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ON MAWHIN’S APPROACH
TO MULTIPLE NONABSOLUTELY CONVERGENT INTEGRAL

I " Jiki JARNIK, JAROSLAV KURZWEIL, STEFAN SCHWABIK, Praha

(Received December 30, 1982)

. J. Mawhin in [1] modified the Riemann-type definition of Perron integral in R"
by introducing a measure of ‘‘irregularity” X(I1) of a partition IT of an n-dimensional
interval. The main purpose of this generalization of Perron integral was to obtain
the divergence theorem for differentiable vector fields or, in other words, to be able
to integrate all derivatives of differentiable functions. Studying the properties of.the
generalized Perron integral Mawhin pointed out the fact that, unlike the usual
Perron integral, the generalized one does not seem to have the additivity property
(with respect to the domain of integration): If an n-dimensional interval I is parti-
tioned into intervals I', I? and if f is generalized Perron integrable over I', i = 1, 2,
then no proof is available of f being generalized Perron integrable over I.

In this paper we first give an example that the generalized Perron integral indeed
is not additive in the above sense, and then modify Mawhin’s definition, thus ob-
tammg the additivity property mentioned above for functions integrable in our sense
(Sec. 2, 3). At the same time, our definition will preserve the good properties of
Mawhin’s integral, namely, the divergence theorem will hold for all differentiable
functions (cf. Sec. 4). In Sec. 5 we give a counterexample to the Fubini theorem for
the integrals from Sec. 1—3. Sec. 6 contains some general convergence theorems and
also the Lebesgue type dominated convergence theorem for the modified integral.
Sec. 7 provides a general scheme applicable to all the definitions of integrals intro-
duced in the paper.

1. DEFINITIONS AND A COUNTEREXAMPLE

Let us recall the definitions of Perron and Mawhin’s generalized Perron integrals.
All intervals I = R" are assumed to be compact, i.e. I = [a, b], a, be R", is the
Cartesian product of compact intervals [a;, b;] € Rwitha; < b, i=1,...,n

A P-partition of the interval I is a finite family

(1) . = {(x.1"), ..., (x" I™)}
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with x/ € I, jy= 1, ..., m, where {I', ..., I"} is a partition of I (consisting of non-
overlapping compact intervals).

(Let us note that Mawhin in [1] used right-closed mtervals thus obtamlng parti-
tions consisting of disjoint intervals. However, this change does not essentially affect
our considerations.)

A function 6 : 1 > R* = (0, 0) is called a gauge on I, and a P-partition T is
called é-fine if :

I < B(x);6(x%), j=1,...m,
where B(c;r) = [ey —r,cp + 7] x oo x [e, = 1, ¢, + 7]
Definition 1. ([1], Definition 8.) Let X be a Banach space. A function f:1 — X

is said to be P-integrable if there is J € X such that for every ¢ > 0 there is a gauge §
on I such that for every d-fine P-partition IT of I the inequality

© ISG..m) - J] <
holds with S(I,f, ) = Y f(x’) »(I’), where s denotes the n-dimensional Lebesgue
j=1

measure.
We then write J = (P) [, f and call J the P-integral of f over I.
(For detailed accounts of the P-integral see e.g. [2], [3], [4].)
Before proceeding to Mawhin’s definition of the generahzed Perron integral, let
us define the rate of stretching of the interval I as

o(I) = [max (b; — a;)]/[min (b; — a;)],
i=1,...,n,and the irregular'ity of the partition I as
£o(1T) = [max o(1)]jo(1)
. j -

1,...,m (Mawhin [1] used X instead of Eo.)

-
]

Definition 2. ([1], Definition 9.) Let X be a Banach space. A function f: 1 — X is
said to be GP-integrable if there is J € X such that for every ¢ > Oand every C > 0
there is a gauge J on I such that for every J-fine P-partition IT of I with ZO(H); <cC
* the inequality (2) holds.

We then write J = (GP) [, f and call J the GP-integral of f over I.

Remark 1. Notice that é-fine P-partitions IT with Zy(I1) < C exist for C = 1.
This can be proved as follows: If there exists such a te that I = B(t, 5(t)), then
= {(1,1)} is the desired P-partition. Otherwise replace I by intervals I;, j =
= 1,2,...,2"% which are obtained by cutting I by hyperplanes orthogonal to co-
ordinate axes and -passing: through the center of I. Let # be the set of such je
€{1,2,...,2"} that there exists a t € I; that I; = B(t, §(t)). For j € # choose one of
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the above points ¢, denote it by t; and make (t;,1;) an element of IT ; for j¢#
divide I, in a similar way etc. As (t) > O for t €1, after a finite number of steps the
desired P-partition IT is obtained. Thus our definition makes good sense (cf. As-
sumption jn Sec.7).

1

tis2i2 -
.2 =

1
27

0 1
7
4o ‘—27,-2*
Fig. 1

Example 1. We shall construct a function that is GP-integrable but not P-in-
tegrable over a given (twodimensional) interval. (See Fig. 1.)
Let Q, = [0,1]x [0,1] = R?, denote
R;— = (2—1' _ 2*(i+2) , 2-i) X (0,2—(1'.1-2)/2) ,
R;l- = (2—i, 2—‘ + 2—(i+2)) % (0,2—(i+2)/2)
and éeﬁne a function f: @, — R by
—-23G+D/Z for (x,y)eRT,

f(x,y) =4 23+ for (x,y)eR{,
0 otherwise .

To prove that f is not P-integrable over Q, it suffices to recall two facts about the
P-integral (cf. e.g. [2]) first, its additivity if the integration domain is partitioned
into afinite number of intervals and, secondly, that the P-integral tends to zero if
the integration domain contracts into a single point. Thus, if we set
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=[0,r] x [0,s]; Q =[0,7r] x [s,1];
Q" =[r1] x [0,1],

then under the assumption of P-integrability of f over Q. we should have

3) ‘[:f=J‘f+‘[f+ f.
. Q+ I0 Q Q"

However, choosing s =27 (*2/2 and either r =27 or r =27 4+ 270+2) we
obtain 5. f =0, fo.f =1 or [o.f =0, respectively, which together with the
relation lim ;0 f = O contradicts the identity (3).

i
'Let us now proceed to the proof that f is GP-integrable and (GP) Jo, f = 0. Let
€ > 0 C > 0. Let us choose a gauge w: @, — R™ so that it satisfies

w(x, y) £ L dist [(x, »); U (6R7 v dR})]
for (x, y)e Q:+ \U (6Ri U dR{), (x, ¥) * (0, 0);

o(x,y) < €2720*2 for (x,y)e(éR; VIR}),
i=1,2,..,
®(0,0) = y = const > 0 (to be fixed later) .

]f 1T is an w-fine partition of Q., then it obviously includes a pair ((0, O) 1°).
Assume I° = [0, r] x [0, s]. It is clear that the “‘worst” case (i.e. the case when
S(Q., f, M) differs from zero as much as possible) occurs if r = 27/, s = Cr. Then
the remalnder that does not vanish is

2-U+2)c 9-i 23(1+2)/2 = 21 g,

It is evident that by taking y sufficiently small (the choice of y obviously depends on
both'¢ and C) we can make this value smaller than, say, }e.

‘Now all the other intervals of the partition IT split into three groups: those lying
inside of either R} or R ; those lying outside of all the rectangles R}, R} ; and those
intersecting the boundary of some of the rectangles. The contribution to the
sum S(Q., f, IT) corresponding to the first group of intervals is small because the
individual terms for R; and R; “‘almost” cancel each other; the sum corresponding
to the second group vanishes since f(x, y) = 0 outside the rectangles; and the third
" group of intervals again gives a very small contribution because of the properties of
the gauge w. This shows that

S(Q..f, )| <&

for éi}éry w-fine partition IT with Zo(IT) £ C. (A rigorous proof requires merely
a greater amount of elementary calculations.) Hence ' o

(GP)J;f =0.
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Example 2. Let Q_ = [—1,0] x [0, 1] and let us extend the function f from
Example 1 to Q_ by defining

(x, )—0 for .(x,y)e Q_.

Then evxdently (GP) _fQ f=(P)Jo.f=0, (GP) [y, f=0 by Example 1, but
(GP) fo_ug, f does not exist. (
Indeed, the existence of (GP) [, f followed from the fact that the rate of stretching
of the intervals I° which would “‘spoil”” the sum S(Q,, f, IT) was too big, so that the
irregularity of the corresponding partition was greater than C. This fact excludéd
such ‘‘bad” partitions, thus guaranteeing the GP-integrability (over Q) of f. o
However, now, when partitioning the whole interval Q_ U Q,, we can modify
the interval 1° by extending it into Q_ in such a way that it becomes a square (which
means ¢(I°) = 1) and at the same time remains w-fine. Partitions including such
intervals then give sums that are not near to zero, as was shown in Example 1 when

P-integrability was considered. This shows that f is not GP-integrable over Q _ U)Q .-
AR

2. MODIFIED DEFINITION: M,-INTEGRAL .

For a P-partition IT of an interval I = R" let us introduce the modiﬁed irregularity
as ' ' - '
l(n) 2 . 1(81") diam (If) . L0
where & denotes the boundary, s,_, is the (n — 1)-dimensional Lebesgue measure
and diam stands for the diameter of a set.

Definition 3. A function f: 1 — X (X a Banach space) is said to be M,-integrable
if there is J € X such that for.every ¢ > 0 and every constant C > 0 there is a gauge 6
on I such that for every d-fine P-partition IT of I with Z,(IT) < C the inequality.(2)
holds. BRI

We then write J = (M,) j,fand call J the M-integral of .f over I. AT

vl

Lemma 1. For every constant C there is'a constant K such that any P-partmon ﬂ

with Zo(IT) = C satisfies Z;(IT) < K. )

Proof requires only elementary calculations.

. Corollary. If a function f:1 — X is M;=integrable, then it is GP-integrable and
both integrals coincide. .
Lemma 2. Let C 2 sm,_,(0])diam (I). Then for every gauge 6 on I there exists
a d-fine P-partition I1 of I with Z,(I1) < C.
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Such a P-partition II can be obtained in the same way as in Remark 1.
The following theorem is a modification of a theorem holding for the GP-integral
(cf. [1]) to the M;-integral.

Theorem 1. Let I, K, L be compact non-overlapping intervals in R", I = K u L,
Let f be M,-integrable over I. Then f is M -integrable over both K and L and

(4) (MI)J‘f = (Ml).[ f+ (Ml)ff-
o I K L
Moreover, if C = m,,_l(él) diam (I), e > 0 and if ¢ is such a gauge on I that

”S(I,f, m) _(MI)J‘If ” <e

for every 5-fine P-partition IT of I with £,(I1) < 2C, then

5 sk, m) — o) | 1] 5

for every é-fine P-partition I, of K with Z,(I1,) < 2C.

Proof. Let C, ¢, 6 be the same as in Theorem 1. Let IT,, IT, be é-fine P-partitions
of K with XZ,(I1,) £ C, 2,(I1,) < C and let IT, be a é-fine P-partition of L with
Z,(I1;) £ C (cf. Lemma 2). Then [T, = II, U II, and II5 = II, U Il are d-fine
P-partitions of I with ¥,(I1,) < 2C, £,(I15) < 2C. We have

S(K, f, ) - S(K, f, 11,) = S(I, f, I4) = S(L £, 1) ,

e IS, £, 04) — SU. £, )| < 2,

so that
IS(K. £, 11,) = S(K, £, IL,)|| < 2,

which proves the existence of the integral (M,) [ f. Analogously, (M,) [, f exists.
The validity of (4) follows directly from Definition 3.
Let n > 0. Now we can assume in addition that

|senmy -0 7]

and we obtain by (4) that -
om0 4] -
- “ S(1.5,1,) - (Ml)f-,f —S(Lf ) + (MJLf H <
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o= fy |« im0

Se+n,
which proves (5).

Corollary. If I, H are compact intervals in R, H < I, and if f is M,-integrable
over I, then f is M,-integrable over H as well.

Theorem 2. Let I, K, L be compact non-overlapping intervals in R", I = K u L.
Let a function f:I — X be M,-integrable both over K and over L. Then f is M-
integrable over I and (4) holds.

Proof. Let ¢ > 0, C > 0. Find gauges 6, d; on K, L, respectively, ‘‘associated”
with the constant 3¢, C. Put

min [6x(x), dist (x, L)] for xeK\L,
5(x) = {min [6,(x), dist(x,K)] for xeL\K,
min [6x(x), 6.(x)] for xeKnL.

Let a P-partition IT of I be 5-fine and X,(I1) < C. Then
= {(x*, K*); 0 + K* = J* n K, where (x*, J*)e I}
and analogously '
= {(x*, L*); 0 % L* = J*n L, where (x*, J*)eII}

are P-partitions of the intervals K, L, which are dx- and d,-fine, respectively. More-
over, Z,(I1) < C implies that Z,(ITx) < C, Z,(I1;) < C since some of the summands
of the sum defining 21(11) vanish and some other may decrease when we pass to
Z,(IIg), Z,(I1.), but none of them increase. Hence

’_S(K,f, ) — (M) f f ’ < %2,

S(L 1 HL) - (MI)I ' = %8
which by the obvious identity
S(Lf, ) = S(K, f, ) + S(L,f, M) . S

lS(IfH) [(Ml)ff+(Ml)f ]I

This completes the proof of (4) and hence of Theorem 2.

yields
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Remark 2. While Example 1 shows that the GP-integral generally fails to depend
continuously on the domain of integration, the following result can be proved for
the M,-integral: Let

I = [a, b] = [ay, b1] % [az, by] X ... x [a,, ba],

= [a"‘) b] = [a{¥, b,] x [az, bs] % ... x [a,, b,],
where a® — al, a® > a,. Let f be M,-integrable over I. Then

© im () [ 7= o) [ 1.
Proof. Denote L, = cl(I\Kk) Given ¢ > 0, C = w,_,(0I) diam (I), let & be
such a gauge on I that
0=
for every o-fine P-partition IT of I with X,(IT) < 2C. Put

G = [az, bz] X [a3, b3] X oo X [a”, bn] < R”_i

and let I* = {(g9;,G,); j =1,2,...,m} be such a P-partition of G that G, c
< B(g;,46((ay, 9;))) = R*™*, j = 1,2, ..., m. There exists such an r that

af? — a; < min{36((ay, 9;)); j = 1,2, ..., m}
for k = r, so that

HP = [ay, a’] x G; = B((ay, 9;), (a1, 9))) = R*
forj =1, 2,..., m. Further,

Hk = {((al’ gj)a H_(]k))’ ] = 19 2’ crey m}
is a o-fine P-partition of L, for k = r. Evidently, since IT* is independent of k, we
have Z,(I1,) < C for k sufficiently large and thus (4) and (5) from Theorem 1 yield

o [ 7 - 00 [ s

= U (MI)JL{_ S(Ly, f, Ty

<

(M)

Ly

+ [|S(Le. £, M) <

<e¢+ (a(") - al)lz1f((a1, g_,-)) m,,_l(Gj) . K
which implies that (6) holds.

3. ANOTHER MODIFICATION: VMZ-INTEGRALV

A finite family (1), where {I%,...,I"} is a partition of I and x' eI, j =1,..., m,
is called an L-partition of I. '
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(Notice that a P-partition is an L-partition satisfying the additional condition x’ e
el,j=1,..., m.) For an L-partition IT of an interval I < R" let us introduce
another measure of irregularity as

3 £,(11) = Zm,. 101 q;

where g; = max {dist (x/, x); x e I’}.

Definition 4. A function f: I — X (X a Banach space) is said to be M,-integrable
if there is J € X such that for every ¢ > 0 and every constant C > 0 there is a gauge 6
on I such that for every é-fine L-partition IT of I with X,(IT) < C the inequality (2)
holds.

We then write J = (M) [, f and call J the M,-integral of f over I.

-Remark 3. It is almost evident that every M,-integrable function is M,-integrable
(over the same intcrval). Moreover, for n = 1 the sets of P-, GP- and M;-integrable
functions coincide, while the set of M,-integrable functions is contained (as a proper
subset) in each of them. (Cf. [2]: for n = 1 a function is M-integrable if and only
if it is Lebesgue integrable.)

Example 3. Let again Q, = [0, 1] x [0, 1] = R* and denote

R; = (2—.‘ _ 2—(f+2),2—|’) % (0, 2-(i+2)) ,
Ri+ = (2—:', 2-% 4 2—(i+2)) x (0’2—(i+2))_
Define
—a; for (x,y)eR;,

flx,y) = «; for (x,y)eR{,
0 otherwise,

e}
where «; > 0, 27 %2, > 0, Y 27%q; = oo.

Then arguments similar to those in Example 1 show that f is M, -integrable but
not M,-integrable. Indeed, for every gauge 6 we can find an L-partition IT, such that
|S(Q+. £, I1,)| <1 and another L-partition IT, with S(Q, f, IT;) > 2. (The partition
IT, is obtained by putting (0, R;)€Il, for i = p + 1,..., p + g, where p is such
that Ry < B(0, §(0)) for i > p and g is such that Y721, , 27*a; > 2.) Moreover,
we can at the same time satisfy the conditions X,(I1,) < C, Z‘z(Hz) < C with C
independent of 6, I1,, IT,.

It also can be proved that f is P-integrable over Q.

Remarks. 4. Denoting by Int (P), Int (GP), Int (M,) and Int (M,) the families of
functions integrable in the respective sense, we thus have the following inclusions
(for n > 1): :

Int (GP) 2 Int(M,) 2 Int(M,), Int(M,) > Int(P),
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Int (M) $ Int (P).

5. Theorem 1 holds with M, replaced by M, since, when splitting a partition IT
with Z,(IT) £ C into partitions I, IT; as in the proof of Theorem 1, we conclude
by the same argument that X,(IT¢) < C, Z,(I1,) < C and the whole proof works in
the case of the M,-integral. :

We conclude the presznt ssction by mentioning some elementary facts on the
M,;- and M,-integral that will be used without spscial reference in the sequel,
especially in Sec. 6. We formulate them for the M, -integral only.

Remarks. 6. If N < I with »(N) = 0 and f: I — X satisfies f(x) = 0 for xe [\N
then f is M, -integrable over I and (M,) [, f = 0. This follows from the fact that such
a function f is Lebesgue integrable and 0 = (L) {,f = (M,) |, /-

7. If h: I > R is M -integrable and satisfies h(x) = 0 for all x € I then (M,) [, h 2=
2 0. Indeed, the converse inequality would contradict the fact that S(I, f, IT) 2 0
for every P-partition IT of I. Consequently, if f, g: I — R are Ml-mtegrable over I
and f(x) < g(x) for all x e I, then (M) [, f < (Ml) f1g. :

4. EVERY DERIVATIVE IS BOTH M;- AND M,-INTEGRABLE
Mawhin’s Theorem 1 [1] (the divergence theorem for differentiable functions)
- holds for the M,- and M,-integral as well, the proof being a mere verbatim trans-

cription of Mawhin’s proof. Let us therefore present a closely related theorem the
contents of which is expressed by the headline of the present section.

Theorem 3. Let I = [a, b] = R" be an interval, Q a domain such that I < Q <

< R". Let a function f: R" —> R be differentiable on Q. Then 8f|x, is both M- and
M,-integrable over I and

@ (M) f I f [F(by, E2sor &) = F(ass &2 s E)] AE5 ..

where (M) stands either for (M) or (M,).

Proof. For any interval L = [¢,, d,] X ... X [c,, d,] denote

da dn
@(L,f):f J [f(dy Exn-emr &) = flcrs Egr ovw &) E, ... dE

(Thus the right-hand side of (7) is denoted by &(I, f).)
We shall need the following auxiliary result: If {I*, ..., I"} is a partition of I, then

® #(L.1) = £ #(1%.1).
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An elementary rigorous proof of this identity is rather lengthy; nonetheless, let us
present at least its main points. First of all, the 1dent1ty (8) holds if the partition is
“net like”, that is, if there are finite sequences

_ . a,-—c,-<c,-<...<c’i’"=bi, i=1,..,n,
such that the partition consists of all intervals
[ed, e x oo x [ednc*?], ji=1,...,m,.

Let us show this at least for n = 2 to avoid too complicated indices. Let I = (J KY,

where ""'_
U = [CU cl+l] X [dn d|+1]

ay=¢;<c¢;<...<c,=by, a,=d; <d; <...<d,= b, Then

p—1q-1 pdjs . : :

oK. f) = TT [f(c.+1,é) — flew )] 4 =

i=1

=j§:: dq[f(c”“ 5) - f(c"’t)] dé = z f f(cu é) d¢ - Z J‘.bzf(ci’ 6) ¢ = i

f [f(eyr €) = F(esr £) e = f [/t ) = flaw 1 = 0(0.).

For n > 2, the proof is analogous L . K
Now, if. {I .y "‘} is an‘arbitrary partltlon of 1, 1t is easy to construct a net-like"

partmon A of I such that its ““restriction to any I, j = 1, ..., m, again represents

a “‘net-like” partition of I/ (thlS is achieved by arranging the i th coordinates (i =

= 1,...,n) of all intervals I*;..., I"™ in increasing sequences and taking. all mtervals

whose end -points have these: coordmates) ‘Thus, if we.write W

= U ij ’ LJk ed, .
k=1 . . \
then S '

m kj .

=U UL

Jji=1k=1
and, using (8) (for “‘net-like” partitions!) once for'I and once for I/, we immediately
obtain

‘aw) =g o) -5 ¥ et - >:<z><zf n.

that is, (8) holds for any partition.

Now it is not difficult to complete the proof of Theorem 3. Let ¢ > 0, C > 0,
x €1 and denote df[dx;, = f;. Then there exists 6 = 6(x) > 0 such that for every
y € B(x; 6(x)) we have ‘ : ‘
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76) = ) = ZAi) 01 = %3] S ally = 51

Thus 6: 1 - R* can be viewed as a gauge on I. Let a §-fine P-partition IT be defined
by (1) and set

00) = ) + 213 ) 0 = %), ) = 50) = 9'0)-
Then we easily find that &(I, g’) = f;(x’) »(I’) and we can estimate
IS 13, 1) = (1, /)] =
= | S o) - a(t' ") - o0’ W] = |_§¢<ﬂ, W) =

-5 J J [hi(bys Ean -mn &) = W(ag, Enn s E)] dE ..

I\

< 2, Z diam (I’) A < 2, Z,(IT)
‘11
provided the sum S(I, f{, IT) corresponds to the M-integral; hence choosing &, =

= }¢C~! and assuming Z,(IT) < C we obtain 2¢, 1(H) < ¢. Similarly, considering
the M,-integral we obtain

|S(L, f1, 1) — &(I, f)| < 2, Z v (I ) < 2e, Z,(1),
- aj

1

which yields the same estimate as above for d-fine L-partitions with X,(IT) <.C.

-
5. A COUNTEREXAMPLE TO THE FUBINI THEOREM

In the next example we shall construct a differentiable function f: B? — R such that
its partial derivative g = 9f/0y is not P-integrable in x, i.e., (P) {3 g(¢, y) d¢ does not
exist for almost all y (cf. Remark 2). This fact disproves the Fubini theorem for the
GP-, M, - and M,-integral, since by the results of Sec. 4 the function g, being a deriva-
‘tive of a differentiable function, is integrable in each of the above senses (but not P-
integrable).

Example 4. We shall construct the functlon g on. the square Q, = [0 1] X
x [0, 1] and put

(9) f(x, _V) = J.:g(x’ r’) dn for (x’ .V) €Q,,

0 otherwise .
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Let us first construct an auxiliary function ¢:[0,1] > R, ¢ € C*(0,1). (See
Fig. 2.)

'y
-2i-2
2 iy m
2-31'1'. r_-
v(x)
0 2”' 2‘-1'-'1 x=

"2.2};,':» —
' ~2i~2

"2 Ii’, —

Fig. 2

‘Denote V, = (274, 27"*1],i=1,2,...and let s;; = 3(27* + 27'*1) be the center
of the segment V,, 5,441 = (27" + su) for k = 1,2, 3. We set
(p(x) =0 for x€ (27", 5;4] and for x = 0,
@ decreasing in [si 535
.(p(x) = =272, for xe [si3 50215
o(siz + &) = fP(Siz — &) for ¢e[0,2772];
@(siy + &) = —o(siyy — &) for £€[0,2771], i=1,2,....
It is easy to establish the estimates

1 ’ .
J p(x)dx 2 27172 272, = 273172

Sit
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X .
j o(x)dx =0.
2-1
Now put

g(x, y) = o(x) [sin nl,y]*/* for (x,y)eV; x [0,1],
defining [a]” = |«|* sign «. Then

(10) Jq g(¢ y)dE =0,

2=i
1

U 9(&, y) dél > 27321 |sin nl;y|'" .
Si1

Denote 4; = {y €(0, 1]; lsin nliyl =271}, i=1,2,.... Then there is a constant c
such that

m(Ai)gl—C2_i. o
Put A =) () 4;. By a standard argument we obviously have m(A)_g 1—c27/

j=ti=j

for every j = 1,2, ..., hence »(A4) = 1. Thus for a.e. y €(0, 1] we have

1
g(&, y)dé

S

g 2—3i—2’i[2—i]1/|' = 2_3(i+l)l,~.

* Choosing I; suitably and combining this estimate with the identity (10), we immediate-
ly conclude that the P-integral (g g(¢, y) d¢ does not exist for a.e. y € [0, 1]. (By
Remark 3, this means that the GP-, M- and M,-integrals do not exist, either.)

It remains to prove that the function f defined by (9) is differentiable in RZ. It is
evident that it is only necessary to prove differentiability at the points (0 y) y €
€ [0 1]. However, we easily obtain the estimate

1f(x, »)] = |o(x)] - f:[sin nlm]""dn’ <

<272 17 =272 for xeV;, i=1,2,.

This estimate implies that f(x, y) = (x), which immediately yields dlﬂ'erentlablhty
of f at the points (0, y).
Thus, Theorem 2 implies that g is GP-, M,- and M,-integrable over Q. and

J g =J .[g(é‘,rr)dndc

(the left-hand side integral Being one of the three jlist mentioned).

Remark 8. Since the Fubini theorem holds for the P-integral (see agam [2])
our example enables us to amend Remark 4:
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Int (M,) 3 Int(P), Int(M,) ¢ Int(P)
(again for n > 1).

Example 5. We know (cf. Remark 2) that the function H(y) = (M,) fo, h, where
0, =[0,1] x [0, y], is continuous on [0, 1] provided the integral (M,) [o, h
exists. We will show that H is generally not differentiable. Put h(x, y) = |@(x)| .
. [sin =l,y]** similarly as in Example 4 for (x, y) e V; x [0, 1]. Fix positive integers

i, k and evaluate
(k+ 1)/
I f h(x y)dy dx
0 :

()Gl

w 2t k+1)/1;
Zl'[ |<p(x)| [sin nl;y]*7 dy dx] .

j=1J2-4 K/l

‘However, for j > i the inner integral vanishes because of the oscillations of sine, so
that we may write

2-i+1 k+1)/1; .
IH (k——;-—l) - H(?) > J |(p(x)|j [sin nl;y]**dy dx| —
i i 2-i k/Li
2-J+1 (k+1)/1; . .
- Z |<p(x)| de~ |sin ml;y|* dy .
kil
. Routine calculation yields
2-J+1 .
2737 = 270D 972, < j lo(x)| dx < 277 . 271, = 2731,
' : . 2-J
Hence : _
- f i-1 ’
H(%)-H(E)l 22731, 2y gy 22 311,
i i nl;  j=1 1r
Consequently, |
ji-1
e (B m (%) 2 Lomsn, e,
l; I; T j=1

It is clear that by a suitable choice of I;’s we can make the right-hand side tending
to infinity as quickly as required (with i —» o0). :

Thus we may infer: (i) H has a finite derivative for no z € [0, 1]; (ii) no a-priori
modulus of continuity for H exists.

6. CONVERGENCE THEOREMS

(!In [1].J. Mawhin proved the Levi-type monotone convergence theorem for the
GP-integral. We follow here the idea of the proof of convergence theorems for the
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P-integral as presented in [2] and give the corresponding results for the case of the
M;- and M,-integrals. Since the results as well as their proofs are completely analo-
gous in both cases, we formulate them for the M-integral only. The results for the
M ,-integral are obtained by replacing M, by M, and, in the proofs, the P-partmons
by the L-partitions.

First, we prove a general convergence theorem.

Theorem 4. Let (fi)yepy be a sequence of functions f, : I - X (X a Banach space,
I c R" a compact interval) satisfying the following conditions:
(i) For each k€N, f is M,-integrable over I.
(i) The sequence (fi)yepy converges pointwise on I to a function f: I — X.

(iii) For every ¢ > 0 and every constant C > 0 there is a gauge & on I such that
for every o6-fine P-partition IT of I with Z,(II) < C the inequality

(11)

holds for every k e N.
Then f is M -integrable over I and

st 1) - (04 [ 5

(12)" | lim (M,)J‘f,‘ =(M1)-[f.

Proof. Given ¢ > 0, C > 0, assume that § is the gauge correspondmg to -}g C by
the assumption (iii), i.e. we have

(13 Jst.20m - o0 [

for evéfy o-fine P- partition II of I with Z,(IT) £ C and for every keN.

By (i), for every fixed &-fine P-partition IT with Z (msc there is ko € N:such
that
(19 IS0, S 1) — S5, T S 4o
_for keN, k = k,.

Combining (13) and (14) we infer that for every ¢ > 0 and C > 0 there is a gauge &
such, that for every é-fine P-partition IT of I with X,(IT) £ C there is ko € N such
that the inequality . :

Ze

(15)” “S(I’f’ m - (.Ml)J‘Ifk‘

holds.for ke N, k = ko. Hence for k; e N, k = ko, | = k, we have
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(Ml)Lf" - (Ml)f,f’ < 2,

which implies that the sequence (M1) {1/; k)kEN is a Cauchysequence. Thus it possésses
a limit in the Banach space X, i.e-

lim (Ml)jfk =q.
I

k— o

R

Finally, by (15) we have
I50.5,m) = o] = lim |s0.1.1) - ()| 1

<e¢

for every -fine P-partition IT with X,(IT) £ C, which implies the Ml-mtegrablllty
of f as well as the equality

(Ml)jlf =« =klir: M,) Lfk .

Remark 9. Notice that Theorem 3 is valid even for the GP-integral. The assump-
tion (iii) may be called the M,-equiintegrability of the sequence (fi)zepy- It is this
assumption that makes the proof of Theorem 3 so easy. On the other hand, (iii) is
a very strong assumption and not easy to verify. In the sequel, restricting ourselves
to real functions, we replace (iii) by another condition which together with Theorem 3
easily yields both the Levi-type monotone convergence and the Lebesgue-type
dominated convergence theorems.

Let us now prove the following Saks-Henstock lemma (see also [1] for a sllghtly
different version).

Lemma (Saks-Henstock). Let f:1 - X (X a Banach space, I = R" a compact
interval) be M,-integrable over'I. Let & be a gauge on I corresponding to ¢ > 0,
C < 0 in the definition of the M-integral (cf. Definitions 3, 4). Assume IT =
= {(x', 1), ..., (x", I")} is a 6-fine P-partition of I with X,(I1) £ C.

Then for any finite sequence of integers m;, j = 1, ..., 1, such that 1 < m; < ...
.. < m; < m the inequality

(16) [r6m)mm) = o) [ =

holds. ‘

Proof. For m = I the lemma is a trivial consequence of the definition. Thus as-
sume m — | = k > 0. Denote the intervals I/ not appearing in the sum (16) by K',
i=1..,k

Let n > 0. Since f is M, -integrable over every interval K%, i = 1, ..., k, there exists
a gauge 6, : K' > R* on K' such that §,(x) < §(x) for all x € K’ and such that for
every é-fine partition 11, of K' with Z,(IT)) < w,-1(0K’) diam (K') the inequality
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fl| <nl(k +1)

Ki

sy - o
holds. Let us now define the P-partition
k
o= {(x™1m),.., " 1oy mn,.
i=1

Then IT evidently is -fine and

z,(f) = i”’n—l(el’w) diam (I™) + izl(ni) s

1 K
< Y mp_y(01™) diam (I™) + Y, w,—4(6K") diam (K*) = Z,(IT) < C.
j=1 i=1
Hence we have by the assumption

”;S(I,f, m - (M) Lf

Se

jéjlf(xm’) 1) + 3. S(KE 1, 1) —jzil(Ml) - .i‘“l’f f'

and, consequently,
1

> [f(x’"’) (™) — (M) j f]" <

j=1

il I:S(Ki’f’ ;) - (Mx)JKif]ll < e‘ +él k_i—l =&+

e+

as well. Since n has been arbitrary, (16) immediately follows.

Theorem 5. Let (f,);cny be a sequence of functions f, :1 -+ R (I = R" a compact

interval) satisfying (i), (ii) from Theorem 3 and
(iv) there is a constant K > O such that for every finite partition {I', ..., 1"}
of I and every finite sequence of positive integers ki, ..., k,, the in'_eq'l_iality

jén:l(Ml) Ljfk:

<K

holds.
Then the function f is M-integrable over I and (12) holds.

Proof. We shall prove that the assumptions of Theorem 5 imply those of Theorem
4, i.e., (iv) implies (iii).
For pe N, denote by &, the collection of all functions h : I — R for which there
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exists a partition {J%, ..., J"} of the interval I (i.e., J!, ..., J™ are non-overlapping
m

compact intervals, | J/ = I) and ky, ..., k,eN, k; > p for i = 1, ..., m, such that
i=1

. h(x) = fi(x) for xeJ', i=1,...,m.

(If x€ dI' n 8L, i # j, we choose one of the values f; (x), f,‘j(x) arbitrarily.)
The collections &, have the following properties:
(@) If py, p2 €N, p; > py, then F, = F,,.
(B) Every function h e #, (and hence, by (), every function h e & , for any peN)

is M,-integrable. (This immediately follows from Theorems 1, 2 and Remark 6.)
Moreover, by (iv) we have

I(M W <k

provided he ¥
(Y) We have :
lim h(x) = /(x)

for x € I provided h,e #,, pe N. (Cf. (ii).) .
(3) Given ¢ > 0, then for every p € N there exist g,, G, € #, such that

mf[(Ml)jh heg"} e }(M)Igp
sup {(Ml)Lh; he .9»*,,} l)f

(¢) Given ¢ > 0, peN, he #, and a finite system of non-overlapping (compact)
intervals J, J2, ..., J? c I, then

émeW7%§§m4 sson)f 6+

and

2p+2 -

Indeed, if e.g. the second inequality did not hold, then there would exist a function
h e #, such that

ﬂch+ <ﬂmqﬁ

Defining now a function #° on I by
q
h(x) for xel J/
ho(x) = =t

G,(x) otherwise,
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then h® e #, and by () we have (using Theorem 1)

(Ml)fh°>(Ml)JG+ >sup{(M1)J'h he s }

a contradiction. The other inequality can be proved srmrlarly

Let us now proceed to the proof of (iii). Let ¢ > 0 and C > 0. By (y) we have
gp(x) f(x), G,(x) = f(x) with p — oo for every x €. Hence for every x eI there
is-p = p(x) € N such that for all ke N, k > p(x) we have

(17) [/ex) = gpeo(®)| < $e(m(I) + 1)~
Ifk(x) Gp(x)| < $e((l) + 1)-1

Further forpeN there exists a gauge d,, on I such that for every J,-fine P-partition IT
of I with Z,(IT) < C the inequality

(18) S(I, h, IT) — (M

-

2p+2

holds with h = g, and h = G, and h = f,.
Choose a gauge 6 on I so that
3(5) S min (34(3) 2(5) - pnl(5)
for every x € I and assume that i
= {5 1Y), (5%, %), .., (=™, I™)}

is a &-fine P-partition of I with £,(IT) £ C and ke N. Then

S(L, fi, 1T) = if,‘(x’) m(l’) =

= Z Sl) m(E) + Z Jx) o 1’)

p(x-’)Zk p(xl)<k

Irllvthe second sum we have by (17)

f k(xj) > Gp(xi)(xj) - ie(m(l) + 1)—1_ ’

hence

50> T G ) = 1ot) + b 5 2
p(x1)<k p(x1)<k ) p(xd) <k

=) G ) = 10

F(x9) <k
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and

Sofo ) > % A0+ T G () = =

p({r’)ék p(xJy<k
- k=1 m
Z S ) + X ¥ GUAx) mll) = 3o
(xJ)Zk (x’) =r

Applying (18) with h = fi» h = G, and the Saks-Henstock Lemma to the sums on
the right hand side we obtain

(19)
stom> 5 o[ -5 5 o 6 2,”]-%6.

p(xl)Zk )(xi) =r

Since the function f, by definition belongs to all systems &, withr = 1,2, ..., k — 1,
we have by (&)

3 Lo o >z[ 5o -] = 5 o] sz,
'_ln(Jx_f.)=r p(xf)— p(xf)<k o

This together with (19) yields the inequality
m k-1
S ) > S (M) [ fim 263272 — 4o = (Ml)jfk P
j=1 1) r=1 I
In a completely analogous way (making use of g, instead of G,) it can be shown that
S(I’fk, H) < (MI)J‘fk + &,
I

which together yields (11) from (iii) (Theorem 4). Hence the assertion of Theorem 5
follows by virtue of Theorem 4.

Theorem 5 makes it immediately posmble to derive the Levi-type monotone
convergence theorem and the Lebesgue-type dominated convergence theorem We
shall present the proofs of both of them.

Theorem 6. Let (fi)cn be a sequence of real functions, f, :1 - R, I = R" an, in-
terval, such that (i), (ii) from Theorem 4 holds,

(v) there is K > 0 such that |(M,) [, | £ K for all keN, and

(vi) for all keN and x¢€l the mequaltty Sis1(®) Z fu(x) (or frss(x) = filx))
holds.

Then f = lim f is Ml-integrable over I and (12) holds.

k=
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Proof. Given a partition {I', ..., I"} of I and a finite sequence k,, ..., k,, of positive
integers, then using the monotonicity property of the M,-integral (Remark 7) and
(vi) we obtain .

~ ~

(Ml) fl‘ = (Ml) fkj = (Ml) fv ’
1 pael JIJ
where g = min (ky, ..., k,,) and v = max (k, ..., k,,). Consequently, by (v) we have

_K<(M1)Ifu§§ f,sM) | £ sK.

¢ JI

Th\js the assumption (iv), Theorem 5, is fulfilled and the assertion of Theorem 6
immediately follows.

Remark 10. Replacing (v) in Theorem 6 by

(v*) lim (M,) | fi exists

k= I

we obtain the Levi-type monotone convergence theorem for the M,-integral in the
form given by J. Mawhin in [1] for the GP-integral (cf. Definition 1).

Theorem 7. Let (f,)xeN be a sequence of real functions fi,:I - R, I = R" an
interval, such that (i), (ii) for Theorem 4 holds and

(vn) there exist M,-integrable functions g, h :1 — R such that g(x) <f,‘(x) <
< h(x) for all ke N and all xel.
Then the function f :1 > R is M,-integrable over I and (12) holds.

Proof. Assume again that {I',...,I"} is a partition of I and k;, ..., k,, a finite
s=quence of positive integers. Set K = max (|(M,) [, g/, |(M,) ; h|). Using again
the monotonicity property (cf. Remark 7) and (vii) we obtain

My) [ g= (Ml)f"fk; = (Ml)J‘”h

JIs

for j = 1, ..., m and, consequently,

)

= (Mx) 9=

uMs

oj fu < (Ml)jh<x

Thus (iv), Theorem 5, holds and the assertion of Theorem 7 follows.

Remark 11. Let us point out that our proof of Theorem 5 is strongly based on
Theorem 2 that fails to hold for the GP-integral, as was shown in Example 2. Hence
the proof cannot be applied to the GP-integral. Since we have not been able to find
a counterexample, either, the problem whether a Lebesgue-type dominated conver-
gence theorem holds for the GP-integral remains still open. (Cf. Remark 3 in [1].)
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7. GENERAL SCHEME FOR THE DEFINITION OF THE M-INTEGRAL " - '

The three definitions of integral introduced above suggest the following general
scheme.

Let S # be some families of subsets of a metric space (G, d). A finite collection

(20) A={tp T j=1m)

is called an abstract partition of Ie £ if t;€l, J;e # for j = 1,..., m. Let CP(I)
be a collection of abstract partitions of I for I € £.

(For example, for .# we can take the set £, of all nondegenerate compact intervals
in R", put #; = S, and define CP,(I) as the set of all P-partitions of I and CPZ(I)
as the set of all L-partitions of I.

Let X(4) € [0, o] for every 4 € CP(I). (Thus X is a nonnegative function defined

for all 4 €|) CP(I) and possibly for some other 4’s as well — in particular, we may
IesS

take the functions X, X,, X, from the definitions of the GP-, M,- and M2-1ntegrals )
A function 6 : I — (0, o) is again called a gauge (on I). We say that 4 is 5-fine if
the abstract partmon A satisfies the following condition:

Jj < B(tj, 5(tj))’ J = 1, soey
The following assumption on CP(I) plays a fundamental ro]e: A
Assumption. For every I € S there exists such a C > 0 that for every gauge 5 on I

there is such a 4 e CP(I) that 4 is é-fine and Z(4) < C.
Finally, let » : # » R and denote

S(I f’ 4, m) = Zf(tl) m(";) SR

forle#,f:1— R, Ae CP(I) defined by (20)

The concept of the M-lntegral is assoc1ated with the quadruple (~#, Cp, E m);
we write

(J cp,z, m)

Definition 5. Let I e £, f : I - R. If ye R is such that for every ¢>0and C>0
there is a gauge 6 on I such that for every 5-ﬁne Ade ?P(I) with X(4) £ C the in-
equality .

|y—S(1fAm)l<s

holds, then y is called the M-integral of f overl, f is sald to be M-mtegrable and we
write y = (M) , f ds.
By Int (M, I) we denote the set of all f I - R that are M- 1ntegrab1e over I

Example 6. We obtain the integrals from Sections 1, 2, 3 by setting, respectlve]y,
M, = (£}, CPy, Z,, m) (the GP-integral), * :
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M, = (#,,CPy, Z,, m),
M, = (#,, CP,, Z,, ).
Further, if we put Z3(4) = 1 for all 4’,
M; = (#,, CPy, Z;, m),
M, = (#,, CP,, X3, »),
then the M;-integral is the Perron integral and the M-integral is the Lebesgue in-

tegral. (In all the above formulas, » stands for the Lebesgue measure in R".)_ :
Even this very general setting allows to prove the following result. ’

Theorem 8. Let #, CP;, CP,, X,, X5 and ¢ > 0 be given, let
M; = (4, CPs, Z,, ),
M6 = (f, CP4, 25, ﬂl)

and assume that

(21) CP,(I) o CP4(I) for Ie~s,
(22) Z4(4) S cZ,(4) for A4eCP4(I), !"1 esf.
Then ’

Int (Mg, I) = Int (M3, 1)
and

(Mﬁ)ffdm _ (Ms)'[fdm
I I
for feInt(Mg,I).
Proof. Let feInt(Ms, 1), e > 0, C > 0. For ¢, Cc find such a gauge & on I that
4 e CPy(I), A is 5-fine, Z5(4) < Cc implies
(23) l(MG).[fdm - S(1, f, 4, m)’ <.
I .

If A* € CPy(I), 4* is 5-fine, Z,(4%) < C, then 4* e CP,(I) by (21), Z5(4*) < Cc by
(22), hence (23) holds with 4 replaced by 4* and f € Int (M3, I).
Corollary. Let (22) and

¢ 1 Zy(4) £ 25(4) for AeCPy(I), Ies
hold. Then
Int (£, CPs, Z4, m), I) = Int (£, CPs, Zs, m), I)

and the corresponding integrals coincide.

Corollary. Int((#,, CPy, %,, ),I) = Int ((, CPy, Z,, ),1) = Int (M,,I) and
the corresponding integrals coincide.
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The latter corollary implies that we could have used X, instead of X; when intro-
ducing the M,-integral in Section 2.

Obviously, Int(M,,1) > Int(M,,I) and the corresponding integrals coincide.
(By Example 3, we have even the strict inclusion.)
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