [xl5 x2] = {(1 — t) x t + tx2 : 0 g t g 
£ 1} £ fi. 

Proof. Put h = x2 — xv If p(h) = 0 then p(f(x2) - / (x^) = 0 as / is p-con-
tinuous on Q. If p(h) > 0, put gr(t) = </(xa + th), / > , f e ( - 5 , 1 + (5), for each 
y' G Yp' and for some <5 > 0. By Proposition 2.3, gy>(t) is conable on ( — S, 1 + 5) and 

CS(^,r) = ( I „ / ) (Cg( /x r ,h ) ) , 

where xt = Xi + fh. It is clear that ||Cg(fly, t)\\R <^ Kp(y') p(h). Therefore by 
Corollary 2.1 we have |</(xx + rt) - /(*-.), / > | g K|t| p( / ) p(fc) = Kp(y') p(th). 
Eventually, according to the Hahn-Banach Theorem we obtain 

P(f(x2) - /(*i)) = sup |</(x2) - /(x-), y'}\ = Kp(x2 - Xl) . 
y'eYp' 

This completes the prof of Proposition 2.5. 

3. MAIN THEOREMS 

Definition 3.1. Let X e E, Ye E, Q £ X, and let C(-) be a mapping of Q into the 
set of all cones in X x Y such that C(x) (h) + 0 for all x e Q, h e X and p(C(x))x < 
< oo for all p e T9 x e Q. We say that C(#) is T-continuous at x0 if for each e > 0 
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and peT there exists S(p, e) > 0 such that for all xeX, the relations p(x — x0) < S, 
heX,p(h)^ 1, imply 

C(x) (h) £ VPtB(C(x0) (h)) and C(x0) (h) £ VPt&(C(x) (h)) . 

Theorem 1. Let X e E, YeE, X x YeE, Q £ X. Suppose that f : Q-* Y is 
T-Gateuax conable on Q and Cg

0(f, x) is T-continuous at x0. Then f is T-Frechet 
differentiate at x0 and df(x0, h) = (TCg

0(f, x0, h))+ (heX). 

Proof. 1. Suppose that X = Y = R, Q = (a, b)3x0. Let K = \\Cg
0(f, x0)\\ and 

let s > 0 be an arbitrary positive number, e < 1/(1 + K). Choose 8 > 0 
such that \x - x0\<3 implies x e (a, b), Cg

0(f, x) c VE(Cg
0(f, x0)); Cg

0(f, x0) c 
= Vs(C9

0(fx)). It follows from Proposition 1.1 that \\Cg
0(f,x)\\ = Kt = 

= (K + (K + l)e)l(l - (1 + K)e). By Corollary 2.1 / is differentiate a.e. on 
(x0 — S, x0 + 5). Take xn e (x0 — 5, x0 + 5), n = 1, 2 , . . . , such that / is differen-
tiable at xn and xn converges to x0. Then C0(f xn) uniformly converges to C0(/, x0), 
so Cg(/, x) is F-continuous at x0. By Proposition 2.1, d((TCg

0(f, x,,))*, (TCg
0(f, XQ))*) 

converge to 0. It is clear that TCg
0(f, xn) = f'(xn), n = 1, 2 , . . . . Hence for all y e 

e TCg
0(f, x0) we have lim ||>> - f'(xn)\\ = 0, so that TCg

0(f, x0) is a singleton. Let u 
be the unique point of TCg

0(f, x0). By Definition 1.9, Cg
r(f, x0) converges to C0(/, x0) 

if r -> 0; then by Proposition 2.1, d((TCg(f, XQ))*, (TCg
0(f, XQ))*) converge to 0. It 

is clear that (/(x0 + t) - f(x0))jt e TCg(f, x0) holds for all t, 0 < \t\ < r. Hence 
lim (/(x0 + t) — f(x0))\t — u\ = 0, which means that f'(x0) = u. 
t-*0 

2. Let X e E, Ye E. We shall prove that TCg
0(f, x0) is a singleton. Let p e F, 

K = p(Cg
0(f, x0)) and let e be an arbitrary positive number, e < 1/(1 + K). Choose 

<5ovP> e) > 0 such that for all xeX, p(x — x0) < 50 implies xeQ and C0(/, x) c 
= U VPtE(Cg

0(f, x0, h)) c= VPtE(Cg
0(f, x0)). Then p(Cg

0(f, x)x = Kt = (K + (K + 1) e)/ 
heX 

j(l - (K + 1) e). By Proposition 2.5 it follows that p(Cg(f, x0))x ^ Kx for all 
r < d0. Let heX, ft + 0, p(h) = 1, y' e Y'p and put gy(i) = </(x0 + th), / > for 
t G ( — 80, S0). It follows from Proposition 2.3 that gy. is conable on ( — <50, +50) and 

Cgo(gy>,t) = (Ihxy')(Cg
0(f,xt,h)), 

where Ih(th) = t,xt = x0 + th. The continuity of C0(/, x) at x0 implies the continuity 
of Cg

0(gy, t) at 0. By the first part of our proof gy. is diflferentiable at 0 and 
TCg

0(gy., 0) = y'(TCg
0(f, x0, h)) is a singleton. Hence y\TCg

0(f, x0, h)) being singleton 
for an arbitrary / e (J Yp = Y', TCg

0(f, x0, h) is a singleton as well. Let <p(h) be the 
per 

unique element of TCg
0(f, x0, h). Then evidently <p is a homogeneous map. Because 

Cg
r(f9x0,h) converges to Cg

0(f,x0,h), it follows from Proposition 2.1 that 
dp((TCg(f, x0, h))1, (TCg

0(f, x0, ft))1) converge to 0. We have (ft, (/(x0 + th) -
- /(*o))/0 e Cg(f, x0, ft) for all t, 0 < \t\ = r. Hence lim p((/(x0 + th) - /(x0))/r -
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— vQ1)) = 0, which means that / is Gateux differentiable at x0 [5] and Vf(x0i h) = 
— 9(h). 

3. Now we prove that <p(h) is additive and / is T-Frechet differentiable at x0. 

Let hlt h2eX, peT and let e be an arbitrary positive number e < 1. As / is 
Gateaux differentiable at x0, there exists <5,(e, p) > 0 such that for all f, 0 < t < Slt 

we have p(fli.) < <5X for i = 1,2 and 

<Klh) = - [/(*•} + tlti) - f(*o)] + « i , 

?(*-) = - j/(*o + thi) - /(*0)] + «2 , 

<p(hi + h2) = - [f(x0 + tht + th2) - f(x0)] + a3 , 

where p(<x,) < £e for i = 1, 2, 3. Then 

K<Klti + lt2) - <p(hi) ~ <p(h2)) = T-, p[f(*o + tlti + tlt2) -

- /(*o + tlti) ~ f(x0 + th2) + f(x0)] + Je <. 

= j-jP(/(^o + tlti + tlt2) - /(*o + tlt2) ~ (p(tht)) + 

+ j-j P(f(x0 + tlti) - /(*o) - <p(thi)) + fe • 

Choose 0 < <52 < 5. such that for all xeX, p(x — x0) < 52 implies C%(f, x, h) s 
= VPiA(C0(f,x0,h)) and C0(f, x0, h) £ Vp,A(C0(f, x, h)) for all heX, h 4= 0, 
where A = e/(8(l + K)2 (1 + pQit) + p(h2))). Proposition 2.1 implies that 
dp(TC0(f, x, h))+, (TC0(f, x0, l?))+) < e p(h)j(8(l + p(ht) + p(h2))). For xeX, 
p(x - x0) < \52, heX, p(h) < \52, y'-e Y'p, p(y') < 1, put gy(s) = </(* - sh) -
— <p(sh), y'y for s e (—\62, 1 + \82). It is easy to verify that 

TC0(gy, s) = y'(TC0(f, xs, h) - cp(h)), 

where x. = x + sh. Therefore 

p(C0(gy, s)) = sup {|f| : f e TC0(gy, s)} = 

= d(y'(TC0(f, xs, h)), y>(<p(h))) < ; f ^ ' > • 
8(1 + p(/i.) + p(h2j) 
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Hence 

(*) P(f(x + h) - f(x) - 9(h)) = sup {|</(* + h) - f(x) - <p(h), / > | 

£P(!») 
:K/) = 1} 

8(1 + p(h,) + p(h2)) 

Choose 0 < (53 < S2 such that 0 < |t| < <53 implies p(tht) < \52, p(th2) < i<52. 
Then for all t, 0 < |f| < (53, we have 

p(/(x0 + th, + tft2) - / (x 0 + th2) - ^(th,)) = 

< eP(rht) ^ e[fj 
" 8(1 + KhO + p(h2))

 = 8 
and 

P(/(*o + tht) - / (x 0 ) - cp(thx)) =
 £ * ' * * > = H . 

8(1 + p(ftj + p(ft2)) 8 

Hence p((p(hi + ft2) — <p(fti) — <p(ft2)) < e for all e > 0, peT. This means that 
cp(ht + h2) = q>(hv) + (p(h2), hence <peLr(X, Y). In (*) put x = x0, which shows 
that f is F-Frechet differentiable at x0 and df(x0, h) = cp(h). This completes the proof 
of Theorem 1. 

Definition 3.2. Let X e E, YeE, X x Ye E, Q c X and let f: Q -» Y be F-
Gateaux conable on Q, p(C9

0(f, x0)) < oo for all peT. We say that / is uniformly 
conable at x0 if for each e > 0, p e F there exist S(p, e) > 0, r\(e, p) > 0 such that 
for all r e (0, ?;) and all xeX, p(x — x0) < S, the inclusion Vp.e(C0(f x, h)) 12 
2 q>r(f, x, ft) holds for all h e K, ft * 0. 

Theorem 2. Lef XeE, YeE, X x YeE, Q ^ X, x0e Q and let f: Q-> Y be 
T-Gdteaux conable on Q. Then C0(f x) is T-continuous at x0 if and only if f is 
uniformly conable at x0 and for each p e F there exist constants <xp > 0 and Kp > 0 
such fftaf p((Cg(f x))x) S Kpfor all x : p(x — x0) ^ ap. 

P roof of necessity. Let M = P((C0(f *o))X) ar-d let e e (0,1/(1 + M)) be arbitrary. 
As C0(f x) is F-continuous at x0, there exists ap > 0 such that for all x, P(x — x0) < 
< ap implies Cg(f x, h) s Vp,£(Cg(f x0, h)). By Proposition 1.1, p(C9

0(f, x, ft)) = 

= Kp = (M + (1 + M) e)/(l - (1 + M) e) for all heX. Hence P(Cg(f, x))* = Kp. 
Put ex = e/2(l + K)2. Choose Sx(p, e) > 0 such that dt(p, e) < ap and that 
P(x - x0) < St implies Cg(f x, h) c VPfBl(C

9
0(f, x0, h)) and Cg(f x0, h) .= 

s VpAco(f> *> h)) f o r a11 heX- By Proposition 2.1 we have dp((TC9
0(f, x0, ft))*, 

(TC9
0(f,x, h)Y) = iep(h). Put f; = d = ^ - . Let heX, teR, t * 0, p(fft) = r 

and x e X, p(x - x0) < (5; then (fft,f(x + th) - f(x)) e C£,r(f x, ft). By Theorem 1, 
f is F-Frechet differentiable at x0 and df(x0, ft) = TCg(f, x0, ft). Hence 
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P(y - df(x09 h)) ^ is p(h) for all y, (th, ty) e C9
0(f, x, h). Put gr(s) = </(x + sh) -

- d/(x0, sh), / > for y' e Y'p, p(y') = 1. Then 

TC9
0(gy, s) = y\TC9

0(f, xs, h) - df(x0, h)) , 

where xs = x + sh, s e [0, t\. 

\\C9
0(gr, s)\\ = sup {\t\ : t e TC9

0(gr, s)} = 

= d(y'(TC9
0(f, xs, h)), y'(df(x0, h)) = *- p(y') p(h). 

Hence p(f(x + th) - / (x) - df(x0, h)) = sup \gy{t) - gy{0)\ =(z\l)p(th). Hence 

p((tKf(x + th) - f(x)) - (th, ty)) = p(f(x + th) - f(x) - d/(x0, th)) + 
+ p(df(x0, th) - ty) = E p(th). This means that C9

p>r(f, x, h) c VpECg(/, x, h), which 
proves that/ is uniformly conable at x0. 

Proof of sufficiency. First of all we prove the following two lemmas. 

Lemma 1. Let f be a real continuous function on (a, b) and let \\C9
0(f, x)\\ = K 

for all x e (a9 b). Suppose that there exist positive numbers a > 0, 5 > 0 such that 
for all x e (a, b) and for all r e (0, <5) we have 

d((TC9(f, x))+, (TC9
0(f, x))+) = a , d((TC9

0(f, x))~, (TC9(f, x))~) = a . 

Then 
5(TC9

0(f9 x)) = max {\at - a2\ : ax, a2 e TC9
0(f, x)} = a . 

Proof of Lemma 1. Suppose that it is false. Then there exists x0 e (a, b) such that 
5(TC9

0(f9 x0)) > a. Let 

ax = max {a : a e TC9
0(f, x0)} , 

a2 = min {a : a 6 TC9
0(f, x0)} . 

Choose a'l9 a'2 such that a2 < a2 < a\ < ax and a\ — a'2 > a. We know that 

Cg(/, x0) s C?(/, x0) for all r > 0 , 
Therefore 

TC%(f9 x0) £ TC9(f9 x0) for all r > 0 . 

Hence for each neN there exists xne(a, b) such that 0 < |xn — x0| < l/w and 
(f(xn) "- f(xo))l(xn " xo) > a'v L e t r e (0, 5) be fixed. Take x' e (a, b) such that 
0 < \x' - x0 | < r < 8 ,and (/(x') - f(x0))l(x' - x0) < a^. Suppose that x '> x0. 
Then by Proposition 2.4 there exist points cn such that \cn — x0| < ljn and 
(TCg(/ cB))+

 = (f(xn) - /(x0))/(x„ - x0) > a',. It is clear that 

l i m / (^)-/(0- , /^)1 / (»o)< f l^ 
/ / 

n X ~~ Cn X ~~ X 0 
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Therefore there exists n0eN such that \x' — cn\ < r, cn < x' and (f(x') — f(c„)) : 
: (x' - cn) < a'2 for all n = n0. Then (f(x') - f(c„0))/(x' - cj e (TCg(f, cno))

+ and 
of course d((TCg(f, cno))

+, (TCg
0(f, cj)+) > a[ - a'2 > x, a contradiction. If 

x' < x0 we choose cn such that (TCg
0(f, cn))~ > a\ and in the same way as above 

we show that there exists a point cno such that d((TC0(f, cno))~, (TCg(f, cno))~) > a, 
a contradiction again. This completes the proof of Lemma 1. 

Lemma 2. Let XeE,YeE,Xx YeE,Q^X, and letf:Q-* Ybea T-Gateaux 
conable map on Q which is uniformly conable at x0, p e F, p(Cg

0(f, x)) ^ Kfor all 
x e Q. Then for all e > 0 there exists d(p, e) > 0 such that 8p(TCg

0(f, x, h)) = 
= sup {p(y — z) : y, ze TCg

0(f, x, h)} = e for all x with p(x — x0) < 8 and all 
heX,p(h) = 1. 

Proof of Lemma 2. Take s > 0 such that {xeX : p(x — x0) < 2s} c Qt Put 
Q0 = {x e X : p(x — x0) < s}. Proposition 2.5 implies p(f(x + h) — f(x)) ^ K p(h) 
for all x e Q0, p(h) = r < s. It is clear that p(Cg

p%r{f, x, h)) = K for all x e Q0, 
r < s, h e X. If p(h) = 0 then according to our assumption p(y) ^ K p(h) for all 
y e TCg

0(f, x, h). Hence p(y) = 0 and then 5p(TC9
0(f, x, h)) = 0. Now let p(h0) = 1. 

Let £ > 0 be arbitrary. Put ex = ej(4(K + l)3). Choose 5U rj > 0 such that 
p(x - x0) < Sx < s, 0 < r < Y\ < s imply Cg

Pyr(f, x, h) c Vp>£l(C0(f, x, h)) for all 
heX. Let x be an arbitrary point such that p(x — x0) < 5 = min {$5, %rj}. Put 
gy{t) = <f(x + th0), / > r e ( - 2 5 , 25) for all / e Y;. By Proposition 2.3, gy, is 
conable and 

Cg
0(gy>,t) = (lhxy')(Cg

0(f,xt,h0)), 

where xr = x + th and we have ||Co(gy'> 01 = ^ Ky')- ^ *s e a s y t 0 s e e ^at 

ar(gr, t) = (7h0 x y') (C%(f, xt, h0)) E (lh x / ) (Vp,El(e
9o(f *,, K))) S 

S Fp>2ei(K + i) (K/) + 1) ((/*, x /) {C0(f, xt, h0))) £ 

S * W + u-(C5fo,'. 0) - fof ^1 / : p(y') ̂  1 • 

Now Proposition 2.1 implies 

d((TC?(fly, t))+, (TCg
0{(gr, t))+) = fi , d((TCg(gy, t))~, (TCg

0(gr, t))~) = e 

and, by Lemma 1, it follows that f5(TC0(gy,, 0)) = e for all / e Y;, p ( / ) = 1. For 
all y,ze TCg

0(f, x, h0) we have 

p(y - z) = sup \{y - z, / > | = sup <5(TCg(<v, 0)) = c . 

Hence <5p(TCg(f, x, h)) = e for all x, p(x - x0) < S and all h e X , p(h) = 1. If 
h eX, 0 < p(h) < 1, then TCg

0(f, x, h) = p(h) TCg
0(f, x, h'), where h' = (l/p(/i)) fc. 

IJence 5p(TCg
0(f, x, h)) g e p(h) < e again. This completes the proof of Lemma 2. 
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Now we return to the proof of sufficiency of Theorem 2. Let e > 0 be arbitrary 
and let per, Q0 = {x : p(x - x0) < ap} cz Q. Then p(Cg

0(f, x)) ^ Kp for all 
xeQ0. Choose Sl9 r\ > 0 such that max {Sl9 rj} ^ iccp and that P(x - x0) < Sx 

and 0 < r < rj- imply CJ,r(f, x, h) c= ^ j ( e /5 (Kp+1)2 )(C0(f x, h)). Choose <52 > 0 
such that p(x - x0) < <52 implies Sp(TC9

0(f, x, h)) g e/5 for all heX, p(h) <: 1. 
Take t0 such that 0 < |f0| = r < rj and put 3 = min {6l9 52; (e/5Kp) |f0|}. Then for 
xu x2 e .G0, p(xx - x2) < 5 we have p(/(xi) - f(x2)) ^ *->(*! - x2) g (e/5) |r0|. 
By Lemma 2, ^p(7Cg(f, x0, h)) g e for all e > 0, heX, p(h) ^ 1. Hence 
5p(TC9

0(f, x0, h)) = 0 for all p e T, which means that TCd
0(f, x0, h) is a singleton for 

all heX. Put <p(h) = TC9
0(f, x0, h). Then <p is homogeneous. As (f(x + *0h) - f(x)) : 

: t0 e TCg
pr(f, x, h) for x, p(x — x0) < 5, and heX, p(h) g 1, there exists b e 

e TCg(f, x, h) such that (t0h, t0b) e Cg(f, x, h) and p((f(x + *0h) - f(x))/r0 - b) ^ 
^ (£l5)p(hY> in particular, p((f(x0 + t0h) - f(x0))jt0 - cp(h)) ^ (e/5) p(h). There
fore, for all V e TCg

0(f, x, h), p(x - x0) < d we have p(q>(h) - V) <; p(<p(h) -
- (/(x0 + t0h) -f(x0))jt0 + p((f(x0 + t0h) -f(x0))/r0 - (f(x + t0h) - f(x))/r0)+ 
+ P((/(x + t0h) - f(x))jt0 - b) + P(b - b') ^ e. Then d„(TC0(f x, h), <p(h)) g e 
for all h, p(h) ^ 1. Hence C0(f, x, h) s VPtE(C9

0(f, x0, fc)) and Cg(f, x0, h) s 
c VPj£(Cg(f, x, h)) for all h e X and all x, P(x - x0) < 5. This shows that C0(f, x) 
is F-continuous at x0 and the proof of Theorem 2 is complete. 

Definition 3.3. Let X e E, YeE, X x Ye E, Q c x and, for each xeQ, let 
{Cn(x)}„ be a sequence of cones in X x Y such that Cn(x)(h) 4= 0 for all n, all 
x e Q and all heX. We say that {Cn(x)}n uniformly converges to C0(x) on Q if for 
each e > 0 and each peT, there exists n0(e, p) such that for all neN, n ^ n0(e, p)> 
for all xe Q and for all heX the following inclusions hold: 

(Cn(x)) (h) E VPit(C0(x) (h)) and C0(x) (h) s VPtC(Cn(x) (h)) . 

Theorem 3. Let XeE, YeE and X x YeE. Assume that Y is sequentially 
complete. Let Q be a convex subset of X and fn:Q -» Y, neN, a family of F-
Gateaux conable mappings such that for each peT there exists a constant Kp > 0 
with p(Cg

0(fn,x))^Kpfor all neN, xeQ. Let Cg
0{fn,xn) uniformly converge 

to C0(x) on Q and suppose that there exists a point x0e Q such that {f„(x0)} con
verges. Then there exists a T-Gateaux conable mapping f: Q -> Y such that 
{fn} converges to f and Cg(f, x) = C0(x). 

Proof. Put 

e(p, m, ») = sup {dp(TCg
0(fn, x, h) , TCg

0(fm, x,h):xeQ,h p(h) ^ 1} 

for peT, n,meN. We claim that e(p, m, n) converges to 0 when m, n -> oo. Let 
e e (0, 1). Put ex = e\(2(Kp + l)2 . Choose n0 eN such that Cg

0(fn, x, h) s 
£ VPACO(*> '*)) and C0(x, h) c VpM(Cg

0(fn, x, h)) for all n^n0, xeQ, and all 
heX. Proposition 2.1 implies dp(Tc((fn, x, h), TC0(x,h))^ie for all x e Q% 
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heX, p(h) ^ 1, whence dp(TC9
0(fn, x, h), TC9

0(fm, x, h)) g e for all xeQ, heX, 
p(h) = 1, n, m eN, n = n0, m ^ n0. Hence e(p, m, n) ^ e. This proves our claim, 

a) Let per, xeQ. Put h = x - x0. If p(h) = 0, then p(fn(x) - fn(x0)) = 0 
for all neN. Therefore 

P(fn(x) ~ fm(x)) ^ P(fn(x) - fn(x0)) + P(f„(x0) - fm(Xo)) + 

+ P(fm(x0) ~ fm(x)) _ P(fn(x0) ~ fm(x0)) • 

If p(h) > 0, put hy = (llp(h))h, then p(ht) = 1. Put g„y(t) = <L(x0 + th,), y'} 
for each y' e Yp', p(y') ^ 1. Proposition 2.3 implies 

C9
0(g„,r, t) = ( W ) (Cg(L, x„ hy)) , where x, = x0 + tht . 

Hence \C%(gny, t)\ = p(CS(L, x„ h,)) p(y') < Kp. By Corollary 2.1, g„y is 
a Lipschitzian function and 

k,-(0 - 9mA*)\ = -Wfo..,'. 0 , TC%(gmy, 0) g 
_ P(/) dp(TC0(fn, x„ h,), TC%(fm, x„ h,)) ^ e(p, m, n) 

for almost all t e [0, p(h)~]. Then 

!</.(*) - /.(*<>) - /-,(*) - /.(*<>), y>| = 
= \dny(p(h)) - g„A°) ~ amy(p(h)) + gmy(0)\ = 

fP(h) 
< rpm 

I \g'mA*) ~ 9'ny(t)\ dí _ s(p, m, n) p(h) . 

Therefore p(fn(x) - fn(x0) - fm(x) + fm(x0)) ^ e(p, m, n) p(h) p(fn(x) - fm(x)) ^ 
__ p(fn(*o) - fm(xo)) + e(P» ™> n) p(x - x0). Hence {fn(x)} is a Cauchy sequence 
for each xeQ. As 7 i s sequentially complete, there exists f(x) = limfn(x) for all 
xeQ. 

b) Let e > 0 be arbitrary. Choose n0 e N such that dp(TC9
0(fn, x, h), TC0(x, h)) = 

__ (£e) P(h) f o r a11 w = no> fof all x e f i and all heX. Then d.(TCg(f„, x, h), 
TC9

0(fm, x, h)) ^ iep(h) for n, m eN, n, m ^ n0, x e Q and fceX. It is easy to see 
that p(f(x) - f(x0) - f,0(x) + f,0(x0)) ^ ^e p(x - x0) for all xeQ, x0eQ. Let 
x1 e Q, h e X, h =4= 0 be arbitrary fixed points. Take r > 0 such that ^((TCJ r(fno, 
xl9 h))+, (TC9

0(fno, xl9 h))+) ^ iep(h), dp((TC9
Ptr(fno, xl9 h))~, (TC9

0(fno, xl9 ft))") <Z 
g ie p(h). Then for all t * 0, p(th) g r, 

» [/_o(*i + "0 - f,0(*)] e rq,r(/.0> *_> *) • 

There exist >;„0 e -TCg(f.0, xl9 ft), y e TC0(xuh) such that 

(th, tyno) e C
9

0(fno, xl9 h) , (th, ty) e C0(xl9 h) and 

P(fno(*i + th) - fjxx) - tyno) ^ ie p(h), 
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P(tyn0~ ty)^$ep(h). 

Hence p(fjx, + th) - fjxt) - ty) = Je p(ht) 

P((th9f(x\ + th) - f(xt)) - (th9 ty)) = piffa + th) - f(*0 - ty) = 

£ p(f(x, + th) - f(xx) - fjx, + th) + fjxx)) + *t p(h) = 

^ $e p(th) + ie p(th) = e[p(th) + p(f(xx + th) - f(xt))] . 

Hence Cg
Ptf(f9 xl9 h) £ VPtE(C0(xl9 h)). The proof of C0(xl9 h) s= Vp>E(C9

Ptr(f, xl9 h)) 
is similar. This completes the proof. 
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