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INTRODUCTION 

We bring a partial solution to an open question of the mathematical foundations 
of quantum mechanics. The question was posed by S. Gudder in the paper [3] (and 
repeated in [4], [5] and [6]). One asks whether the integral of the sum of two 
(bounded measurable summable) functions on a a-class is the sum of the respective 
integrals. We investigate the question for two-valued measures (== two-valued 
states). We show that the answer is no in general while as soon as we assume at least 
one of the functions finitely valued, the answer is yes. 

1. BASIC NOTIONS 

The motivation of the question we shall pursue in the sequel comes from quantum 
mechanics (see e.g. [6]). We ask whether the expectation of the sum of two (possibly 
noncompatible) observables is always the sum of the expectations. The explicit form 
of the question was introduced by S. Gudder who also indicated the interpretation 
of the potential results (see [4], [6]). Our investigation is purely mathematical, we 
only include the physical terminology in some places for the physically oriented 
reader to make the interpretation easier. 

Definition 1. A G-class (a concrete logic of a quantum system) is a pair (Q, A) 
where Q is a set and A is a collection of subsets of Q subject to the following condi
tions: 

( l ) * e 4 
(2) if A e A then Q - AeA, w 

(3) if {A( I i GiY) cz A is a mutually disjoint family then \J A{ e A. 

One easily sees that if A, B e A, B .D A then B — Ae A. 
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Defшition 2. A measurable mapping f: (Q9 A) -> K (an observable) is a bounded 
countably valued mapping such that f~l(a9 b)e Л for any real numbers a9bsR. 
Two measurable mappings f, g : (Q, Л) -» K are called summable if f + g is again 
measurable on (Q9 Л). 

Observe thďt any two measurable mappings on a a-class are summable iff the 
a-class is a a-algebra. 

Defìnition 3. A mapping m : Л -> <0,1> ìs called a measure (a state) on a a-class 
00 00 

(ß, A) if m(Q) = 1 and m( \J Af) = £ m(Ai) for any mutually disjoint collection 
i = l i = l 

{ЛĄieN} c Л. 

Let f: (Q9 Л) -> Я be a measurable function. Denote by B(K) the a-algebra of 
Borel subsets of JR. It is easy to see that the set Af = {f_1(C) | C є B(R)} is a a-
algebrä and, moreover, Af c A. If m : (Q9 Л) -> <0,1> is a measure then we can 
restrict m to Ay and the symbol Jfdm has the obvious meaning — the Lebesgue 
integral of f on the measurable space (Q9 Af9 m). 

Suppose now that we have two summable measurable functions f, g : (Q9 Л) -> Я. 
Suppose that m is a measure on (Q9 Л). It is known (see [3]) that the assumption of 
summability of f, g does not imply that there is a a-algebra I9 I c Л for which all 
the functions f, g,f+g are measurable. This fact prevents us from showing the 
equality Jf dm + Jø dm = J(f + g) dm in a standard manner but the question still 
remains whether the latter equality holds at all. We clarify the situation for two-
valued measures. 

Remark. A certain effort has been made to prove the above equality (see [2], [3], 
[4], [8]). Nevertbeless, only fairly unsatisfactory resultś have been obtained so far. 

There is another natural question (poscd m [4]): Does the inequality Jfdm _ 
:g \g dm always hold provided f ^ gl The question was answered affirmatively 
in [8] and [9] (independently and by different methods). 

2. TWO-VALUED MEASURES ON a-CLASSES 

A measure m : A -+ <0,1> is called two-valued if m(A) c {0,1}. In what follows, 
a measure is automatically understood two-valued unless the contrary is explicitly 
stated. 

We start with a theorem which gives us the direction of our efforts in proving (or 
disproving) the desired equality. Before doing that, let us introduce a convention. 
Suppose we are given two (bounded countably valued) functions f9g:Q-+R. 
Let us denote by Af>g (Af$g) the least a-class on Q which contains the set Af u Ag 

(Af u Ag u Af+g9 respectively). Obviously, iff, g : (Q9 A) -> R are measurable (and 
summable) then Aft9 c: A (Afg cz A9 respectively). 
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Theorem 1. Let / , g : (Q, A) -* JR be measurable summable functions and let m 
be a two-valued measure on (Q, A). Then the following statements (l), (2) are 
equivalent and (3) implies (1): 

(l)ifdm + lgdm*>f(f+g)dm, 
(2) the measure m restricted to Aft9 is a concentrated measure (i.e., there exists 

a point x e Q such that, for any set A e Aft9, m(A) = 1 iff x e A). 

(3) for all a,beR, the set K(a, b) = ( / - 1 ( - o o , a) n 0 - 1 ( - c o , b)) u 
u ( / - 1 ( - oo, a)n(f+ g)-1 <a + b, +oo)) u ( ^ ( - c o , b) n ( / + <?)-1 . 
. <a + b, +oo)) belongs to A. 

Proof. (1) => (2). Let J/dm = a, Ja dm = b. Then J(/ + g)dm = a + b and 
we have m(/ - 1 {a}) = 1, m(g~i{b}) = 1 and m((f + # ) - 1 {a + b}) = 1. Ob-
viously, / _ 1 { a } n g_1{b} + 0. Take a point x e / - 1 { a } n g~' {b}. It follows that 
the measure m restricted to Aft0 must be concentrated at x because if two measures 
agree on all generators of a a-class, they have to agree on the entire a-class. 

(2) => (1). Trivial. 

(3) => (1). Suppose the contrary. Then, for some a,b,ceR, m( / - 1 {a} ) = 1, 
m(g~1{b}) = 1, m((f + g)'1 {c}) = 1 and a + b + c. Consider the sets Mx = 
= K(c - b, b), M2 = / - 1 { c - b}, M3 = Q - (M- u M2). Since Mx n ^ { t } = 
= 0, M2 n / - 1 { a } = 0 and M3n(f + g)-1 {c} = 0, we obtain that m(Mx) = 
= m(M2) = m(M3) = 0. This is a contradiction because -7 = M j U M2 u M3 and 
Mu M2, M3 are mutually disjoint. 

Let us first observe that the equality (1) does not always hold. 

Example. We refine an idea of the paper [2]. Let Q be the set of all rational 
numbers of the interval (0,1). Put Q = Q x Q and define the functions f,g:Q-+ 
-> (0,1) by setting f(x, y) = x, g(x, y) = y. Put A = Afg. Then / and g become 
measurable summable functions on (Q, A). 

Define a measure m : A -> {0,1} by requiring m(A) = 1 iff A contains at least one 
of the following three sets B,C,D:B= / " H 1 / 3 } * C = g'1^}, D = ( / + # ) - 1 . 
. {1/2}. For checking that m is indeed a measure, one only needs to realize that 
Afg = Aftf+g u Agf+g. This is not difficult. Since B n C n I) = 0, the measure m 
is not concentrated and it follows that J/ dm + Jg dm 4= J(/ + g) dm. 

Theorem 2. Lef / , g : (Q, A) -> JR be measurable summable functions and let m 
be a two-valued measure on (Q, A). Let the number of values of f be finite. Then 
^f dm + \g dm = J(/ + g) dm. 

Proof. We shall show that K(a, b)e A for any a, be R. This is sufficient in view 
of Theorem 1. 

Suppose that /attains values al9 a2,..., an and suppose further that a, < a2 < ... 
... < an. If a ^ ax then K(a,b) obviously belongs to A because K(a, b) = 
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= g'K-co, b)n(f+ g)~l <a + b, +00) = (f + g)'1 <a + b, +00) -
— g~x<J>9 + 00). We shall now proceed by induction on the values au a2,..., an. 
More precisely, we shall prove that for any a',a"eR, a'*< a", the assumption 
K(a', b)eA and f_1(a', a") = 0 implies K(a", b) e A. This will establish that any 
K(a, b) belongs to A. 

Assume that K(a', b) e A. SinceK(a', b) nf-x{a'} = 0 then the set L = K(a', b) u 
vf-\a', a") belongs to J. But L = (f_1(-oo, a") n g_1(-oo, b)) u 
u ( f -^ -oo , a") n (f + 0)"1 <a' + b, +co)) u ( ^ ' ( - o o , Z>) n (f + g)"1 . 
. <a' + ft, +00) and this implies that (f + g)'1 <a' + b, a" + b) a L. Therefore 
the set L - (f + g)~x <a' + b, a" + b) = K(a", b) belongs to zl and the proof is 
complete. 

Let us make two comments on the above results. It is a natural question whether 
we can generalize Theorem 2 to more then two functions. We shall show by the 
following simple example that we cannot. Put Q = {1, 2, 3, 4, 5, 6} and pick up the 
sets Mx = {1, 2, 3}, M2 = {3, 4, 5}, M3 = {5, 6,1}, M4 = {2, 4, 6}. Then the least 
a-class on Q containing Ml9 M2, M3, M4 consists of the sets: 0, Q, M( and Q — Mf, 
i = 1, 2, 3, 4. Denote this a-class by A. Define a measure m : A -> {0,1} by setting 
m(Q) = 1, m(Mi) = 0, i = 1, 2, 3, 4. Finally, let fl5f2,f3 be the respective charac
teristic functions of Ml9 M2, M3. Then fl9f2,f3 are clearly measurable on (O, A) 
and so is the function fx + f2 + f3. On the other hand, we have \fx dm + Jf2 dm + 
+ Jf3 dm = 0 * J(A +f2 +f3)dm = 2. 

Our last comment involves again the initial problem of S. Gudder. We have solved 
it for two-valued measures and that would give us the solution in general (and in the 
affirmative under the assumption of Theorem 2) if we were able to show that any pure 
measure on a a-class is two-valued. (A measure is called pure if the equality m = 
= amt + (1 — a) m2, 0 < a < 1, implies m = mx — m2). Unfortunately this is 
not the case. Put Q = {1, 2, 3, 4, 5, 6} and take for A the set of all subsets of Q with 
an even number of elements. Obviously, (Q, A) is a a-class (see [ l] , [3]). Define 
a measure m on (Q, A) by putting m{l, a] = 0 whenever a 4= 1, m{a, b] = 1/2 
whenever a 4= 1, b 4= 1. One can easily check that the above requirement defines 
a unique measure. We claim that m is a pure measure. Indeed, if m = ccmx + 
+ (1 — a) m2, 0 < a < 1, then m^l , a] = 0. We shall now show that mx extends 
uniquely to m. If 1 < a < b < c < d then mt{a, b, c, d] = mt{a, b] + mx{c, d] = 
= 1 and we only need to obtain the equality mx{a, b} = mx{c, d}. This will follow 
as soon as we show that mt{a, b] = mx{a, c] for any fixed a e Q. But this is obvious 
for mx{\, a, b, c] = m^l , b] + mx{a, c] = mx{\, c] + mx{a, b] and therefore 
mt{a, c] = mx{a9 b}. 
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