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Časopis pro pěstování matematiky, roč. 108 (1983), Praha 

ON MA WHIN'S APPROACH 
TO MULTIPLE NONABSOLUTELY CONVERGENT INTEGRAL 

I H JIŘÍ JARNÍK, JAROSLAV K U R Z W E I L , ŠTEFAN SCHWABIK, Praha 

(Received December 30, 1982) 

J. Mawhin in [l] modified the Riemann-type definition of Perron integral in Rn 

by introducing a measure of "irregularity" Z(n) of a partition II of an n-dimensional 
interval. The main purpose of this generalization of Perron integral was to obtain 
the divergence theorem for differentiable vector fields or, in other words, to be able 
to integrate all derivatives of differentiable functions. Studying the properties of the 
generalized Perron integral Mawhin pointed out the fact that, unlike the usual 
Perron integral, the generalized one does not seem to have the additivity property 
(with respect to the domain of integration): If an n-dimensional interval / is parti­
tioned into intervals I1,12 and iff is generalized Perron integrable over V, i = 1, 2, 
then no proof is available off being generalized Perron integrable over I. 

In this paper we first give an example that the generalized Perron integral indeed 
is not additive in the above sense, and then modify Mawhin's definition, thus ob­
taining the additivity property mentioned above for functions integrable in our sense 
(Sec. 2, 3). At the same time, our definition will preserve the good properties of 
Mawhin's integral, namely, the divergence theorem will hold for all differentiable 
functions (cf. Sec. 4). In Sec. 5 we give a counterexample to the Fubini theorem for 
the integrals from Sec. 1 — 3. Sec. 6 contains some general convergence theorems and 
also the Lebesgue type dominated convergence theorem for the modified integral. 
Sec. 7 provides a general scheme applicable to all the definitions of integrals intro­
duced in the paper. 

1. D E F I N I T I O N S A N D A C O U N T E R E X A M P L E 

Let us recall the definitions of Perron and Mawhin's generalized Perron integrals. 
All intervals I c R" are assumed to be compact, i.e. / = [a, ft], a, be Rn, is the 
Cartesian product of compact intervals [af, ft,] c R with at < ft,, i = 1, ..., n. 

A repartition of the interval / is a finite family 

(1) n = {(xx,ll),...,(xm,Im)} 

356 



with xJelJi j\— 1, . . . , m, where {i1, ...... im} is a partition of i (consisting of non-
overlapping cornpact intervals). 

(Let us note that Mawhin in [1] used right-closed intervals, thus obtaining parti­
tions consisting of disjoint intervals. However, this change does not essentially affect 
our considerations.) 

A function S : I -» R+ = (0, co) is called a gauge on I, and a P-partition /7 is 
called S-fine if 

IJ ^B(xJ;d(xJ)), j = 1, ..., m, 

where B(c; r) = [ct - r, c- + r] x ... x [cn - r, cn + r]. 

Definition 1. ( [ l ] , Definition 8.) Let K be a Banach space. A function f:I -> X 
is said to be P-integrable if there is J e X such that for every e > 0 there is a gauge 5 
on i such that for every (5-fine P-partition II of I the inequality 

(2) \\S(l,f,n)-J\\Se 
171 

holds with S(i,f, 17) = J^f(xJ) m(lj), where *?* denotes the n-dimensional Lebesgue 

measure. 
We then write J = (P) j"7f and call J the P4ntegral off over I. 
(For detailed accounts of the P-integral see e.g. [2], [3], [4].) 
Before proceeding to Mawhin's definition of the generalized Perron integral, let 

us define the rate of stretching of the interval I as 

G(1) = [max (bi - af)]/[min (bt - at)] , 
i i 

i = l- . . . , w, and the irregularity of the partition Ii as 

Z0(n) = [maxcr(IJ)]l<T(I); 

j = 1, . . . , m. (Mawhin [ l ] used I instead of IV) 

Definition 2. ( [ l ] , Definition 9.) Let X be a Banach space. A function f:I -* X is 
said to be GP-integrable if there is J e X such that for every e > 0 and every C > 0 
there is a gauge S on i such that for every (5-fine P-partition II of I with Z0(ll) = C 
the inequality (2) holds. 

We then write J = (GP) j , f and call J the GP-integral off over I. 

Remark 1. Notice that <5-fine P-partitions 77 with I0(n) = C exist for C = 1. 
This can be proved as follows: If there exists such a r e / that I cz B(t, S(t)), then 
I7 = {(t,I)} is the desired P-partition. Otherwise replace I by intervals IJt j = 
= 1,2, . . . ,2 n , which are obtained by cutting I by hyperplanes orthogonal to co­
ordinate axes and passing through the center of i. Let J be the set of such j e 
€ { 1 , 2 , . . . , 2"} that there exists a telj that Ij cz B(t, S(t)). For j e / choose one of 
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the above points t, denote it by ti and make (tp Ij) an element of II ; for j$f 
divide Ij in a similar way etc. As 6(i) > 0 for tel, after a finite number of steps the 
desired P-partition II is obtained. Thus our definition makes good sense (cf. As­
sumption jn Sec.7). 

n 

--(/'•2>/2 

І 
~f 

o^* ўï+î 

JU 
2UÌ 

Fig.l 

Example 1. We shall construct a function that is GP-integrable but not P-in-
tegrable over a given (twodimensional) interval. (See Fig. 1.) 

Let Q+ = [0,1] x [0,1] c R2, denote 

RJ = (2"f - 2~ ( f+2 ) , 2"f) x (0,2"(f+2)/2) , 

Rt =(2- l*,2- ,-f-2-(£+2)) x (0,2"(f+2)/2) 

and define a function f: Q+ -»• W by 

/ ( * , y) = 

.23(i + 2-)/2 f ( ) r ( x ^ ) G j R 7 , 
23(- + 2)/2 for j X J ) e ^ } 

0 otherwise. 

To prove that f is not P-integrable over Q+ it suffices to recall two facts about the 
P-integral (cf. e.g. [2]): first, its additivity if the integration domain is partitioned 
into a finite number of intervals and, secondly, that the P-integral tends to zero if 
the integration domain contracts into a single point. Thus, if we set 
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I° = [0,r] x [0,5]; e' = [0,r] x [s, 1] ; 

Q" = [r, 1] x [0,1] , 

then under the assumption of P-integrability of/ over Q+ we should have 

(3) f ' f - f / + f f+[ /• 
JQ+ J/° JQ' JQ" 

However, choosing s = 2"°'+2)/2 and either r = 2~* or r = 2~* + 2"°'+2) we 
obtain j Q , f = 0 , JQ„f=l or j"Q„f = 0, respectively, which together with the 
relation lim j"/0f = 0 contradicts the identity (3). 

i-*oo 

Let us now proceed to the proof that f is GP-integrable and (GP) JQ+f = 0. Let 
£ >! 0, C > 0. Let us choose a gauge co: Q+ -> R+ so that it satisfies 

co{x, y)^i dist [(*, y); [) [dRJ u dRt)] 
i 

for (x, y) G Q+ \ (J (SKf u 3**)> (*> y) * (0, 0); 
i 

co(x, >>) = e 2"2( l+2 ) for (x, y) G (dR~ u 3i^+) , 
i = l ,2 , . . . , 

co(0, 0) = y = const > 0 (to be fixed later) . 
If I7 is an cu-fine partition of Q+, then it obviously includes a pair ((0,0), 1°). 

Assume 1° = [0, r] x [0, s]. It is clear that the "worst" case (i.e. the case when 
S(Q+9f, fl) differs from zero as much as possible) occurs if r = 2~J, s = Cr. Then 
the remainder that does not vanish is 

2"(y+2)C . 2~J . 23°'+2)/2 = 21~yV2C . 

It is evident that by taking y sufficiently small (the choice of y obviously depends on 
both e and C) we can make this value smaller than, say, |e. 

N6W all the other intervals of the partition FI split into three groups: those lying 
inside of either JR+ or RJ; those lying outside of all the rectangles JR+, RJ; and those 
intersecting the boundary of some of the rectangles. The contribution to the 
sum S(Q+,f, ft) corresponding to the first group of intervals is small because the 
individual terms for R? and RJ "almost" cancel each other; the sum corresponding 
to the second group vanishes since f(x9 y) = 0 outside the rectangles; and the third 
group of intervals again gives a very small contribution because of the properties of 
the gauge co. This shows that 

\S(Q+,f9n)\^e 
. . ' • • • * 

for every w-fine partition II with I0(ll) = C. (A rigorous proof requires merely 
a greater amount of elementary calculations.) Hence 

(GP)ľ f = 0. 
JQ* 
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Example 2. Let Q_ -= [—1, 0] x [0, 1] and let us extend the function / from 
Example 1 to Q_ by defining 

f(x,y) = 0 for ,(x,y)eQ_. 

Then evidently (GP) J Q . / = (P) J Q . / = 0, ( G P ) J ( 2 + / = 0 by Example 1, but 
(GP) JQ_ UQ + / does not exist. 

Indeed, the existence of (GP) JQ+ /followed from the fact that the rate of stretching 
of the intervals I0 which would "spoil" the sum S(Q + ,f, II) was too big, so that the 
irregularity of the corresponding partition was greater than C. This fact excluded 
such "bad" partitions, thus guaranteeing the GP-integrability (over Q+) of/. : 

However, now, when partitioning the whole interval g_ u Q + , we can modify 
the intervalI0 by extending it into Q_ in such a way that it becomes a squarp (which 
means o(l°) = 1) and at the same time remains cr>fine. Partitions including such 
intervals then give sums that are not near to zero, as was shown in Example 1 when 
P-integrability was considered. This shows tha t / i s not GP-integrable over Q_ u Q + . 

2. MODIFIED DEFINITION: M_-INTEGRAL 

For a P a r t i t i o n II of an interval I c= Rn let us introduce the modified irregularity 
as 

Z_(n) = f_™n__(dP)dmm(I?), n) 
; ! : i -' 

where d denotes the boundary, mn-_ is the (n — l)-dimensional Lebesgue measure 
and diam stands for the diameter of a set. 

Definition 3. A function/:I -> X (X a Banach space) is said to be M_-integwble 
if there is J e X such that for every e > 0 and every constant C > 0 there is a gauge 3 
on I such that tor every (5-fine P a r t i t i o n I/ of I with Z_(n) _i C the inequality (2) 
h o l d s . . -'.i ••;.: 

We then write J = ( M J J 7 / a n d call J the M_-integral o f / o v e r / . v. ...• 
. . ' . M i . ' v i L : 

Lemma 1. For every constant C there is a constant K such that any P-partition U 
with Z0(n) <_ C satisfies Z_(n) __\ K. ' , . , . . , . . 

P roof requires only elementary calculations. 

Corollary. If a function f:I -> X is M_-integrable, then it is GP-integrable and 
both integrals coincide. 

Lemma 2. Let C _ ^. .^(dIJdiam (I). Then for every gauge S on I there exists 
a 5-fine P-partition II of I with Z_(II) __l C. 
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Such a P-partition II can be obtained in the same way as in Remark 1. 
The following theorem is a modification of a theorem holding for the GP-integral 

(cf. [1]) to the M1 -integral. 

Theorem 1. Let I, K, L be compact non-overlapping intervals in R", I = K u L. 
Let f be M\-integrable over I. Then f is M^integrable over both K and Land 

(4) ( M 1 ) f / = ( M 1 ) f / + ( M 1 ) [ / . 
Ji JK JL 

Moreover, if C _ mn_x(pl) diam (I), s > 0 and if S is such a gauge on I that 

II f II 
5 ( I , / H ) - ( M 1 ) / = e 

I J i II 
for every S-fine P-partition II of I with r l v /7) = 2C, then 

(5) s^/nO-ÍMoJ^I < £ 

for every 5-fine P-partition II\ of K with -^(IIJ = 2C. 

Proof. Let C, e,8 be the same as in Theorem 1. Let II!, I72 be <5-fine P-partitions 
of K with I^IIi) = C, -Tlv/72) = C and let I73 be a <5-fine P-partition of L with 
2'1(I73) = C (cf. Lemma 2). Then II4 = II! u I73 and I75 = II2 u II3 are <5-fine 
P-partitions of I with I^II^) = 2C, I ^H s ) = 2C. We have 

S(K,f, II,) - S(K,f, I72) = 5 ( I , / II4) - S(l,f, II5) , 

\ ; , IIS(I,/II4)-S(I,/II5)II ^2fi, 
so that 

HS^/ I IO-S^/ I I , ) ! ! =2e, 

which proves the existence of the integral (Mj) \Kf. Analogously, ( M j J L / exists. 
The validity of (4) follows directly from Definition 3. 

Let n > 0. Now we can assume in addition that 

г II 
S(L,f, П3) - (M . ) fììйr, 

JL II 
and we obtain by (4) that 

f li 
SÍKJ^Ú-ÍMM f\\ = 

. J K II 

= S(l,f, n4) - (MJ [ / - S(L,L J73) + (M.) i / 
II Ji JL \ 
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= S(I, f, 174) - (MO f / + S(L,f, n3) - (Mi) f / = 
II J / II II J L II 

= e + n, 
which proves (5). 

Corollary. If I, H are compact intervals in Rn, H c I, and if / is Mi-integrable 
over I, then/is Mj-integrable over H as well. 

Theorem 2. Let I,K, L be compact non-overlapping intervals in Rn, I = K u L. 
Let a function f: I -> X 6c M\-integrable both over K and over L. Then f is M t-
integrable over I and (4) holds. 

Proof. Let s > 0, C > 0. Find gauges O*^, <5L on K, L, respectively, "associated" 
with the constant Je, C. Put 

{min [<5x(x), dist (x, L)] for x e K \ L, 
min [<5L(x), dist (x, K)] for x e L \ K , 
min [dK(x), <5L(x)] for x G K n L. 

Let a P-partition 17 of 1 be <5-fine and I^n) = C. Then 

nK = {(x*, K*); 0 * K* = J* n K, where (x*, J*) e 17} 

and analogously 

17L = {(x*, L*); 0 =1= L* = J* n L, where (x*, J*) e 17} 

are P-partitions of the intervals K, L, which are 5K- and <5L-fine, respectively. More­
over, .£i(17) = C implies that .^(LT^) = C, -£i(17L) ^ C since some of the summands 
of the sum defining 2'i(17) vanish and some other may decrease when we pass to 
It(nK), Ijjlj), but none of them increase. Hence 

S ( K , / , Л J Г ) - ( M 1 ) Ï / ѓh, 
Jк I 

s(LLяL)-(мof/Uie, 

which by the obvious identity 

S(l,f, 17) = S(K,f, nK) + S(L,f, 17L) . 
yields 

S(l,f, 77) - [ ( M . ) ] ^ / + (Mx) j / j | ^ e . 

This completes the proof of (4) and hence of Theorem 2. 
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Remark 2. While Example 1 shows that the GP-integral generally fails to depend 
continuously on the domain of integration, the following result can be proved for 
the Mj.-integral: Let 

I = [a, b] = [al9 &J x [a2, b2] x ... x [an, bn] , 
Kk = [a<*\ b] = [a<k\ 6 J x [a2, Z>2] x ... x [an9 bn] , 

where a ^ -> a1? aik) _ ax. Let/be Mi-integrable over/. Then 

(6) limíM^ľ / = (M.)ľ/. 
fc->oo JXk J j 

Proof. Denote Lk = cl(/\K*). Given c > 0, C = ^ . ^ S I ) diam(I), let S be 
such a gauge on I that 

f II 
S(/,/,i7)~(M1) / _ 6 

J/ II 
for every (5-fine P-partition I7 of I with .Tlv77) _ 2C. Put 

G = [a2, b2] x [a3, b3] x ... x [aB, b„] c: fl?""1 

and let I7* = {(gj9 Gj); j = 1, 2,..., m} be such a P-partition of G that Gj c 
cz B(gj9 iS((al9 gs))) a R"'1, j = 1, 2,..., m. There exists such an r that 

a(i° - 0i < ™n {i^((«i5 g/)); j = 1> 2> •••, ™} 
for fc _ r, so that 

H f = [fli, - f ] x G, c B(( f l l, a,), 5((a., a,))) c H" 
for j = 1, 2,..., m. Further, 

nk = {((augj), H<fc));I = l,2,...,m} 
is a 5-fine P-partition of Lk for fc _ r. Evidently, since I7* is independent of fc, we 
have 2̂ (17*) _ C for fc sufficiently large and thus (4) and (5) from Theorem 1 yield 

(MJ f/- (M.) f /1 =. 1 (Mt) í / | U 
Ji jKk II II J L k II 

(M.) I / - S(Lt)/, nk) + |S(L„/, 77fc)| 

_ e + (a f - a,) £/((«!, *,)) ^„-i(G,) 

which implies that (6) holds. 

3. ANOTHER MODIFICATION: M2-INTEGRAL 

A finite family (l), where {J1,..., Im} is a partition of 7 and xJ e I, j = 1,..., m, 
is called an L-partition of I. 
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(Notice that a P-partition is an L-paftition satisfying the additional condition xJ e 
elj

9 j = 1,. . . , m.) For an L-partition I7 of an interval I c Rn let us introduce 
another measure of irregularity as 

z2(n) = t™n-i(diJ)<ij, 
j=l 

where qs = max {dist (xJ, x); x e IJ}. 

Definition 4. A function/: / - > I ( I a Banach space) is said to be M2-integrabIe 
if there is J e X such that for every e > 0 and every constant C > 0 there is a gauge 5 
on / such that for every (5-fine L-partition II of I with !2(I7) = C the inequality (2) 
holds. 

We then write J = (M2) J 7 / and call J the M2-integral of/ over I. 

. Remark 3. It is almost evident that every M2-integrable function is Mi-integrable 
(over the same interval). Moreover, for n = 1 the sets of P-, GP- and M^integrable 
functions coincide, while the set of M2-integrable functions is contained (as a proper 
subset) in each of them. (Cf. [2]: for n = 1 a function is M2-integrable if and only 
if it is Lebesgue integrable.) 

Example 3. Let again Q+ = [0, l ] x [0, 1] c R2 and denote 

RT = (2"1 - 2 - ( f + 2 ) , 2 - f ) x (0 ,2" ( i + 2 ) ) , 

Rf = (2~\ 2" f + 2- ( f + 2 )) x (0, 2 - ( f + 2 ) ) . 
Define 

- a ; for (x9y)eR^9 

f(x9 y) = \ a, for (x9 y)eRf , 
0 otherwise, 

where oct > 0, 2"4l'ai -• 0, YJ2~^iai = oo. 

Then arguments similar to those in Example 1 show that / is Mi-integrable but 
not M2rintegrable. Indeed, for every gauge d we can find an L-partition I7\ such that 
\S(Q+9f9 n±)\ < 1 and another L-partition I72 with S(Q+9f, I72) > 2. (The partition 
I72 is obtained by putting (0, I*") e U2 for i = p + 1, . . . , p + q9 where P is such 
that £~ c B(0, (5(0)) for i > p and q is such that ""f=p+i 2~4% > 2.) Moreover, 
we can at the same time satisfy the conditions -£2(Hi) ^ C, -"2(^2) Ŝ C with <~ 
independent of d9 IIl9 n2. 

It also can be proved t h a t / i s P-integrable over Q+. 

Remarks . 4, Denoting by Int (P), Int (GP), Int (Mx) and Int (M2) the families of 
functions integrable in the respective sense, we thus have the following inclusions 
(for n > 1): 

Int (GP) | Int (M t) | Int (M 2 ) , Int (Mt) 3 Int (P) , • 
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Int(M2)*Int(P). 

5. Theorem 1 holds with MA replaced by M2 since, when splitting a partition /7 
with I2(n) _ C into partitions //K, UL as in the proof of Theorem 1, we conclude 
by the same argument that I2(IJK) ^ C, I2(nL) _ C and the whole proof works in 
the case of the M2-integral. 

We conclude the present section by mentioning some elementary facts on the 
Mj- and M2-integral that will be used without special reference in the sequel, 
especially in Sec. 6. We formulate them for the M^integral only. 

Remarks. 6. If N c: / with m(N) = 0 andf: / -> X satisfies f(x) = 0 for x e I \N 
then f is Mi-integrable over / and (Mx) j"7f = 0. This follows from the fact that such 
a function f is Lebesgue integrable and 0 = (L) j"7f = (Mj) J7f. 

7. If h: I -> R is M^integrable and satisfies h(x) ^ 0 for all x e I then (Mx) J7 h ^ 
^ 0. Indeed, the converse inequality would contradict the fact that S(/,f, //) ^ 0 
for every P-partition // of/. Consequently, if f, g:I -• R are Mj-integrable over / 
and f(x) = g(x) for all x e /, then (MJ j"7f = (Mx) |7 #. 

4. EVERY DERIVATIVE IS BOTH M r AND M2-INTEGRABLE 

Mawhin's Theorem 1 [ l ] (the divergence theorem for differentiable functions) 
holds for the Mt- and M2-integral as well, the proof being a. mere verbatim trans­
cription of Mawhin's proof. Let us therefore present a closely related theorem, the 
contents of which is expressed by the headline of the present section. 

Theorem 3. Let I = [a, b~\ c= Rn be an interual, Q a domain such that I cz Q c 
a Rn. Let a function f: Rn -> R be differentiable on Q. Then df/dx- is both Mr and 
M2-integrable over I and 

(7) (M) f %- = f ̂ ... p"r/(-*i. &. • • •• Q - /(a„ {2, • • -, {.)] dfc ... d£, , 
J/3*1 Ja2 J«„ 

where (M) stands either for (Af,) or (M2). 

Proof. For any interval L = [clf d<] x ... x [c,,, d„] denote 

<*>(L/)= P. . . [Vfa.fc. •••.«.)-/(-i.k {.)d{2...d{.. 
J C2 J Cn 

(Thus the right-hand side of (7) is denoted by *(/,/).) 
We shall need the following auxiliary result: If {Z1,..., /m} is a partition of /, then 

(8) * ( / , / ) - I <K-V). 
i = i 
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An elementary rigorous proof of this identity is rather lengthy; nonetheless, let us 
present at least its main points. First of all, the identity (8) holds if the partition is 
"net-like'*, that is, if there are finite sequences 

a. = c? < c] < ... < C = bi9 i = l, ..., n, 

such that the partition consists of all intervals 

[ci\c{> + 1] x ... x [cj",cj"+1], J, = 1 m,-

Let us show this at least for n = 2 to avoid too complicated indices. Let / = (J Kij, 
where f'y 

K'7 = [c„ ci+l] x £ d „ d l + 1 ] , 

a- = cx < c2 < ... < cp = &!, a2 = dt < d2 < ... < dq = b2. Then 

i<K--v)--i1,i;1
:p

+,[/('!«+i.«)-/(-*.«)]^-
i,j i = 1 J=l J dj 

= 1 fV(c.+i.£)-/(c.,<,)]d« = £ f / M - * -'Z f/(c«.€)d« =" 
, = 1 Jrf, , = 2 J«2 i = 1 J«2 

= P[/(C,. 0 " /(C„ I) & = f V(6l. 0 - /(«L 0] d^ = *('•/) • 

For w > 2, the proof is analogous. :' ; 
Now, if {Z1,...., I"1} is an arbitrary partition of /, it is easy to constructs "net-like" 

partition A of/ such that its "restriction" to any IJ, j = 1,..., m, again represents 
a "net-like" partition of V (this is achieved by arranging the i-th coordinates (i = 
= 1,..., n) of all intervals Z1,-..., /m in increasing sequences and taking all intervals 
whose end-points have these coordinates). Thus, if we write 

1} = \JL{, lie A, 
*-- ! • 

then « . 
m kj 

I = U U4 
and, using (8) (for "net-like" partitions!) once for/ and once forIJ\ we immediately 
obtain 

*(-"./) = I *(L>/) = Z £ *(-4.7) = t *(IJ>/). 
Leyl j = l k = l J = l 

that is, (8) holds for any partition. 
Now it is not difficult to complete the proof of Theorem 3. Let 8 > 0, C > 0, 

x e I and denote dfjdxk = fk. Then there exists 8 = 8(x) > 0 such that for every 
y e B(x; 5(X)) we have 
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\f(y) - /(*) - E/í(x) O, - *,)( = 6l b - x|| 
i = l 

Thus 6:1 -* R+ can be viewed as a gauge on /. Let a <5-fine P-partition // be defined 
by (1) and set 

*'G0 = W) + Z// (*y) (* - *J)> *'M = f(y) - 0'W • 
i = l 

Then we easily find that <P(IJ, gJ) = fi(xJ) m(lJ) and we can estimate 

\s(i,fi,n)-$(i,f)\ = 
m m 

= I I L/i(*;) "('') " *(*'. 9j) - *(I\ hJ)]\ = | £ *(/', fc')| = 
/ = i / = i 

I m /»b2 t*fcn 

Z . . . [*y(6i,{2,... ,f-)-* /(«i,€2,... ,f-)]d{2 . . .df. ^ 
J=1J«2 J«n 

= 2£lfdiam(H)-f^ = 2a1r1(I/) 
/=i b{ - ai 

provided the sum S(I,f[, U) corresponds to the M1-jntegral; hence choosing et = 
= ieC'1 and assuming Zi(n) ^ C we obtain 2e1 Ix(n) g e. Similarly, considering 
the M2-integral we obtain 

\s(i,f[, n) - *(i,f)\ = 2sx i qj -^!L = 2£l i2(n), ' 

j=i b\ - a\ 

which yields the same estimate as above for <5-fine L-partitions with 2,
2(i/) ^ C. 

5. A COUNTEREXAMPLE TO THE FUBINI THEOREM 

In the next example we shall construct a differentiable function/: R2 -> R such that 
its partial derivative g = 3//3y is not P-integrable in x, i.e., (P) JJ #(£- y) d^ does not 
exist for almost all y (cf. Remark 2). This fact disproves the Fubini theorem for the 
GP-, Mt- and M2-integral, since by the results of Sec. 4 the function g, being a deriva­
tive of a differentiable function, is integrable in each of the above senses (but not P-
integrable). 

Example 4. We shall construct the function g on the square Q+ = [0, 1] x 
x [0, 1] and put 

(9) f(x,y) = 
g(x, rf) át] for (x, y)єQ+ , 

otherwise . 
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Let us first construct an auxiliary function <p: [0 ,1] —> R, <pe C°°(0,1). (See 
Fig. 2.) 

Fig.2 

Denote Vt = (2~\ 2 " l + 1 ] , i = 1, 2 , . . . and let sn = \(2~l + 2"*+1) be the center 
of the segment Vi9 sitk+1 = | ( 2 _ / 4- sik) for fc = 1, 2, 3. We set 

<p(x) = 0 for x 6 (2"f, s i4] and for x = 0, 

<p decreasing in [s i4, s i 3 ] ; 

<p(x) = - 2 _ 2 i / i for x e [s i3, s i 2 ] ; 

<K5" + 0 = <p(si2 - 0 for { e [0, 2" 1" 2 ] ; 

<K*a + 0 = -<PC% - «) for { e [0, 2"1"1] , * = 1,2 

It is easy to establish the estimates 

<p(x) dx = 2-(-2 . 2-2ilt = 2 " 3 i " 2 / i , Í 
.ІS, 
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Í: q>(x) dx = 0 . 
I 2 ~ * 

Now put 
g(x, y) = <p(x) [sin n/^]17'* for (x, y) e Vf x [0, 1] , 

defining [a]^ = \<x\p sign a. Then 

(10) f g{Z,y)dt = 0, 

g{Z,y)dt\ = 2-3i-2/i|sin7i/I.>;|1/i. 

Denote At = {y e (0, l ] ; |sin nl^ — 2 '}, i = 1, 2, Then there is a constant c 
such that 

m(At) ^ 1 - c 2 _ i . 
00 00 

Put A = IJ fl ^i- By a standard argument we obviously have m(A) _ 1 — c 2~J 

1=1i=J 

for every 7 = 1, 2 , . . . , hence m(A) = 1. Thus for a.e. y e (0, 1] we have 

I J Sц 

giţ,y)àt ьi-^-Чíiг-y1 = ľìl,*1)ii-

Choosing lt suitably and combining this estimate with the identity (10), we immediate­
ly conclude that the P-integral JJ g(Z, y)dZ does not exist for a.e. y e [0, 1]. (By 
Remark 3, this means that the GP-, Mt- and M2-integrals do not exist, either.) 

It remains to prove that the function / defined by (9) is differentiable in R2. It is 
evident that it is only necessary to prove differentiability at the points (0, y), y e 
e [0, 1]. However, we easily obtain the estimate 

|/(*. y)| -̂  kW| -1 rCsinKl^ '̂dif = 

= 2" 2 i / i . / r 1 = 2 " 2 i for xeVi9 1 = 1, 2 , . . . . 

This estimate implies that f(x, y) = #(x), which immediately yields differentiability 
of / at the points (0, y). 

Thus, Theorem 2 implies that g is GP-, M^ and M2-integrable over Q+ and j 

1 f i 
rj) dr\ dZ 

JQ+ J O J O 

(the left-hand side integral being one of the three just mentioned). 

Remark 8. Since the Fubini theorem holds for the P-integral (see again [2]), 
our example enables us to amend Remark 4: 
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Int (Mi) J Int (P) , Int (M2) * Int (P) 
(again for n > 1). 

Example 5. We know (cf. Remark 2) that the function H(y) = (MJ JQ h, where 
2y = [Q, 1] x [0, y~], is continuous on [0,1] provided the integral (Mx) j Q l h 
exists. We will show that H is generally not differentiate. Put h(x, y) = \(p(x)\ . 
. [sin Tc/|j]1/£ similarly as in Example 4 for (x, y)eVt x [0,1]. Fix positive integers 
i, k and evaluate 

I oo / • 2 - - ' + - r(k+l)/lt 

= Z kWl [sinic/^'dyd* . 
| I=1 J 2 - / J&//i 

However, for j > i the inner integral vanishes because of the oscillations of sine, so 
that we may write 

( k 4- 1\ /k\\ I r2~i+1 / • (*+->/ - . 

---ti) - H ( | | * I |^(x)| j [sin nliyy« dy dx -
i - 1 /•2">+i f ( * + D / / , 

" Z kW|dx Isin^l^dj! . 
J=1J2-J Jkfli 

Routine calculation yields 

2" 3 ' " 1 / ; = 2 " ^ + 1 ) . 2-2''lj S f J\(x)\ dx = 2-J . 2~2Jlj = 2-^lj . 
Jl-J 

Hence 

H(^J-) - HÍ-) ^ 2-"-%.— - '^2-^Vf1 = -2~3 i -1,2-Vljll,. 
\ h ) \lj nit J=i n ;=i 

Consequently, 

г-i-^-үi-vij. 
к 1=1 

It.is clear that by a suitable choice of Jf's we can make the right-hand side tending 
to infinity as quickly as required (with i -* oo). 

Thus we may infer: (i) H has a finite derivative for no z e [0, 1]; (ii) no a-priori 
modulus of continuity for H exists. 

6. CONVERGENCE THEOREMS 

([In [l] i . Ma whin proved the Levi-type monotone convergence theorem for the 
GP-integral. We follow here the idea of the proof of convergence theorems for the 
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P-integral as presented in [2] and give the corresponding results for the case of the 
Ma- and M2-integrals. Since the results as well as their proofs are completely analo­
gous in both cases, we formulate them for the Mj-integral only. The results for the 
M2-integral are obtained by replacing M t by M2 and, in the proofs, the P-partitions 
by the L-partitions. 

F'irst, we prove a general convergence theorem. 

Theorem 4. Let (fk)keN be a sequence of functions fk : / -* X (X a Banachspace, 

I c= Rn a compact interval) satisfying the following conditions: 

(i) For each keN,fk is Mrintegrable over I. 

(ii) The sequence (fk)keN converges pointwise on I to a function f : / -+ X. 
(iii) For every e > 0 and every constant C > 0 there is a gauge d on I such that 

for every 5-fine P-partition II of I with -Ti(/Z) ^ C the inequality 

( Ц ) S(I,fk, П) - (M.) ľ/J ѓ s 
J r II 

holds for every keN. 

Then f is Mrintegrable over I and 

(12) l im(Mi)ff f c=(Mi)ff. 
*->°° J/ J / 

Proof. Given e > 0, C > 0, assume that 3 is the gauge corresponding to \e, C by 
the assumption (iii), i.e. we have 

0 3 ) ' \s(ijk, П) - (M.) Г 
II J/ 

fã ѓ џ 

for every (5-fine P-partition II of I with -Ti(H) ^ C and for every keN. 

By (ii), for every fixed (5-fine P-partition // with Ei(ll) ^ C there is k0 e N, such 
that 

(14) \\S(I,fk,II)-S(l,fn)\\ ^ie 

for k e N, k ^ k0. 

Combining (13) and (14) we infer that for every e > 0 and C > 0 there is a gauge 8 
such, that for every (5-fine P-partition II of / with Ii(n) ^ C there is k0eN such 
that the inequality 

(15) S(l,f,П) -(M.)Г/Jś 
J/ II 

holds,for keN, k ^ k0. Hence for k, IeN, k ^ k0, I ^ fc0 we have 
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|(M.)|/*-(M,)J/irg2e, 

>Vhich implies that the sequence ((Mi) iifvkeN 1s a Cauchy sequence. Thus it possesses 
a limit in the Banach space X, i.e. 

l i m ( M 1 ) f A = = a . 
k-ao J j 

Finally, by (15) we have 

||S(/,f, 77) - a|| = lim |s( / , f 77) - (Mt) f fjl = £ 
* - ° ° l l J / II 

for every <5-fine P-partjtion / I with X^/J) ^ C, which implies the Mj-integrability 
off as well as the equality 

( M . ) f / = a = l i i n ( M . ) f / t 
Ji *-"« Ji 

Remark 9. Notice that Theorem 3 is valid even for the GP-integral. The assump­
tion (iii) may be called the Mj-equiintegrability of the sequence (fk)keNm ^ l s ^is 
assumption that makes the proof of Theorem 3 so easy. On the other hand, (iii) is 
a very strong assumption and not easy to verify. In the sequel, restricting ourselves 
to real functions, we replace (iii) by another condition which together with Theorem 3 
easily yields both the Levi-type monotone convergence and the Lebesgue-type 
dominated convergence theorems. 

Let us now prove the following Saks-Henstock lemma (see also [ l ] for a slightly 
different version). 

Lemma (Saks-Henstock). Let f: / -> X (X a Banach space, I c Rn a compact 
interval) be Mt-integrable over I. Let 5 be a gauge on I corresponding to e > 0, 
C < 0 in the definition of the Mx-integral (cf. Definitions 3, 4). Assume II = 
= {(x1 ,/1), . . . ,(xm , /m)} is a b-fine P-partition of I with Ix(n) = C. 

Then for any finite sequence of integers mj, j = 1, ..., /, such that 1 < mx < . . . 
. . . < mx < m the inequality 

(16) 1 i \f{*mj) Himj) ~ ( M 0 [ /111 = * 
111=- L JimJ Jll 

holds. 

Proof. For m = / the lemma is a trivial consequence of the definition. Thus as­
sume m — / = k > 0. Denote the intervals V not appearing in the sum (16) by K\ 
i = 1, . . . , k. 

Let n > 0. Since fis M rintegrable over every interval K\ i = 1, . . . , k, there exists 
a gauge dt: Kl -> R+ on Kl such that <5t(x) g 8(x) for all xeK* and such that for 
every <5rfine partition II\ of K{ with I j ( i l | ) g mn-^K1) diam {K{) the inequality 

372 



S(K',f, Пt) - (M.) ľ f\\ < цЏ + 1) 
J к ' II 

holds. Let us now define the P-partition 
k 

ft = {(xm\r%..., (xmi,im)} u{jnt. 
i = i 

Then 77 evidently is <5-fine and 

-*i(fl) = £ ^ i ( a n diam ( n + £ î Ho = 
z = i i= i . 

I k 

= Z ^ - i ^ / ^ d i a m ^ ) + £ tvf--1(5.K,)diam(.Kl) = ^lv77) = c • 
/ = i i = i 

Hence we have by the assumption 

s(/,/,/rj-(M1)r/| = 
j / ii 

= 1 £/(*"') ̂ (Im0 + £ S(«'./, IIO - X (M.) f / - i (MJ f /j | <: e 
| | / = 1 i = l j=l J jrttj i = l Jj^j || 

and, consequently, 

||£ \f(xm^)^(n-(M1)[ / | = ' 
P = I L J/»J JII 

= E + ||£ fax1,/, J7,) - (MO f /111 = £ + £ -5— = £ + q 
| | i = i L J * * III 1=1 fc + l 

as well. Since r\ has been arbitrary, (16) immediately follows. 

Theorem 5. Let (A)kerV oe a sequence of functions fk: I -> R (I c Rn a compact 

interval) satisfying (i), (ii) from Theorem 3 and 

(iv) there is a constant K > 0 such that for every finite partition {J1 , . . . ,Im} 

of I and every finite sequence of positive integers ku ..., km the inequality 

Z(Mi) [ fAйк 

holds. 

Then the function f is Mx-integrable over I and (12) holds. 

Proof. We shall prove that the assumptions of Theorem 5 imply those of Theorem 
4, i.e., (iv) implies (iii). 

For peN9 denote by !F the collection of all functions h : I -• R for which there 
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exists a partition {J 1,..., Jm} of the interval I (i.e., J 1 ,..., Jm are non-overlapping 
m 

compact intervals, \J JJ = /) and kx,..., kmeN, k{ > p for i = 1,..., m, such that 
1=1 

Қx) = fki(x) for x є J ř , Ï = 1, . . . , m 

(If x e dl{ n 5H, i =f= j , we choose one of the values fki(x),fkj(x) arbitrarily.) 

The collections 3Fp have the following properties: 

(a) If pl9 p2 eN, p1 > p2, then &Pl a &p2. 

(P) Every function he ^ t (and hence, by (a), every function h e SF p for any peN) 
is Mj-rintegrable. (This immediately follows from Theorems 1, 2 and Remark 6.) 
Moreover, by (iv) we have 

|(M,) f h\ < K 
\ Ji I 

provided h e J2^. 

(y) We have 
lim hp(x) = f(x) 

p-*co 

for x el provided hp e&p,pe N. (Cf. (ii).) 

(5) Given e > 0, then for every peN there exist gp, Gpe &p such that 

inf {(M.)£/i; he^p} + -J-- > (MOJ* ,̂ 
and 

S U P { ( M l ) l ' ' ; * * * * } ~ 2 ^ < ( M l ) { r
G " -

(e) Given s > 0, peN, he 3F p and a finite system of non-overlapping (compact) 
intervals J1, J2, ..., J* cz /, then 

i(MJ f 0, - -£- < t(MJ f * <.1 (Mjf Gp + -±- . 
J s - J J./ -- J=l J j i i = - Jj-* --

Indeed, if e.g. the second inequality did not hold, then there would exist a function 
fi e &'v such that 

i<M-)f G* + ;£i<i(M-)f fi-
1 = i J jy -J 1=1 Jjy 

Defining now a function h° on 7 by 

Л°(x) = 
K(x) for x e (J ^ 

1=i 

Gp(x) otherwise , 
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then h° e !Fp and by (<5) we have (using Theorem 1) 

( M . ) J V > ( M j j \ r , + ^ > sup j ( M , ) J \ ; h e ^ p j , 

a contradiction. The other inequality can be proved similarly. 

Let us now proceed to the proof of (iii). Let e > 0 and C > 0. By (y) we have 
gp(x) -> f(x), Gp(x) ->f(x) with p -• oo for every x e I Hence for every x el there 
is p '= p(x) e AV such that for all fc 6 AV, fc > p(x) we have 

(17) |f*(x) - a p W(x) | < M«*(I) + -Y1 . 

|/*(*)-W*)l<M~(-') + -r1.-.. 
Further, for p e N there exists a gauge <5P on I such that for every <5p-fine P-partition I7 
of I with Ii(n) < C the inequality 

(18) S(/,Й,ЛJ-(M.)JЧ|<-^-. 

holds with h = gp and h = Gp and fc = fp. 

Choose a gauge <5 on / so that 

S(x) = min (5t(x), <52(x), ..., <5p(JC)(x)) 

for every x e I and assume that 

I7 = {(x1,/1),(x2,/2),...,(xw,r)} 

is a <5-fine P-partition of I with -^(II) ^ C and fc e N. Then 

S(/,fk,i7) = £fk^)^(P)-= 
I=i 

m m 

= E/*(*'M'J) + E/*(*V('y)-
1=1 1=1 

P(xJ)Zk p(xJ)<k 

In the second sum we have by (17) 

M*S) > Gp(xJ)(x'-) - ie(™(l) + l ) " 1 , hence 

X Л И ^ и > Е ^(^)И-И - МЧ') + I)"1 I - И = 
1=1 1=1 1=1 

*>(*')<* Р^)<к ^)<к 

= 1 С р ( ^ И ^ И - ^ 
1=1 
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and 

S(l,fk, n)> £ fk(x
J) *n(V) + £ Gp{xJ)(XJ) m(V) - *£ = 

171 I=l 
p(xJ)Zk P{xJ)<k 

= £ A(*"0 **(IJ) + l" £ Gr(x )̂ **(/>) - ie . 
y = l - r = l 7 = 1 

/>(*•>)£* P(*-0 = r 

Applying (18) with h = fk, h = Gr and the Saks-Henstock Lemma to the sums on 
the right hand side we obtain 

(19) 

S(l,fk,n)> £ (M.) f A - - i - + J1 [ £ (M.) f G, - - i - 1 - i«. 

Since the function ffc by definition belongs to all systems 2Fr with r = 1, 2, ..., fc — 1, 
we have by (e) 

k - l m /• k - t [" m /• -1 m /• fc-1 

I E(M.) G^I I (Mi) A - ~ = I ( -* . ) / . - .£2- ' ; ' . 
-%AU J" r=,LP(i7>U J" 2 J *#<,. J" -=1 •-
This together with (19) yields the inequality 

s(i,fk, n)>£ (MO f A - * iV'-2 - i* = (M,) f A -
j=- J /J '=i J/ 

In a completely analogous way (making use of #p instead of Gp) it can be shown that 

5(/,ffc,iI)<(M1)fffc + £, 

which together yields (11) from (iii) (Theorem 4). Hence the assertion of Theorem 5 
follows by virtue of Theorem 4. 

Theorem 5 makes it immediately possible to derive the Levi-type monotone 
convergence theorem and the Lebesgue-type dominated convergence theorem. We 
shall present the proofs of both of them. 

Theorem 6. Let (fk)keN be a sequence of real functions, fk:I -*> R, I c= Rn an{ in­
terval, such that (i), (h) from Theorem 4 holds, 

(v) there is K > 0 such that |(M-) J7/ t | S K for all keN, and 
(vi) for all keN and xel the inequality fk+i(x) ^fk(x) (or fk+1(x) gfk(x)) 

holds. 

Then f = limf* is M^integrable over I and (12) holds. 
k-*<x> 
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Proof. Given a partition {I 1 , . . . , Im} of I and a finite sequence kl9..., fcm of positive 
integers, then using the monotonicity property of the M^integral (Remark 7) and 
(vi) we obtain 

(MO f /„ g (MO f fkj S (MO f / , , 
J u J /' J u 

where /i = min (ku ..., km) and v = max (kl9..., fcm). Consequently, by (v) we have 

- K = (Mt) ff, = £ f fkj = (MO ffv = K. 
J/ J=-J/ i J/ 

Thus the assumption (iv), Theorem 5, is fulfilled and the assertion of Theorem 6 
immediately follows. 

Remark 10. Replacing (v) in Theorem 6 by 

(v*) lim (M2) fk exists 
* - 0 0 J , 

we obtain the Levi-type monotone convergence theorem for the Mj-integral in the 
form given by J. Mawhin in [ l ] for the GP-integral (cf. Definition 1). 

Theorem 7. Let (A)^6/v be a sequence of real functions fk:I -+ R, I a Rn an 

interval, such that (i), (ii)for Theorem 4 holds and 

(vii) there exist M\-integrable functions g,h:I -+ R such that g(x) = fk(x) ^ 
= h(x) for all keN and all x el. 

Then the function f : I -> R is M^integrable over I and (12) holds. 

Proof. Assume again that {I1, ...9I
m} is a partition of I and fclf..., fcm a finite 

sequence of positive integers. Set K = max (|(MJ J7 g\, \(Mt) Jf h\). Using again 
the monotonicity property (cf. Remark 7) and (vii) we obtain 

(MOf íSá(M0'f /4 ,š(M0f * 
Ju Ju Jv 

for j = 1, . . . , m and, consequently, 

- K = (MJ J g ^t(Mi)\ f*j = (M0 f * = «• 

Thus (iv), Theorem 5, holds and the assertion of Theorem 7 follows. 

Remark 11. Let us point out that our proof of Theorem 5 is strongly based on 
Theorem 2 that fails to hold for the GP-integral, as, was shown in Example 2. Hence 
the proof cannot be applied to the GP-integral. Since we have not been able to find 
a counterexample, either, the problem whether a Lebesgue^type dominated conver­
gence theorem holds for the GP-integral remains still open. (Cf. Remark 3 in [l] .) 

377 



7. GENERAL SCHEME FOR THE DEFINITION OF THE M-INTEGRAL 

The three definitions of integral introduced above suggest the following general 
scheme. 

Let J9
m/ be some families of subsets of a metric space (G, d). A finite collection 

(20) A = {(tj9JJ);j = l9...9m} 

is called an abstract partition of I e J if tj e I, Jj e / for j = 1, . . . , m. Let CP(I) 
be a collection of abstract partitions of I for I e J. 

(For example, for J we can take the set J1 of all nondegenerate compact intervals 
in Rn

9 put / - = Jx and define CPX(I) as the set of all P-partitions of I and CP2(I) 
as the set of all L-partitions of I. 

Let 1(A) e [0, oo] for every A e CP(i). (Thus I is a nonnegative function defined 
fpr all A e (J CP(I) and possibly for some other A's as well — in particular, we may 

us 
take the functions I09 Il912 from the definitions of the GP-, Mt- and M2-integrals.) 

A function S :I -+ (0, oo) is again called a gauge (onI). We say that A is <5-fine if 
the abstract partition A satisfies the following condition: 

J j czB(tj9S(tj))9 j = 1, . . . , m . 

The following assumption on CP(I) plays a fundamental role: 

Assumption. For every I e J there exists such a C > 0 that for every gauge 3 on I 
there is such a A e CP(I) that A is 5-fine and 1(A) <;. C. . 

Finally, let m : / -* R and denote 

S ( / , / , A , ^ ) = £ / ( 0 ) ^ 1 ) i' 
1=i 

for / e J9 f : I -• R9 A e CP(I) defined by (20). 

The concept of the M-integral is associated with the quadruple (J9 CP, I9 <m)\ 
we write 

M = (J9 CP, I, m) . 

Definition 5. Let I e J9 f: I -» R. If y e R is such that for every e > 0 and C > 0 
there is a gauge 5 on J such that for every <5-fine A e CpP(i) with 1(A) ^ C the in­
equality I 

\y-.S(l9f,A,m)\£B 

holds, then y is called the M-integral off over 19 f is said to be M-integrable and we 
write y = (M) \jfAm. 

By Int (M, J) we denote the set of a l l / : I -+ R that are M-integrable over / . 

Example 6. We obtain the integrals from Sections 1, 2, 3 by setting, respectively, 

Mo = (Jl9CPi9Z09»t) (the GP-integral), * 
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M. = (./., CP., Z., m), - ' 

M2 = (*/., CP2, Z2, *»). 

Further, if we put Z3(A) = 1 for all A's, 

M3 = (./,, CP„ r3, .*), 
M4 = (.i*".,CP2,Z3,*.), 

then the M3-integral is the Perron integral and the M4-integral is the Lebesgue in­
tegral. (In all the above formulas, m stands for the Lebesgue measure in W.) 

Even this very general setting allows to prove the following result. 

Theorem 8. Let J, CP3, C P 4 , I 4 , 1 5 and c > 0 be given, let 

M5 = (y , CP3, Z4, m), 

M6 = (J, C P 4 , 1 5 , m) 

and assume that 

(21) CP4(i) => CP3(7) for lef, 

(22) IS(A) < c ZA(A) for A e CP3(i) , I e J . 

Then 

and 
Int (M6, I) <= Int (M5,1) 

( M 6 ) f / d ^ = ( M 5 ) f / d * 

< s , 

forfeInt(M6,Z). 

Proof. Let fe Int (M6, / ) , e > 0, C > 0. For e, Cc find such a gauge S on I that 
A e CP4(/), A is <5-fine, Z5(A) = Cc implies 

(23) | ( M 6 ) f f d ^ - S ( / , f , A , ^ ) 
I J / 

If A* e CP3(/), A* is (5-fine, _£4(A*) ^ C, then A* e CP4(/) by (21), Z5(A*) = Cc by 
(22), hence (23) holds with A replaced by A* and fe Int (M5, / ) . 

Corollary. Let (22) and 

c"1 ZA(A) = Z5(A) for A e CP3(/) , IeJ 

hold. Then 
Int ((./, CP3, ZA9 m)91) = Int ((./- CP3, .T5, **), / ) 

and the corresponding integrals coincide. 

Corollary. Int ((Jl9 CP l 5 Zl9 m)91) = Int ((Jl9 CP^ Zl9 m)91) = Int (Ml91) and 
the corresponding integrals coincide. 
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The latter corollary implies that we could have used I2 instead of IY when intro­
ducing the M^integral in Section 2. 

Obviously, Int(M l9/) 3 Int(M2, /) and the corresponding integrals coincide. 
(By Example 3, we have even the strict inclusion.) 
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