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časopis pro pěstováni matematiky, rol. 107 (1982), Praha 

ON A MAXIMUM PRINCIPLE IN POTENTIAL THEORY 

DAGMAR KRIVANKOVA, Praha 

(Received March 31, 1981) 

A very interesting theorem in potential theory due to Ugaheri asserts: 

For every Rm there exists a positive constant M such that for every nonnegative 
nonincreasing function L defined on the interval <0, oo> and for every Radon 
measure p in Rm the following estimate holds: 

sup f L(\x - y\) dp(y) ^ M sup f U\x - y\) dp(y) . 
xeRm J Rm xesptp• J Rm 

In this paper we extend this result to more general kernels K(x, y) ^ 0 on Rm x Rm 

satisfying the following conditions: K(x, .) is Borel measurable for every xeRm 

and there is a seminorm q on Rm and a constant c > 0 such that 

q(x ~ y) ^ q(z - y)=>K(x,y) ^ cK(z,y). 

We prove that for such K there is a constant M > 0 (depending on m only) such that 

sup K(x, y) dp(y) ^ cM sup K(x, y) dp(y) 
xeRm J Rm *esp t p J Rm 

for every Radon measure p; at the same time we present estimates (which are the 
best possible in certain cases) for the corresponding M. 

We use the following notation in the whole text: | | - Euclidean norm; aOT — 
volume of the unitary ball (with respect to the Euclidean norm) in Rm; am —surface 
of the unitary spher (with respect to the Euclidean norm) in Rm; Xm — Lebesgue 
measure on Rm; U(x; r) — open ball with the centre x and the radius r with respect 
to a certain metric; spt p — support of the measure p. 

Definition 1. Let K(x, y) be a nonnegative function on Rm x Rm and let K(x, .) 
be Borel-measurable for each x e Rm. Then for every Radon measure p on Rm 

we define 
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for each x e Rm. 

Kp(x)= f K(x,y)àp(y) 
jRm 

Definition 2. Let q be a seminorm on Rm. A positive constant M is called admissible 
for q, if every nonnegative function K(x, y) on Rm x Rm, such that K(x, .) is 
Borel-measurable and there is a positive constant c such that 

q(x - y) = q(z - y) ^ K(x, y) = c K(z, y) , 
satisfies 

sup K p(x) g cM sup K p(x) 
xeRm xesptp 

for every nonzero Radon measure p on Rm. 

Theorem 1. The constant 5m — 3m is admissible for every seminorm on Rm. 

Proof. 1) First we prove that the smallest number of elements of a J-net on the 
unitary sphere is smaller than or equal to 5m — 3m for every norm || || on Rm. 

Let x1,..., xk be points on the unitary sphere such that the distance of every two 
different points is greater than \ and there is no point on the unitary sphere which 
has a distance greater than \ from each of these points. Such points exist. The 
points x1, ...,xk form a 1-net on the unitary sphere. It suffices to prove that k ^ 
<; 5" _ 3™. 

The balls with centres x1, ..., xk and radius \ are disjoint subsets of the set 
U(0; f) — U(0; | ) . The sum of their Euclidean volumes is smaller than or equal to 
the volume of the set 17(0; f) - 17(0; £): 

fc(i)mV=(|)mV-(|)mV, 

where Vis the volume of the unitary ball. Therefore 

k = 5m - 3m . 

2) Let q be a seminorm on Rm and let c be a positive number. Let K(x, y) be a non-
negative function on jRm x jRm such that K(x, .) is Borel-measurable for each xe Rm 

and 
q(x - y) = q(z - y) => K(x, y) ^ c K(z, y) . 

Further, let p be a nonzero Radon measure with a compact support in Rm. 
If q = 0 then arbitrary x, y e Rm, z e spt p fulfil K(x, y) g c K(z, y) and therefore 

K p(x) ^ cK p(z) = sup cK p(y) = c(5m - 3m) sup K p(y) . 
yesptp yesptp 

Let there be y e Rm such that q(y) * 0. 
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y = {ye Rm; q(y) = 0} is a linear space. Let Z be the direct complement of Y 
in Rm. The dimension of Z is n; q is a norm on Z. According to 1) there are points 
x1,..., x*, which form a ^-net on the unitary sphere in Z, where 

(1) . k = 5" - 3" = 5m - 3m. 

Put L = y + spt p. Then L is a closed set (in the Euclidean metric). Let x e Rm be 
an arbitrary fixed point. 

If x 6 L, there are z e spt p and y e Y such that x = z + j . Then each M G spt p 
fulfils g(x — u) = q(z - M + y) = q(z — u). Therefore K(x, u) ^ c K(z, u) for 
each u e spt p. Therefore 

K p(x) = cK p(z) = c sup K p(u) = c(5w - 3m) sup K p(u) . 
uesptp uesptp 

Assume,now that x £ L. Put 

Mf = jy G Z + x - {x}; 4 ( ^ ~~ * - xf>) = - 1 , L, = M, + 7 for i = 1, ..., fc . 

Since x1,..., x* is a ^-net on the unitary sphere in Z, we have 
k 

U M( = Z + x - {x} . 
i = l 

Hence 

\JLt=>L. 
i = l 

Clearly, 

K p(x) = f K(x, y) dp(y) = S f K(x, y) dp(y) . 
JL i = l JLirsL 

With respect to (1) it suffices to prove that 

K(x, y) dp(y) ^ c sup K p(y) for i = 1,..., k . 
jLtnL ' ^sptp 

If Lf n L = 0 then the inequality is evidently valid. Let Ltr\ L =# 0. 
M = Ln(Z + x) is a closed subset of Z + x. Further, L= M + Y. Hence 

Ln L{ = (M n Mf) + y, where M n Mf is a closed subset of Z + x. There is u e 
eM n Mi such that q(u — x) ^ g(z — x) for every z e M n Mt. Since M G M and 
M + Y = L= y + spt p, there is y1 e Y such that u + y1 e spt p. Let us denote 
v = u + y1. For every z e L n Lf we have 

(2) q(v - x) = tf (z - x) . 

If zeLn Lt then there are z1 eM n Mt and j>e y such that z1 + y = z. Then 
g(i> — x) = q(u — x) ^ q(z} — x) = #(z — x). Since 
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n*^j- , ' ) s 5' «(*rr7)--):-i-
we have 

(3) q( U~X 2 l " M ^ , 
\q(w - x) g(z* - x)J 

Further, 

(4) q(z — v) = ^(z1 — w) = ^(z1 — x — (u — x)) g 

s ' ( ( " - " > - ^ < ' , - ' > ) + ' ( ^ > , - j t - ( - * » -

\ ^(zl - *) / WM ~ x) 4(zl - *)/ = 

= q(zl - x) - g(u - x) + <?(w - x) = q(zx - x) = q(z - x) 

according to (2), (3). Thus 
K(x, z) = cK(t;,z). 

Hence 

f K(x, y) dp(y) = f c K(v, y) dp(y) = cK p(v) = c sup K p(y) , 
JLHL, JLOL, y^Ptp 

because I; e spt p. 

3) Let t ]bea seminorm on jRm. Let K be a function on Rm x Rm with the same 
properties as in 2). Let p be a Radon measure on Rm which has not a compact support. 

For every integer n we define a measure pn on .Rm by prt(-4) = p(A n 1/(0; n)) 
for each Borel set A. Then pn has a compact support and 

K pn(x) ^ c(5m - 3m) sup K pn(y) ^ c(5m - 3m) sup K p(y) = 
yesptpn yesptpn 

^ c(5m - 3m) sup K p(y) 
yesptp 

for each x e jRm. 

K p(x) = lim K p„(x) = c(5m - 3m) sup K p(y) . 
M-*oo yesptp 

Theorem 2. The smallest constant admissible for the maximum norm on Rm 

is 2m. 

Proof. 1) First we prove that 2m is an admissible constant for the maximum norm 
II I on *". 

Let c be a positive constant. Let K(x, y) be a nonnegative function on Rm x Rm, 
let K(x, .) be Borel-measurable for each x e Rm and suppose that ||x — j>|| ^ 
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^ || z — y || =>K(z, y) ^ cX(x j ) . Let p be a non-zero Radon measure on _Rm. 
Let x e Rm be an arbitrary fixed point. If x e spt p then 

X p(x) = sup K p(j;) , 
yesptp 

and since either K = 0 or c = 1, we obtain 

K p(x) ^ sup K p(>>) ^ c sup K p(>>) ^ c2m sup K p(>>) . 
yesptp yesptp yesptp 

Now let x $ spt p. 
Put M = {-1; l}m. M = {*'; i = 1,..., 2m}, where x\ i = 1,..., 2m, are mutually 

different points on the unitary sphere determined by the norm || | . Put 

Mi 

Evidently 

We obtain 

= ( y e r - {*}; / — ~ - x«l g l i for i = 1,.... 2" 
l b - x l II J 

U M - r - {*}. 
i = l 

X p(x) = f K(x, j>) dp(y) ž £ f X(x, y) áp(y) . 
Jsptp í~"1 j M i n s p t p 

Thus it suffices to show that 

(5) f K(x, y) dp(y) = c sup K p(z) for i = 1,..., 2m . 
j M i n s p t p zesptp 

If Mt n spt p = 0 then (5) is evidently valid. Let Mt n spt p + 0. Then there is 
z e Mf n spt p such that for every y e Mtn spt p, 

(6) IN - - I ^ IN - y| • 

For « , t ; G r , ||w|| = ||v|| = 1, ||w - x'|| ^ 1, \\v - xl'|| ^ 1 we prove 

(7) \\u - v \ \ l l . 

Then in the same way as we have proved the inequality (4) from (2), (3) in the proof 
of Theorem 1, we may prove from (6), (7) that ||x — y\\ _• ||z — j | | for every y e 
eMtn spt p. According to the assumption, K(x, y) g c K(z, y). Since z e spt p, 
we obtain 

f K(x, y) dp(y) = c f K(z, y) dp(y) = cK p(z) = c sup K p(y) 
JMtnsptp JMmsptp ^sptp 

and thus the inequality (5) is true. 
We prove the inequality (7). 

350 



Let u,veRm, \\u\\ = ||t;|| = 1, ||w - xl'|| ^ 1, \\v - x''|| = 1. We assume for the 
simplicity that xf = {l}m. Since ||w[| = ||t;| = 1, we have Uj = 1, Vj = 1 for ; = 
= 1,..., m. Since flu - x*\\ = 1, ||v - x'|| § 1, we have 0 = Uj, 0 = Vj for ; = 
= 1,..., m. Thus ||u - t?|| = max \uj - Vj\ < 1. The inequality (7) is valid. 

y = i m 

2) Now we prove that every admissible constant for the maximum norm is greater 
than or equal to 2m. 

Let us define 

lit) = 1 for 0 = t = 1, 

2 - t for 1 < t < 2, 

0 for t = 2 

on the interval <0; co). 
Put K(x, y) = L(||x — y\\). Then K(x, j>) is a nonnegative continuous function 

on Rm x Rm. Further, 

| | x - j / | | = \\z-y\\=>K(x,y)^K(z,y). 

Put _4 = {-1; l}m. We define p(B) = number of elements of A n B for every set B. 
Then P is a Radon measure on Rm. 

Let M be an admissible constant for the maximum norm on Rm. Then 

(8) K p(x) = M sup K p(y) 
yesptp 

for each x e .Rm; clearly spt p = A. For every j e A, K p(y) = 1. Further, K p(0) = 
= 2m. If we substitute into (8) then we obtain 2m

 = M. 

Theorem 3. i(2 + ^J(2 + J3)) (m - 1) (2 7(2 + V3))m_1 " admissible for every 
Hilbert norm on Rm, where m = 3. Every constant which is admissible for a Hilbert 
norm on Rm, m = 3, is greater than or equal to 2(2/%/3)m"1. For every norm on R1, 
the smallest admissible constant is equal to 2. The constant 6 is admissible for 
each Hilbert norm on R2. Every constant which is admissible for a Hilbert norm 
on R2 is greater than or equal to 5. 

Proof. 1) First of all we pass through some auxiliary calculations. Let m _ 3. 
The volume of the part of the ball with the radius R limited by the (m — ^-dimen
sional plane with a distance h from the centre of the ball is 

V{h,R)=\ ldAm = 
J {[*i xmytXi

2 + ...+xm
2gR2

tXl^h} 

= ( R [ 1 Um-i d*! = a ^ [ V - x2)<m-^2 dj 
Jh J {lx2,...,xmy,X22 + ...+xm

2£R2-xi2} Jh 
X . 
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The surface of the (m — l)-dimensional spherical cap corresponding to this body is 
the derivative of the function Vwith respect to R: 

' S(h, R) = am__(m - 1) R f (R2 - x2)(w"3)/2 dx . 

For R = 1 we obtain 

(9) S(h) = am__(m - 1) f'(1 - x2)(~-3>/2 dx . 

For h = 0 we obtain 

(10) am = 2am_1(m - 1) \\l - x 2 ) < - 3 ^ dx . 
Jo 

2) Now we prove that the smallest number of elements of a yj(2 — *y3)-net on 
the unitary sphere in Rm, where m ^ 3, with respect to the Euclidean norm is smaller 
than or equal to \(2 + V(2 + ^3)) (m - 1) (2 ^(2 + V3))""1-

Let x1,..., x* be points on the unitary sphere such that the distance of every two 
different points is greater than yj(2 — ^3) (i.e., their radiusvectors enclose an angle 
greater than nj6) and there is no point on the unitary sphere which has the distance 
greater than ^(2 — yj3) from each of these points. Such points exist. The points 
x1,..., x* form a ^(2 — yj3)-net on the unitary sphere. It suffices to prove that 

k 5_ 2 + V(2 + V3) ( m _ j) ( 2 J(2 + ^ m - l m 

Denote by At, i = 1,..., k the set of the points on the unitary sphere such that 
their radiusvectors enclose with the radiusvector of the point xl angles smaller than 
or equal to TT/12. Since Ai9 i = 1,..., k, are disjoint subsets of the unitary sphere, 
the sum of the surfaces of A{ is smaller than or equal to the surface of the unitary 
sphere. Ax is a spherical cap suchthat the plane limiting the part of ball corresponding 
to this spherical cap has a distance from the point 0 equal to h = cos rc/12 = 
= i y/(2 + J3). Thus k S(h) _g am. According to (9), 

k <: 
o^.^m - l) \\l - xjm~3>'2 dx 

According to (10), 

am = 2am_.(m - 1) f'(1 - x-)*- 3 " 2 dx <, 2ara_1(m - 1) . 

We obtain 
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^ Л ! 
ľ ( l - x 2) ( и- 3 ) / 2 dx (1 + /.y—3>/- p( l - x)("-3 , / 2 dx 

Jћ Jh 

- (m ~l) (l + h ) 2 

2 ( ^ ( l - h - ) ) - ! -

If we substitute h then we obtain 

k ^ 1+ V(2 + x/3) ( m _ j) ( 2 ^ + ^ 3 ) ) w - i m 

3) In this part of the proof we prove that the greatest number of points on the 
unitary sphere in Rm, m ^ 3, with respect to the Euclidean norm, such that the 
distance of every two different points is greater than 1, is greater than or equal to 
2(2/v/3)m~1. Let x1,..., xk be points on the unitary sphere such that the distance 
of every two different points is greater than 1 and there is no point on the unitary 
sphere which has a distance greater than 1 from each of these points. Such points 
exist. It suffices to prove that k = 2(2/N/3)m~1. 

The points x1, x2

9..., xk form a 1-net on the unitary sphere. The sum of the surfaces 
of the intersections of the unitary sphere with the U(xf; 1), i = 1,..., fc, is greater 
than or equal to the surface of the unitary sphere. Since the plane limiting the body 
corresponding to this spherical cap (the intersection of the unitary sphere with 
U(xlm

9 1)) has the distance from the point 0 equal to i, we obtain k S(i) = <rw. 
According to (9), 

k^ --5- . 

a m _ . ( m - l ) [ ( l -x 2 ) ( M - 3 j / 2 dx 
J 1/2 

According to (10), 

om - 2am_1(m - 1) f\l - x 2 ) ( "- 3 " 2 dx £ 

£ 2«m_.(m - 1) f (1 - x)(m-3>'2 dx - 4a,,.. . 

Thus 

A A 

k ^ 
(m - 1) [ (1 - x2) (m-3"2 dx (m - 1) f" (sin2x)(m-3)/2 sin x dx 

Jl/2 Jo 

i - * . - 2/^-r1 

^
«/3 (V3/2 / l 

sinm-2xcosxdx (m - 1) ym~2 dy w / 
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4) Now we prove the first part of the theorem. We may identify every norm on R1 

with the maximum norm. Therefore 2 is the smallest admissible constant for every 
norm on Rx. Since we may identify every Hilbert norm with the Euclidean norm 
we shall consider the Euclidean norm only. According to the second part of the proof 
there are poinfs x1,..., xk which form a ^(2 — x/3)-net on the unitary sphere in Rm

9 

where m ^ 3, such that fc = 1(2 + V(2 + ^3)) (m - 1) (2 y/(2 + V3))™"1- Further, 
there are points x1,..., xk which form a ^/(2 — ^/^-net on the unitary sphere in R2 

such that fc = 6. 
It suffices to prove that fc is an admissible constant for the Euclidean norm. Let c 

be a positive number. Let K(x, y) be a nonnegative function on Rm x Rm such that 
K(x, .) is Borel-measurable for each xeRm and 

|x - y\ = \z - y\ => K(x, y) g cK(z, y) . 

Further, let p be a nonzero Radon measure in Rm. Let x e Rm. If x e spt p then 
K p(x) ^ cfc sup K p(y) evidently. Let x £ spt p. 

yesptp 

Put 

Lt = [zeRm - {x}\ ,Z " X - x1' = V ( 2 ~ V 3 ) 1 for i = 1, ..., fc. 
I F - *l J 

Then 

K p(x) = f K(x, j ) dp(y) = X f K(x, y) dp(y). 
J R m l'~1 J Ltnsptp 

It suffices to prove that 

K(x, y) dp(y) = c sup K p(y) . 
Jz,.nsptp ^esptp 

If Li n spt p = 0 then the inequality evidently holds. 
Let Lt n spt p # 0. Then there is z eL( n spt p such that |Z — x| ^ |j/ — x| 

for each ye LiCs spt p. For every y e Lt n spt p we have |(y — x)j\y — x| — xf| = 

^ ^(2 — yj3), i.e., the radiusvector of (y — x)/|.y — x| encloses with the radius-
vector of the point x* an angle smaller than or equal to nj6. Therefore the radiusvector 
of the point (y — x)j\y — x| encloses with the radiusvector of the point (z — x) : 
: \z — x an angle smaller than or equal to 7i/3, i.e., \(z — x)/|z — x| — (y — x) : 
: Jy — x | ;g 1. In the same way as we have proved the inequality (4) from (2), (3) 
in the proof of Theorem 1, we may prove the analogous inequality. The proof pro
ceeds as that of Theorem 1. 

5) Now we prove the second part of the theorem. Since we may identify the 
Hilbert norm with the Euclidean norm, we shall consider the Euclidean norm only. 

According to the third part of the proof there are points x1,..., xk on the unitary 
sphere in Rm, where m ^ 3, such that the distance of every two different points is 
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greater than 1 and fc ̂  2(2jy/3)m~x. Further, there are points x1,..., xk on the unitary 
sphere in JR2 such that the distance of every two different points is greater than 1 and 
fc = 5. It suffices to prove that every admissible constant for the Euclidean norm is 
greater than or equal to fc. 

For every set A in Rm we define 

XUA 

Then p is a Radon measure in Rm

9 spt p = [x1,..., xk}. Further ct = min |x* — xJ'\ > 

> 1, c = min CІ > 1. Put 
i = l k 

j*l 

L(t) = l for *e<0; l>, 

— — + — — for te(l;c)9 
I — c c - 1 

0 for f e <c; oo) . 

Lis a nonnegative continuous nonincreasing function defined on the interval <0; oo). 
Put K(x9 y) = L(\x - y\) for each x,ye Rm. Then K p(xl) = 1, K p(0) = fc. If M 
is an admissible constant for the Euclidean norm, then M = fc. 

Remark 1. JVe can find a smaller constant than in Theorem 1 which is admissible 
for the Euclidean norm. For example, 26 is admissible for the Euclidean norm 
on R3. We can find a better lower estimate of the admissible constant for the 
Euclidean norm. For example, every admissible constant for the Euclidean norm 
in Rm

9 where m ^ 3, is greater than or equal to 4m, which is a better lower estimate 
of the admissible constant for m = 3,..., 29. 

Proof. 1) Now we prove the first part of the remark. According to the fourth 
part of the proof of Theorem 3 it suffices to prove that the smallest number of ele
ments of a V(2 ~ V 3 )" n e t o n ^ e unitary sphere in R3 is smaller than or equal to 26. 
We denote by S the unitary sphere. Put 

A = {1, - 1 , 0,1/V2, -1/V2,1/V3> -I/V 3 } 3 n s • 
Number of elements of A is 23 + 22 . 3 + 2 . 3 = 26. We prove that A is 

a V(2 - V 3 )" n e t o n s - Suppose that A is not a V(2 - V 3 )" n e t o n s - T h e n t h e r e i s 

xeS such that |x - y\ > V( 2 ~ V3) for e v e r y ^ e A - W e assume for simplicity 
that 

(11) 0 g xx = x2 g %3 . 

\x - [0, 0,1]| > V(2 ~ V3)- Therefore 
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|x - [0,1/V2,1/V2]| > V(2 - V3)- Therefore 

(13) *2 + * 3 < V ( - ) -

|x - [1/V3,1/../3,1/V3]| > V(2 - V3)- Therefore 

(14) xx + x2 + x3 < \ . 

We have x2 = V(l — x\ — XD- If w e substitute into (13), we obtain x3 + 
+ V(i - A - xD < V(i)-

Therefore 
2x3 - y/6x3 + x\ + i > 0. 

Thus, just one of the following three possibilities occurs: 

a) 2 -'8x? < 0, 

b)2-8xU0, X 3 < V 6 - V ( 2 - ^ ) > 
4 

c) 2 - 8 x ^ 0 , , 3 > V^ + VC2 - 8xf) 

ad a) xx > i. According to (11), x2 > i, x3 > \, Thus xt + x2 + x3 > f, 
which contradicts (14). 

ad b) Since 0 g xx g x2 ^ x3 and x? + x2 + x3 = 1, we have V(l - *i)/V2 = 
^ x 3 . 

Since 
V2(V3 - V(l - 4xD) -

x3 < , 
4 

we have 
2V(i-^) + V(i-4^)<V3-

We obtain 
4 V ( ( l - X i ) ( l - 4 x ? ) ) < 8 x ? - 2 , 

which contradicts the supposition b). 

ad c) According to (10), x3 < \ V3- Therefore 

• V6 + V(2 - 8x?) V3 
, L_ 4 ^ % 

4 2 
Thus 

356 



According to (11) and according to the supposition c) we obtain 

(16) x1+x2 + x3> 2x. + V6 + V ( - - 8 * ? ) . 
4 

We define the function F(x) = 2x + i(V6 + V(2 "" 8x2)) o n t h e i n t e r v a l 
<V(K3 V2 ~~ 4))' i>- T h e function F is increasing on the interval V(i(3 V2 ~~ 4))' 
V(|)) and decreasing on the interval (V(|); i>. Thus F(x) = min (-%/(i(3 V2""4))* 
F(i)) > i- According to (15) and according to (16) we obtain xx + x2 + x3 > J, 
which contradicts (14). 

2) Now we prove the second part of the remark. According to the fifth part of the 
proof of Theorem 3 it suffices to prove that there are 4m points on the unitary sphere 
in Rm

9 m = 3, such that the distance of every two different points is greater than 1. 
Such points are [1/V3, V(*)>°]> [-l/V3> V(*)> 0], [l/V3> ~V(*)> °l ["^/V3* 
-V(*).o]. [V(*)>°,i/V3]> [-V(^o,i/V3]> [ V S o ^ W ^ [-V(i)>°> 
-1V3], [0,1/V3, V(l)]. [o, -i/V3, Ml [o, i/V3, -V(*)l [o. -i/V3, - V(*)] 
in K3. 

Let x1,..., x4m be points on the unitary sphere in Rm such that the distance of 
every two different points is greater than 1. We may suppose that \xm\ < 1 for 
i = 1,..., 4m. Then 

a = max \xm\ < 1 . 
i= l , . . . ,4m 

Then there is b such that \ < b < ljy/2 and ab < \. Put 

yl = xl x {0} for i = 1, ..., 4m , 

y*m+i = { 0 } w- i x [ 6 f V ( l - 6 2 ) ] , 

y4- + 3 a a B { 0 } - l X [ - 6 > V ( l - 6 2 ) ] . 

The points y\ i = 1,..., 4m + 4, are elements of unitary sphere in £m+1 . Now we 
prove that \yl — yj\ > 1 for each i 4= j . If i < j ^ Am then | / - yj\ = |x' — xj\ > 
> 1. If 4m < i < J then | / - y*\ = 2 min (fe, V(l - *>2)) > 1- If i = 4m < j 
then | / - yj\2

 = 2 - 2|bx^| = 2 - 2ab > 1. 

Remark 2. The smallest number of elements of a V(2 - V3)"net o n ti-e unitary 
sphere with respect to the Euclidean norm is an admissible constant for the Euclidean 
norm. We can find estimates of the smallest number of elements of a V(2 ~ V3)"net 

on the unitary sphere in [3], [4]. 

Remark 3. Suppose thatK(x, y) ^ 0 on Rm x jRm andK(x9 .) is Borel measurable 
on Rm for each x e Rm. The existence of a seminorm q in Rm and a c > 0 satisfying 
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the implication 
q(x - y) = q(z - y)=>K(x9y) = cK(z9y) 

is not necessary for the existence of a constant M > 0 quaranteeing the validity 
of the estimate 

sup K p(x) = M sup K p(x) 
xeRm xespt p 

for all Radon measures p in Rm. 

Proof. Let x0 e Rm - {0}. It suffices to put 

K(x9 y) = 0 for [x, j ] e r x r - {[0, 0], [x0, 0]} , 

1 for [x, j ] e {[0, 0], [x0 ,0]}. 

Example 1. On R1 x R1 we define 

K(x9y) = ^ - y \ + 2 for * + j , , 
\*-y\ 
+ oo for x = y . 

X is a nonnegative Borel-measurable function. If x = y then K(x, y) = K(z9 y) 
for each z e R1. If x 4= j , |x — y| = |z — y|, then z =t= j as well and 

K(z,y) = ! !Elp4±2 ^ 3 ^ 3 3«in(x-y) + 2 = 3 
\z-y\ \z-y\ \x-y\ \x - y\ 

Theorem 2 implies 
K p(x) = 6 sup K p(y) 

yesptp 

for each nonzero Radon measure p and for each x e R1. 

Example 2. Let r, s > 0. We define on Rm x Rm 

K(*>y) = (l\xi-yi\T' for **y> 
i = l 

+ oo for x = y . 

X is a nonnegative Borel-measurable function. If r = 1, we define the norm in Rm by 

W-(Zh--v«l,)lfr. 
If x = j> then X(x, .v) = K(z, .y) for each z e Rm. If x * y and flx - y\\ = flz - y\\ 
then flx - yfl" = flz - y||" and thus K(x, y) = 2<:(z, y). Theorem i yields 

sup K j?(x) = (5m - 3m) sup K p(x) 
xeRm xesptp 

for each nonzero Radon measure p on Rm. 
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If 0 < r < 1, we define by ||x|| -= max |x£| a norm in Rm. If x = y then K(x, y) ^ 
i= l , . . . ,m 

^ K(z, >>) for each z. If x =f= )> and ||x — y\\ ^ ||z — j ; | | then z ^ y and 

*(*• JO = ( I h - * ! ' ) " -? H * - ylr)"s -̂  w"f(lk - >?)~s ^ 
i = l 

* ».-'(£ |z, - îl')"" = m-'X(r, y) • 
i = l 

Thus ||x - y\ <* ||z - y\\ =>K(z, y) ^ msK(x, ;>). Theorem 2 yields 

sup K p(x) ^ ms 2m sup K p(x) 
xeRm xesptp 

for each nonzero Radon measure p in Rm. 
This inequality is true for r ^ 1 as well. 
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