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Časopis pro pěstování matematiky, roč. 109 (1984), Praha 

TIME-PERIODIC SOLUTIONS OF TELEGRAPH EQUATIONS 
IN n SPATIAL VARIABLES 

HANA PETZELTOVA, MILAN STEDR*, Praha 

(Received June 27, 1983) 

1. INTRODUCTION 

The aim of this paper is to extend to the case of n spatial variables a result of 
P. H. Rabinowitz [3] on the existence of classical solutions of the equation 

(1.1) utt - uxx + ccut + sg(t, x, u, ut, ux, utt, utx, uxx) = 0 , x e (0, n) 

with the boundary conditions 

(1.2) u(t, 0) = u(t, K) = 0 

and the periodicity conditions 

(1.3) u(t + CD, x) = u(t, x) . 

Under the assumption that g is a sufficiently smooth function, periodic in t with 
period co, a > 0 and e is close to zero, P. H. Rabinowitz proved that there is a clas
sical solution to (1.1) —(1.3). 

The classical Newton method cannot be used for proving this result since the 
"loss of derivatives" appears as a consequence of the presence of the second order 
derivatives in the composition operator g(t, x, u,..., uxx). To overcome this dif
ficulty P. H. Rabinowitz applied a Moser theorem [2] in which the existence of an 
approximate solution to the linearized equation is required. This means that a viscosi
ty term is added to the linearized equation and the exact solution of the equation so 
obtained stands for the approximate solution of the linearized equation. 

This approach is also applied in [5] to the equation 

w» + uxxxx + ocut = e G(u) 

and in a more general form in [6] to the equations of the type 

utt + (— l)p uxiP + aw, — u = e G(u) 

where G(u) = g(t, x, u, ut, ux,..., uxPi utx, utt) or G(u) = g(t, x, u, ut, ux,..., uxP, 
utx> UX

2P)' 
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We are going to extend the result of [3] to the case of n spatial variables. The 
elliptic operator occurring in the equation is changed accordingly. We shall apply the 
theorem from [1] which requires to solve the linearized equation only. As the "loss 
of derivatives" occurs in the f-variable we shall use a sequence of spaces whose ele
ments improve their differentiability properties in the variable t. Since all the functions 
are periodic in t it is easy to introduce the truncation operator from [ l ] by means 
of truncated Fourier series. 

We shall suppose that Q c Rn is a bounded open domain with a smooth boundary. 
We set 

Q = [0, 2n~\x Q, 

and from now on we shall suppose that all functions occurring in the problem are 
real-valued and periodic in t with the period 2TT. Other periods than 2n can be treated 
similarly. 

The following notation will be used. For a = (al5 ..., a„) we shall denote |a| = 
= a2 + ... + an and D% = Da

x\ . . . D%\ Similarly, DJ = dJjdtJ. For y = (y0, y'), 
Y = (Vu •••> 7n), we put \y\ = y0 + | / | and D]tX = D\°DX'. 

By HP(Q), p a positive integer, we denote the space of all functions v periodic in t 
with the period 2n with Dy

txv e L2(Q) for |y| = p. We set 

|v | |p = max{|I)JiXv||; \y\ = p} 
where 

.1/2 
HI =( f v2(t,x)dxdt\ 

By 

G(u) = g(t, x, u, ut, utt, Vu, Vut, VVw) 

we denote the composition operator containing all derivatives D]xu, \y\ ^ 2. The 
function g is supposed to be smooth and periodic in t with the period 2TZ on the set 
R x Q x 0, where 0 is a neighbourhood of zero in Rx, x = 3(n + 1) + n(n - l)/2. 
Further let us suppose that we are given an operator A by 

(1.4) (Au) (x)= £ ( - if Di(AaP(x) Dx u(x)), 
I « I . £ 1 , I / M _ ? -

where the functions Aafi are smooth functions on Q satisfying 

A^^Af. for |«| = |j8| = l . 

Finally, let d(x) be a smooth function on Q satisfying 

(1.5) d(x) = d0>0 for xeQ. 

We shall deal with the problem given by the equation 

(1.6) utt + d(x) ut + Au + s G(u) = 0 
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and the boundary and periodicity conditions 

(1.7) u(t, x) = 0 for teR, xedQ, 

(1.8) u(t + 2n, x) = u(t, x) for teR, xeQ. 

To specify the assumptions under which this problem is to be examined we denote 
by A0 the bilinear form associated with the operator A, namely, 

(1.9) A0(v, cp) = £ <AaP(x) Dlv, D{cpy, 

where 

<v, <p> = I v(t, x) cp(t, x) At Ax , = v(t, x)ę(t, 
ÌQ 

i.e., ||v|| = (j), i?>1/2. Further, let B0 be the bilinear form associated with the linear 
part of the equation (1.6), 

(1.10) B0(v, q>) = <v„ + d(x) vt, q>} + A0(v, (p) . 

Denoting 

(1.11) Av = 2vt + d0v, 

we shall suppose that 

(1.12) B0(v,Av) = d1\\v\\2, dx>0, 

holds for all v such that v, vt e HX(Q) and v(t, •) = 0 on dQ. 

We shall prove the following result. 

Theorem 1.1. Let d, Aafi and g be sufficiently smooth functions satisfying the 
assumptions listed above. Then for every e close to zero there exists a classical 
solution to (1.6) —(1.8). 

In fact, we will show that the solution is much smoother. The assumptions of regular
ity of the functions d, AaP, g allow to satisfy high regularity demands of the theorem 
from [1]. The assumption that |e| is small means that u = 0 is "close" to a solution 
of (1.6) —(1.8). The hypothesis (1.12) suggests that the problem is "nonresonant" 
and can easily be shown to be satisfied for some equations. For example, for the equa
tion of the form 

utt + ccut — Au + eg(t, x, u,..., VVw) = 0 

with (1.7) and (1.8), which is a direct generalization of (1A) —(1.3), we have 

B0{v, (p) = <vt, + <*f *, <P> + £ <vXJ, (pXJ> • 
J = l 

Then 

B0(t))2t;,) = 2a |D ( |
2 
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as a consequence of the 27r-periodicity in t and, similarly, 

n 

B0(v,ccv) = -\\vt\\
2 + a £ K J 2 . 

1=1 

Hence 

B0(v,2vt + «v) = a(\\vt\\
2 + £\\vXJ\\

2) , 
1=1 

which shows that (1.12) is satisfied with Av = 2vt + av. 
In Section 2 we give Moser's theorem. Spaces are introduced in Section 3. The 

Moser theorem is applied in Section 4. The linearized equation is solved in Section 5. 
Section 6 contains the proofs of three auxiliary assertions used in Section 5. 

2. MOSER'S THEOREM 

In this section a slightly changed version of the theorem from [1] is given. Let us 
suppose that we are given two sequences of Banach spaces UN, FN, and a sequence 
of operators TN, N = 1, 2, ..., such that 

(2.1) U0 2 Ux 2 U2 2 ... , F0 2 Ft 2 F2 2 ... , 

(2.2) l^ i i l^sSfl iV+' l l i i l l^ , r,s = 0, 

(2.3) \\(id-TN)u\\Ur = aN-s+a\\u\\Ur+s, r = 0, s = d 

with constants a > 0 and 5 = 0. Further, let r, Q and cr be nonnegative integers, 
r = a. Let us suppose that for a nonnegative integer k depending on r, Q, a and 5> 
the mapping f satisfies the following hypotheses with a constant a > 0: 

(2.4) For any ueUr, \\u\\Ur = oc~l , 

(})f(u)eF99 

(ii) f'(w) is linear and bounded from Ur into FQ. 

(2.5) For any u9veUr9 \\u\\Ur ^ a"1 , ||u + v\\Ur = a"1 , 

we have 

\\f{u + v)-f(u)-f'(u)v\\F^4v\\l. 

(2.6) If u e Ur+k and N = 1 satisfy 

\\u\\Vr^ = c T W for A = 0,l , . . . ,fc, 

then 

|/(i«)||, i+, = <-N* for X = 0 .1 , . . . , fc. 
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(2.7) If u e Ur+k, h e Fe+k and N = 1 satisfy 

I H t w ^ a - W , 1 % . + A g otiV* for A = 0 , l , . . . , f c , 

then the equation 

f\u) v = h 

has a solution v e Ur_a+k satisfying 

(0H*,-- = -aMk. 
(ii) \v\vr.w„ = ^ for A = 0,1 fc. 

Theorem 2.1. Under the above hypotheses there is Y\ > 0 swch that the equation 
f(u) = 0 has a'solution in {w; ||u||c/r — a - 1 } provided ||/(0)||Fo < rj. 

3. SPACES 

We set n0 = Q(n + 1)] + 1, nt = 2n0 — 1 and m = n t + 2. All function 
spaces mentioned below are spaces of real-valued functions periodic in t with the 
period 2n. To include the boundary condition (1.7) into the spaces we set 

B = {w e H\Q)', u(t, •) = 0 on dQ} . 

By the same symbol we denote also the space 

B = {w e HX-Q); w = 0 on dQ} . 

Further, we denote 

Up = {UEB; utqeHm(Q\ q = 0 , . . . , p } , 

Fp ={u;utqeHni(Q), q = 0,. . . ,P} 

with the norms 
\\u\\Up = max{||w^||m; q = 0, . . . , P } , 

||w||Fp = max{||wf,||/ll; a = 0, . . . ,p} . 

Here H1(Q) has its usual meaning in which it has been used in Section 1. 

For a positive integer j we denote e}(i) = (1 \n) sin jt and e-/*) = (1 jn) cos jt. 
For j = 0 we set e0(f) = l/27t. Then every function ueUp can be written in the form 

M = I M;M *A0 
1eZ 

with 
|u||*F = max {X | I | 2 S 1-^X-IIL-W; \S\ + |a| = m + p, |a| = m} . 

jeZ 

Hence, setting, for a positive JV, 

(3.1) (T N «) ( t ,x )= £ u/x)C j . ( . ) , 
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we have 7^ : Ur -> Ur+S and 

(3-2) |->lk+.**1«lk. 
(3-3) | | ( id-T J V )M | | l / r = iV-s||t.|| l / rH,. 

Further, for a positive integer M, we denote 

ZM = {u; u = £ uAx)ej(t)} • 

For nonnegative integers p and s we put 

X*>p = {u; D\Dxu e L2(Q), / + |a| = s, |a| = p) 
with 

||w||x-,P = max {\\D\Dxu\\; / + |a| = s, |a| ^ p} 
and 

fl0'p = { u ; i ) > e L 2 ( Q ) , | a | ^ p } 
with 

||u||H„.P = max{||.9°u||; |«| =g j»> . 

The norm in HP(Q) will be given by 

H»|H'(O> = m-x{|->S.»|Li(0); |«| = P} • 

Thus if v = J »/x) e/f) e fl°''(£)), then 

M-.-c» = GMW1'2 • 
1 

Finally, we denote by Cm(Q) the space of functions on Q having continuous deriva
tives on Q up to the order m. For u e Hm+no(Q) we have, by Sobolev's embedding 
theorem, 

HI C".(Q) = Cs || U || ffm + no(Q) -

4. APPLICATION OF MOSER'S THEOREM 

The spaces UN, FN and the operators TN defined in Section 3 satisfy (2.1) —(2.3) 
Avith 5 = 0 and a = 1. If u e U0 is such that |[w|[-/0 is sufficiently small, then the com
position operator g{t, x, u, ut,..., VVw) is well-defined and we can set 

fE(u) = utt + d(x) ut + Au + eg(t, x, u, ut, utt, Vw, Vut, VVw) . 

We take r = Q = a = 2 and we shall apply Theorem 2.1 to the mapping fE. Ob
viously, for \y\ = 2, Dy

tx is a linear and bounded mapping of U2 + k
 ;nto F2+A-

Reasoning as in Lemma 4.2 below it is easy to show that fe satisfies the hypotheses 
(2.4) -(2.6) of Theorem 2.1. 

Lemma 4.1. Ifu,veHn\Q), then uveHn\Q) and \\uv\\ni = c\\u\\nx \\v\\nx. 
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Proof. This holds even for functions from Hn°(Q), [2]. In the case of Hni(Q) the 
proof is particularly simple. We have to estimate JKDJ^MJ D]*XV\ for \yt\ + |y2| = nx. 
At least one of the indices yi9 say yl9 has to satisfy \yt\ rg n0 — 1. Then ||(.DJf

!
xu) 

D]*pl = ||D?>||c(Q) \\DVA = cs\\u\\n+no \\v\\ni = cs\\u\ni \\v\\ni. This completes'the 
proof. 

Lemma 4.2. Lef g(f, x, Ci, •••- Cx) ^ e « smooth function on R x Q x (9, where 0 
is a neighbourhood of zero in R*. Let p be such that 

G(w) (t, x) = g(t, x, wx(t, x), ..., wx(t, x)) 

is well defined on Ji = {w = (wi9..., wx); \\WJ\\F2 < /?, j = 1, ..., x}. Then 

(i) G is a continuous mapping of Jt into F2; 

(ii) if for a fixed positive integer k, ||wy||j?2 + A = j8NA for j = 1, ...,x and I = 
= 0 ,1 , . . . , k, then ||G(w)||F2+A = bNx for X = 0, 1, . . . , k. 

Proof. We shall deal only with the case (ii) since (i) is similar. For I g 2 + X we 
shall estimate D\ G(w) in Hni(Q). This means to estimate in Hni(Q) 

w w n h(»>P)*'p 

P=l 5 = 1 

with nonnegative integers asp satisfying 

(4.i) £ i> s p5n. 
s = l p = l 

Here ^ denotes a certain derivative of g whose order and form need not be specified 
and which satisfies ||-^ ̂ (w)|Ui 1= c- By assumption, ||.DJwp||ni = cN(s~2) + , where 
j + = max(0,jj. Hence the estimate of D\ G(w) in Hni(Q) is cN*, where / rg 

= £ Z a*j>(s - 2)+- In virtue of (4.1 J, x = (/ - 2)+
 = .4. This completes the proof. 

s = l p - l 

To show that ft satisfies the assumption (2.7) we shall deal with the operator 
f'B(u) which has the form 

f't(u) v = vtt + d(x) vt + Av + 

+ e £ ( - l)m aaP(t, x) DxDxv + e £ aa(t, x) D*xvt + ea(t, x) vtt, 
M.I.*..*- M.S-

where 

««<»(<.*) - - a J X , . ) ( ' » * » » » • • • » v v " ) for « = ?> \«\s=\P\ = í> 

oJf,x)= -^•^i^(t,x,u,...,Wu) for a * / ? , |a| = |/?| = 1 
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(this means aaP = apa for |a| = \p\ = 1), 

^(r'X) = 5^) (r' , , , ,VVw) ^ |a| = 1' /? = °' 

aaP(t, x) = 0 for a = 0 , \p\ = 1 , 

" ' < ' ' X) = *7ih ('' *"" VVM) ' ~<U X) = S T l ( r ' ' ' " WW) ' 

By Lemma 4.2, if u G U2+k and ||w||c72+A = aNA for A = 0 ,1 , .... fc, then a e F2+k 

and 

(4.2) ||f l |Fa+Jl = WVA for A = 0, l , . . . , fc , 

where b is independent of N. Here, we have shorten the notation writting a instead 
of aap, aa or a. This convention will be used throughout the paper. Further, let 
heF2+k satisfy 

(4.3) | |h | f2+ ; i = aNA, A = 0 , l , . . . , f c . 

In the next section we shall give the proof of the following lemma. 

Lemma 4.3. There are positive constants e0 and c (independent ofN) such that the 
following implication holds: 

If a and h satisfy (4.2) and (4.3), respectively, then for every e, |e| ^ e0, there 
is a unique veUk satisfying f'B(u) v = h. Moreover, 

(4.4) Nk = #k> 
(4.5) HvH^ = t,Nx for A = 0 , l , . . . , f c . 

This lemma shows thatfE'(w) satisfies the hypothesis (2.7) with a = 2. Theorem 1.1 
now follows from Theorem 2.1 applied to the mapping fe. 

5. SOLUTION OF THE LINEARIZED EQUATION 

The bilinear form Be associated withf£'(w) v is given by 

B£(v, <p) = B0(v, q>) + e £ <aapD*xv, Dxq>> + 
M = |/M = -

+ * £ <(DM Da
xv, q>y+e £ <aafiD*xv, <p> H 

M = l/M = - M = i,/*=o 

+ £ Z <aaD"xVt> <P> + <avtt, <p> , 
l«l = i 
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where B0 is defined by (1.10) and the functions aafi, aa and a satisfy (4.2). Further, 
we put 

Ae(v, cp) = A0(v, <p) + s £ <aafiD
a
xv, Dxcp> + 

We begin by showing that 

(5-1) Be(v,Av) = dl\\v\\\ 

for every v e H\Q) n £ with vt e Hl(Q) (nB). The estimate of B0(v, Av) is given 
by (1.12). All the remaining terms can be estimated by £ c|[t>||f. For instance, for 
a4=j3, |a| = \p\ = 1, we have aafi = aPa and therefore 

\<aafiD*xv, Dxvty + <aPaDxv, D*xvt>\ = 

= |<(-0?aai9) Z)^, D^>| <; c||a|[cl(Q) |[t,||f . 
Similarly, 

\<aaDxvt,2vt}\ = |<(DXKt; ,> | = H|c-(Q> \\v\\\ . 

Hence we have (5.1) for |B| ^ e0, s0 sufficiently small. In what follows the value s0 

will be further reduced sometimes without any particular reference. 
If u e HX(Q) n B, i.e., if u does not depend on t, then A0(u, u) = B0(u, Au)jd0. 

Hence, by (1.12), we have 

(5.2) A0(u, u) = d2H|H-(fl) for w e H1^) n B 

with a positive d2. Since any veH°'l(Q) n B can be written as v = £ Vj(x) ej(t) 
with v,- e HX(Q) n £, we get j 

MV> V) = I ^ o ( ^ Vj) = d2 Y\\VJ\\HHD) = d2|M|.£o.i(Q) • 
j J 

This implies 
(5.3; Ae(v,v) = d3\\v\\H0,HQ) for all veH°>\Q)nB 

for sufficiently small e and d3 > 0. 
We shall suppose that the functions a and h satisfy (4.2) and (4.3). Let us fix 

a positive integer M. The mapping A is a linear homeomorphism of Hi(Q) n B n Zw 

onto itself. Using (5.1) we find a (unique) v e H\Q) n B n ZM satisfying 

(5.4) 5£(t;, pj = <fc, cp) for ? e H^GJ n B n ZM . 

Putting cp = Av and using (5.1; we have 

(5.5; H|H1(C) ^ c||h|| . 

In what follows we shall show that v satisfies 

(5-6) IMk = c|*U . 
(5.7) H»U„A =g c/NT-* for A = 0 ,1 , . . . , fc , 
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with a constant c independent of h and 1V. Thus for every positive integer M we can 
find v = vM and then let M -+ oo. As a limit we shall obtain a (unique) v satisfying 
(5.4) for all cp e H\Q) n B, (5.6) and (5.7). Hence /g'(ti) v = A and Lemma 4.3 will 
be proved. 

Now we prove the estimates (5.6) and (5.7) for v with a particular fixed M. By 
definition of Be, we easily find that for 1 = / ^ 2w0 + k, 

(5.8) B£(iV, AvfI) = B£(v, ( - 1 ) ' .A;,-,) + 

+£ Z n { Z W D;D!+1-P», D5̂ r.-.> -
P=l \ P / M = l/5| = l 

" Z ^-OffljD^1-^^,)-
1 = 1 

- <(Dfg) Dl
t
+2-% Avt>> + X < ( D f + 1 ^ ) D£D\->v9 D*xAvti->> -

\*\=m = i 

- s <(/>f-o^j D*Drv ^vrI> - z <(-ofa«,) D:/>r^ *̂V>} • 
M = l/M = l M = l , I B I = 0 

It is easy to check that every term in { } is estimated by 

(5-9) ||(J)fD?iJ,fl)(Dj-X««')||||«'.'||i 

with p = 0, 1, . . . , /, |a| = 1, |jS| = 1. For p = 0 these terms are estimated by 

\\DlA«Q)\M\i = bcsh>\\2i • 

Putting <p = (—1)' Avti, in (5.4) we get 

Be(v,(-l)lAvt») = <ht,,Avt,y = c||h,,|| |i>(,||i . 

Using this in (5.8) with all terms of the type (5.9) with p = 0 shifted to the left-hand 
side, we get 

(5.10) (</. - £Cl) H I , = ||fc,,|+ecZ(0, 

where 

M = l , |.5| = 1 s = l 

The following lemma provides an estimate of Z(/). 

Lemma 5.1. 
(i) Lef 1 = / = m - 1 and v e Hl(Q). Then Z(l) = c||a||Fa H | , . 

(ii) L e ^ = 0 , l k - 1 and ve Uk. Then Z(m + X) = c{||a||.F3 + A Holler© + 

+ Z M* J ^ - J -
v - l 

We postpone the proof to the next section. 
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Using part (i) of this lemma in (5.10) we get 

(5.u) Nli = -HF l . 
Hence (5.4) has the form 

(5.12) Ae(v9<p) = <b,(p> for cpeH\Q)nBnZMi 

where 

b = h — vtt — d(x) vt + e( YJ aa^lvt + ^vtt) • 
l«l.= -

By (5.11), b e L2(Q). We now use the following lemma whose proof will be given in 

the next section. 

Lemma 5.2. There is e0 such that if g e H0,S(Q) for some s ^ nx and \e\ _ e0, 
then, for every positive integer M, there exists a unique w e H0,S+2(Q) n B n ZM 

satisfying 
A(™, <p) = <g> <P> for cp e H\Q) n B n ZM . 

Moreover 

H| H o„ + 2(Q) - C\\4HO.'(Q) -

By this lemma and (5.12), v e H0,2(Q). Thus (5.12) takes on the form 

X ( - l ) m < D t - U x ) -*» + -*M+mv> <?> = <*> <?> • 
l« |g l , |^ |LSl 

Substituting (— i)l~p<pt%-p for 9 and integrating by parts, we get 

AAvt'-p> v) = <0/,P> <?> f o r <P e HKQ) ^ B n Z M . 
Here 

9l,p = 6r'-p - -4jw , 

A^-Z(-l)^(l--p)(DsaaP)D^t'v, 

where the sum is taken over |/?| _: 2 and nonnegative integers s, s', s + s' = I — p, 

for which s ^ 1 in the case |/?| = 2. 

The following lemma provides estimates of glp. 

Lemma 5.3. 

(i; Let I = 1, . . . , m - 1 and p = 1, . . . , / be fixed. Let veH\Q) nX1+1'p. Then 

| | . 7 I J I IO„- I ^ c{|/i,.-,| |Ho„-. (Q) + |a | |F2( | f | , + Hxi+i . , )} . 
(ii) LetX = 0, 1, ...,k- 1 and p = 1, 2 , . . . . m - 1 fojixed.Le. t>e UA n X m + A + 1 , p . 

77ien |0M+;i J H o „ - . g c{|ht„,+*-„||Ho.,-,(Q) + H|F2|M[X-"+-+••<• + 

+ EHk-vHk-J-
v = 0 
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Now using Lemma 5.1 — 5.3 we prove the following two implications; / = 15 . . . 
..., m - 1, p = 1,..., /: 

(5.13) If | | 4 = c||h||Fl, then H ^ = |i;||xl + l i l = c||fc||Fl . 

(5.14) If \\v\\t + ||v||xl+1,P = c||fc||Fl , then ||»||z,+liF+i = c\\h\\Fl . 

(5A3) is a consequence of (5.10J and part (l) of Lemma 5.L If ||v||, + HI.*-*-.* = 
= CIHI-*"-' w e u s e P a r t 0) °f Lemnia 5.3 to get a similar estimate for gttP and then 
Lemma 5.2 with s = p - 1 to get ||IV-*||H°.P + -(<2) = CIHI-V T h i s P r o v e s (5.14). 

For / = m - 1 and p = m - 1, (5A4) yields ||i;|fm ^ c||h||Fl. As ||-||m = ||-||-,0, 
the estimate (5.6) is proved. Using parts (ii) of Lemmas 5.1 and 5.3, we similarly 
get (5.7). This completes the proof of Lemma 4.3. 

6. PROOFS OF AUXILIARY LEMMAS 

In this section we give the proofs of Lemmas 5.1 — 5.3. 

Proof of Lemma 5.1. For 1 g / ^ m and 0 _̂  A rg fc — Iwe have 

z(i +1) = I Z* l(W*«) Dl<+x-sy,A • 
W\$l,\P\^ls=l 

For j a nonpositive integer, we set D\v = v. On estimating Z(/ + A) we shall distin
guish two cases. 
(1) If 1 = s = n0 + A, then 

\\{Ds
tDlxa)D\+>-°Dlxv\\ = cs\\D

s
ta\\no+1 ||Z>?--+14 = 

= cs«Dro+2"IU K"s+14 = M«k J||i>r4 +14).. 
where v = max (0, s — «0). 
(2) If n0 + A < s = / + A, then 

\\{D°Dlxa)Dl+*-*DÍxv\\ š cs||Zr2"0+2«|U l->.+a"i> 

-^.Hk+JMli. 
| п o + l = 

where ^ = max (0, / + A — nx — l). This follows from the following computation: 

s - 2n0 + 2 = / + A - 2n0 + 2 = (/ + A - i^ - 1) + 2. 

To finish the proof we take A = 0 and / ^ m — 1. Then v = 0, fi = 0 and part (i) 
follows from the derived estimates. For / = m, v ranges over the set 0,1,..., A, 
JJ. = A + 1 and part (ii) follows immediately. 

Proof of Lemma 5.2. We begin by showing that for every b e H0,5(Q) we can find 
a unique Yb e H°>a+2(Q) nB nZM satisfying 

(6.1) A0{Vb, <p) = <6, q>> V<peH°>\Q)nBnZM. 

Writing b = £ bj(x) e/t), we have bj e H\Q) n B and ||fc|ffo..(Q) = ( E | M * W 1 / 2 -
J 
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Since A0 satisfies (5-2), we apply Theorem 9.8 from [4]. For every j e Z w e obtain 

a unique VjeHs+2(Q) n B such that A0Vj = bi and |v,||H*+-(r2) = c3||MH-CO)- W e 

put Vb = Ya VM eAf)- I t : *s e a s y t o v e i"ify t n a t ^ satisfies (6A) and that 
\J\aM 

\Щ\но,**ча) й c\\b\\H0,4Q) 

2я 

C ł «' . + 2 ( ß) QX d í ^ 

2тr 

dř < 

Further, we show that, for a satisfying (4.2) and |y| = 2, 

(6.2) \\aDy
xv\\Ho,s(Q) = c\\v\\Ho,s + 2iQ). 

This means, for |<x| + |a' | = s, to estimate ||(D*a) D£'+Vv||. We shall distinguish 
two cases. (1) For |«| ;= n0 - 1, we have 

|[(I)»^ + 7HI = Cs\\a\\2no-l\\4HO, + HQ) = Csb||v||Ho,s + 2 ( Q ) . 

(2) For |a| ^ n0, we have |a'| ^ s — n0 and thus 

| | (P» D5'+'0||- = p f |Z>»a|2 | ^ ' + ^ | 2 d* df = 
Jo Jfl 

^ c , f "laO.OllH-w !«<«.• Jl 
/•2/T 

= c.max {||a(<, - J I H " . ^ ) ' ' 6 [°> 2nJ\ K*' •)IIHI-''+"O+2(»»' 

^ 4 l l « l l , + ll«,ll ,}2IIHIk s + J ( e ) , 

since |a'| + n0 + 2 ^ s + 2. (6.2) is proved and this implies that the operator 
^ v = Z aafiD

a
x
+pv is a bounded mapping of H°'S+2(Q) into H°'s(Q).Therefore, 

|a. | . | f |si 

for e sufficiently small, the mapping W(g — ES/V) is a contraction on H°'S+2(Q) n J3 
and its fixed point is the desired function w. This completes the proof of the lemma. 

Proof of Lemma 5.3. For / = 1, ..., m, p = 1, . . . , min(Z, m — l) and k = 
= 0 , 1 , . . . , k - 1 we shall estimate ||g/+A,jH°.p-i(Q). If / = 1, . . . , m - 1, p = 
= 1,. . . , / and k = 0, we get the estimate in (i); if / = m, p = 1, ..., m - \ and 
J. = 0 ,1 , ..., k - 1, we get (ii). To obtain an estimate for ||gj+A,4H°.p~i(Q) we shall 
deal with 

(6.3) \\(D\Dxa) D't
+s'Dx'

+»v\\ , 

where s, s', c, a, a' and jS satisfy 

s + s' = / + k - p, |a| + |a'| = P ~ 1 , <r + |j9| = 2 

and the following implication holds: 

(6.4) if \p\ = 2 , then s > 1 . 

We shall distinguish three cases. 
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(1) Let s + |a| g n0 + X + 1 and |a| = n0 ~ 1- Then (6.3) does not exceed 

c s | | D s D « a | | n o | | D r s X + ^ | -
Setting 

v = max (0, s + |a| — n0 — 1) 

we have ||DsL>*a||„0 = Hk+v> since s + |a| + n0 = n^ + 2 + v. If .4 = 0, then 
v = 0. For X > 0, v is an element of the set 0, . . . , X. 

Further, we shall estimate \Da+s'D*x
+h\. Obviously, 

(6.5; s' + |a'| + (a + |jff|) = / + X + 1 - s - |a| . 

If s + |a| = 0, then v = 0 and, by (6.4), \p\ = 1. Hence |a'| + \p\ = p and this 
yields 

\\Drs'Dl'+"v\\^\\v\\xl^+l,p. 

Thus (6.3) does not exceed cs||a|ir2 ||v||xi+A + i,p. If s + |a| > 0, then v ^ s + |a| — 1. 
Further |a'| + \p\ = p + 1 = m and, by (6.5;, 

\\Drs'Dx'
+pv\\ = \\v\\xl„- v,m. 

For X = 0 we have WUI+A-V,». = HI ' and therefore (6.3) does not exceed 

cs||a||f2 H | , . For X > 0 and / = m, ||i)||^i+A-»,m ^ |U||t/A-v and (6.3) does not exceed 

N U + v IUIUA-V-

2) Let s + |a| _ n0 + X + 1 and |a| _ n0. From s + |a| = v + n0 + 1 we have 
'Ds

tDxa\\ = |a | | f 2 + v and (6.3) is estimated by cs||a|U2+v \\D°+S'D*+I,v\n0. Now 
~'| + |/5| < P and s' + |a'| + (a + |j?|) + n0 ^ / + X + 1 + n0 - |a| - s. Thus, 

if v = 0, then ||DJ+S 'D^'+^||„0 = ||r|U,+A+,„. If v > 0, i.e. v = s + |a| - n0 - 1, 
then ||£>^+s'D"'+?t;|[no = HUI+A-V, , . Thus in this case (6.3) is estimated by 
cXIUIU2 IMU'--+. + IUIU2+v|t 'IU.^-v,p). 
(3) Let s + |a| = n0 + X + 2. Then, obviously, ||Z>Jf>Ja|| = |a|U2+A and 

||£>*+s'Z)*'+/it>|l»o = ||HI' s i n c e s ' + M + (G + I!3!) + «o = l + > l + l + n o - s -
- H = / - I-
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