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ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY 
Vydává Matematickf ústav, Praha 

SVAZEK 109 * PRAHA 20. 12,1984 * ČÍSLO 4 

ON TWO CLASSES OF PARACOMPACT SPACES 

ZDENEK FROLiK, Praha 

(Received January 4, 1983) 

Using the Isbell's semiuniform product Tamano type characterizations of two 
classes of paracompact uniform spaces are given. Namely, the class of all spaces X 
such that each open cover of X is a uniform cover of the metric-fine coreflection mX 
of X, and the class of all X such that each finitely additive open cover of X is a uniform 
cover of mX. A short survey of the theory of metric-fine spaces is given. 

INTRODUCTION 

By a space we mean a Hausdorff-uniform space. Following [F — H] a space is 
called paracompact if each open cover has a cr-dicrete (in the uniform sense) refinement 
(which may be taken to consist of cozero sets). This class was actually introduced in 
[Fe] under the name spaces "de caractere paracompact". These spaces are quite 
useful, see [F —H] and [Fe]. Note that every metric space is paracompact by a theo­
rem of A. H. Stone. 

>A space X is called uniformly paracompact if the following equivalent conditions 
are satisfied: 

(a) Each finitely additive open cover of X is uniform. 
(b) Each open cover has a uniformly locally finite refinement. 
(c) For some, and then any, compactification K of X, and for each compact 

C c= K \ X there exists a uniform cover °U of X such that UK n C = 0 for each 
UeW. 

The equivalence of (a) and (b)is proved in [R2] and (c) for K = PX is proved in [H], 
Of course, by a compactification of X we mean any compact space K containing the 
induced topological space of X as a dense subspace. The concept of uniform para-
compactness is basic because many concepts of paracompact type can be defined as 
uniform paracompactness of some modification of X. 
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Recall that the result of Tamano [T] says that each of the following two con­
ditions is necessary and sufficient for a completely regular topological space X to be 
paracompact in the usual topological sense: 

(i) X x fiX is normal 
(ii) For each compact C c pX \ X there exists a continuous function on I x p i 

which is 0 on X x C, and 1 on the diagonal A* = {<*, x} | x e X}. 

In this kind of results it does not matter which compactification is taken. In [F4] 
it is shown that if the product is interpreted as the usual (= categorial) product in 
uniform spaces, and if we take for separation of closed sets uniformly continuous 
functions or coz-functions or h1 coz-functions or h coz-functions, then (i) and (ii) 
are equivalent', and characterize, respectively, compact spaces, Lindelof spaces, 
paracompact spaces, and the spaces such that the locally fine coreflection XX of X 
is paracompact. 

Here we use the semi-uniform product * of Isbell [I], and prove various Tamano 
type characterizations of spaces X such that the metric-fine coreflection m l of X 
is uniformly paracompact, and spaces such that m l is the fine uniformity and the 
topology is paracompact. 

In § 1 a short survey of metric-fine spaces is given. In § 2 the properties of the 
Isbell's product are recalled and the action of m on this product is investigated. The 
main results are formulated in § 3, and proved in § 4. 

The results of this paper were included into the author's lecture at the International 
topological conference in Leningrad in 1982. 

§ 1. METRIC-FINE COREFLECTION 

For the convenience of the reader we recall the basic facts about metric-fine spaces. 
The main reason for that is that the main results are published in Seminar Uniform 
Spaces 1972 — 3 and 1973 — 4, and these seminar notes are not available. We add the 
recent description (e) below from[F3] which was done just to prove the results of this 
paper. 

In general we use the notation from [£]. The set of all uniformly continuous maps 
from X into 7is denoted by U(K, Y), if Yis the space R of the reas then 7is usually 
omitted. 

1.1. For each uniform space X we denote by tfK the finest uniform space topo-
logically equivalent to X; note that Isbell [I] uses a for tf. The space tfK is called the 
topologically fine coreflection of X. Clearly U(tfX, Y) is just the set of all continuous 
maps from X into Y, which is denoted by C(X, Y). 

1.2. For any function/ we denote by coz(/), the cozero set of/, the set {x \fx 4= 
4= 0}. By a cozero-set in a space X we mean the cozero set of some fe U(X), and 
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coz(X) stands for all cozero sets in X. We denote by CozfX, Y) the set of all coz-
mappingsofX intoY ; recall that f6Coz(X ,y)if f-1[coz(y)] c coz(X).While U(K) 
need not be inversion-closed (i.e., if coz(f) = X, fe U(X), then 1/f is not necessarily 
in U(X)), Coz(K) is obviously inversion closed. For properties we refer to [F2] 
and papers by A. Hager. If X is metrizable then coz(X) coincides with open sets, 
and hence Coz(K) = C(X) for metrizable spaces. 

1.3. Following [Ha], see also [Fe], a space is called metric-fine if for eachfe 
e U(X, M), M metric, the map f: X -* t fM is also uniformly continuous. A. Hager 
observed that the class of all metric-fine spaces is coreflective (obviously it is closed 
under inductive generation) and showed that for a separable X (i.e. countable uni­
form covers form a basis for all uniform covers) the coreflection m l of X has all 
countable coz-covers of X for a basis. It is proved in [F-] and [RjJ that: 

(a) for any X, m l has for a basis all covers of the form f_1[^], where fe 
G U(X, M), M is metric, and <% is an open cover of M. 

(b) all completely coz(X)-additive cr-discrete (in X) covers of X form a basis 
of uniform covers of mX ([Fj]). 

Recall that a family \Xa} is completely -^-additive if the union of each sub-family 
of {Xa} belongs to Ji. Of course, discrete is understood in the uniform sense; a family 
{Xa} is discrete iff it is metrically discrete for some uniformly continuous pseudo-
metric. 

For the next description [F2] note that the uniform vicinities of the diagonal of 
a uniform space X are elements of the filter on X x X generated by U{U x U \U e 
€ °U} where °U runs over all uniform covers of X. 

(c) The cozero sets in X x X containing the diagonal form a basis of the vicinities 
of m l . 

Also the following description [F2] suggests that m may be important for studying 
cozero sets. 

(d) m is the finest functor F with the property that 

coz(K) = coz(FX) 

for each X. 

Following two descriptions show the relationship to partitions of unity. It is proved 
i n [ F 3 ] : 

(e) The covers of the form {coz(f0)}, where {f,} runs over equi-uniform (locally 
finite) partitions of unity on X, form a basis for uniform covers of nrvK. 

By a partition of unity on X it is understood a family {fa} of non-negative functions 
on X such that 2{f,x} = 1 for each x. 

(f) A space X is metric-fine iff every equi-uniform partition of unity is /i-uniformly 
continuous. 
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Recall that a partition {fa\ a e A} is ^-uniformly continuous, or simply an /x-
partition, if the mapping 

f={fa}:X->lt(A) 

1s uniformly continuous, where fx = {fax | a e A}, or equivalently, if the finite partial 
sums form an equi-uniform family. This result is proved in [F 2 ] , and it is an easy 
corollary to (e). 

From the various descriptions given above it is clear that the class of metric-fine 
spaces may be useful in many considerations. We shall need the following properties 
which are obvious from the above descriptions. 

(g) For any space X: 

coz(X) = coz(mX) 

Coz(K) = Coz(mK) = U(mX). 

It follows from (f) that each metric-fine space is inversion-closed (and hence it has 
the Daniel property: if fn J 0 and f. ranges in U(K) then {f,} is equi-uniform) by 
a result of Zahradnik, or directly from the definition. Of course the converse is not 
true, and the two notions coincide for measure-fine spaces. 

In conclusion we state a simple result which will be used in the proof of Theorem 2: 

(h) if {Ua} is a cr-discrete completely coz(K)-additive cover of a metric-fine space X, 
then there exists an /t-partition of unity {f,} on X such that coz(fa) = Ua for each a. 

Proof. Observe that one can assume that X *= mM = tfM where M is a metric 
space. The rest is routine. 

§ 2. COZERO SETS ON THE ISBELL PRODUCT 

Recall that the semi-uniform product X * Yof two spaces X and Yis the set X x Y 
endowed with the uniformity projectively generated ( = initial) by all mappings 
f :X x Y-+ M, M metric, such that for each xe X the mapping {y -»f<x, y}} : 
: Y -» M is uniformly continuous, and the family of mappings 

{{x-+Kx,y>}:X^M\yeY} 

is equi-uniformly continuous on X. I i 
,•; This product was introduced by Isbell as a suitable tensor-product on the category 
of uniform spaces. Note that the product * is not commutative. We need the following 
three facts from Isbell [I]. 

Fact 1. Each uniform cover of X * Y is refined by a cover of the form {Ua x Vab} 
where {Ua} is a uniform cover of X, and for each a {Vab} is a uniform cover of Y. 
In fact, a cover W is uniform iff there exists a sequence {i^n} of covers of this form 
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such that iir
0 refines TF, and each 1̂ VII + 1 star-refines iVn. If X has a basis consisting 

of point-finite covers then the covers described above form a basis for uniform covers 
of X * y(the proof is like [I], VII.5., see also [ F - F ] ) . 

Fact 2. X x y and X * yare topologically equivalent. 

Fact 3. If y is compact then (tf(X x Y) = ) tf(X * Y) = tfX * Y. 

In dealing with covering properties it is inconvenient that the description of uni­
form covers on X * y is quite indirect. 

If £ is a coreflection of the category of uniform spaces then obviously the identity 
mappings F(X x Y) -* FX x FY are uniformly continuous. However, the identity 
mappings 
(*) F(X * y) -» FX * FY 

need not be uniformly continuous (an example has been found recently by J. 
Vilimovsky). It would be useful to find general sufficient conditions for uniform con­
tinuity of these mappings. 

Proposition 1. For any two spaces X and Y the identity mapping m(K * Y) -+ 
-* m l * m y is uniformly continuous. 

Proposition 2. If either X is discrete or Y is compact then 

m(K *y )= mK*my. 

Corollary to Proposition 1. coz(X * Y) = coz(mX * my). 

Proof. coz(mZ) = coz(Z) for each Z. See l,4(g). 

Proof of Proposition 2 using Proposition 1. If X is discrete then the statement is 
trivial. Assume that yis compact. By Proposition 1 it is enough to show that mX * Y 
is finer than m(X * Y). Let / : X * Y -> M be uniformly continuous with M metric. 
By definition of * there exists a uniformly continuous pseudometric d onX such that 

/ : < X , d > * y - M e U 
and hence 

/ : t f « X , d > * y ) » t f M e U . 
By Fact 3, 

t f « K , d > * y ) = t f < z , d > * y . 

Since the identity m l -• tf<X, d> is uniformly continuous, we get that/: mX * Y-+ 
-> tfM e U, and hence mX * y is finer than m(X * Y). 

Remark. If it is known that for each metric space M and each compact space Y 
we have m(M * Y) = tf(M * Y) then Proposition 1 is not needed because then 
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f: m(X * y) -> tf<X, d> * y 

is uniformly continuous, and these mappings then projectively generate m(X * y). 
For the proof of Proposition 1 we shall use the following 

Lemma 1. If {Ua | a e A} is a ^-discrete completely coz-additive family in X, 
and if {Va | a e A} ranges in coz(y) then 

L -= \J{Ua x Va | a e A} e coz(K * y) . 

Proof. We shall use two-times the following easy characterization of cozero sets 

E e coz(Z) iff there exists a sequence {#"„} of uniform covers (which may be as­
sumed finite-dimensional and hence point-finite) such that 

E = (J{{* | st(x, 1Tn) c £} | n e to} . 

We shall construct {iVn} for Z = X * Y and E = L as follows. For convenience 
we may and shall assume that {Ua} is discrete. Choose a sequence {&n} of finite-
dimensional covers of X such that 

U{CU = U { * I st(x, <*„) c U{t !0}} | « ec»} 

and since {Ufl} is discrete, we may choose <&ns so that no G e ^ n meets two distinct Ua. 
For each a in A choose a sequence {j^n} of uniform covers of Y such that 

^ = U{{y | s t (> ! , ^ )c=V f l } |n6Co}. 

Finally, let {iTnk} be the collection of all G x y with G e #„, and G a Ua for no 
a G A, and all G x ff with G a Ua for some a e A, and H e ^ . Since all ^ n are 
point-finite, and admit a star-refining sequence of point-finite covers, by Fact 1 all 
iVnk are uniform covers of X * Y. Arange {iVnk} in a sequence {^w} | m e © } to 
obtain the required sequence. 

Remark . We have proved that Lin Lemma 1 is a cozero set in X' * Y where X* 

has all finite-dimensional uniform covers of X for a basis. 
For the proof of Proposition 1 we also need the following obvious 

Lemma 2. If {Xa} is discrete in X, and if for each a {Yab | be Ba} is discrete in Y 
then {Xa x Yab} is discrete in X * Y. 

Proof of Proposition 1. Recall 1.3(b) that mZ has for a basis all or-discrete in Z 
completely coz(Z)-additive covers of Z. It is easy to see that one can take just point-
finite covers of this form to get a basis. The space m l * m y has all covers of the fol­
lowing form for a basis: 

{Uax Vab\(a,b>ei:{Ba\aeA}} 
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with {Ufl} point-finite ©-discrete completely coz(X)-additive, and for each ay 

{Kb | beBa} a completely coz(y)-additive or-discrete cover of Y. It follows imme­
diately from Lemma 1 that these covers are competely coz(X * Y) additive, and it 
follows from Lemma 2 that they are ©-discrete in X * Y. Hence, they are uniform 
covers of m(X * Y). 

Proposition 3. Le coz(K * Y) iff Lis of the form described in Lemma 1. 

Proof. If Le coz(X * y), then Le coz(mZ * my) by Corollary to Proposition 1, 
and hence L is of that form (consider a sequence in the basis described in the proof 
of Proposition 1). 

Remark. It is easy to show that Le coz(X * Y) iff there exists a uniformly con­
tinuous f of X into a metric space M (which may be assumed distal), and L e 
e coz(M * y) such that 

L = ( / x idy)"1 [L] = {<x, j;> | </x, y> e L} . 

§ 3. FORMULATION OF THE MAIN RESULTS 

JDefine by induction h° coz(K) = coz(K), h" coz(Z) consists of ©-discrete unions 
of elements of \j{hfi coz(K) | fi < a}, and put 

hcoz(K) = [J{h* coz(X)} . 

The sets from h coz(X) are called the hyper-cozero sets in X, and those in h* coz(K) 
the hyper-cozero sets of class g a. For properties of hyper-cozero- sets we refer to 
[F 2 , 4 ] . A space X is called coz-normal if any two disjoint closed sets in X can be 
separated by a coz-function. 

Theorem 1. The following conditions on a space X are equivalent 

(1) X is paracompact, and h coz(X) = coz(X). 

(2) Each open cover of X is a uniform cover of m l . 

(3) mX = t{X, and the topology of X is paracompact. 

(4) X * K is coz-normal for some compactification K of X. 

Using various descriptions of m l we can restate (2) to obtain further equivalent 
conditions — see § 1, e.g. 

(2)a Each open cover of X is refined by a a-discrete completely coz(X)-additive 
cover. 

(2)b To each open cover it can be subordinated a partition of unity which is equi-
uniform on X (i.e. an I ̂ -partition on X). 
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Proof of Theorem 1. We shall prove (1) => (2) => (3) =* (4) => (1). If X is para-
compact, then by definition each open cover has a <y-discrete refinement consisting 
of cozero-sets, and if moreover h coz(X) = coz(X), then this refinement is a uni­
form cover of mX, and hence (1) => (2). Obviously (2) implies (3). Assume (3) and 
let K be compact. By a classical theorem, the topology of X * K is paracompact, 
and hence normal; since m(X * K) = mX * K = tfX * K = tf(X * K), each con­
tinuous function is a coz-function on X * K, and hence (4) holds. Finally assume 
(4). Then also X is coz-normal, and hence coz(X) = coz(tfX) (=Dh coz(X)), that 
means coz(X) = h coz(X). Paracompactness of X follows from two results 

(a) [F4, 2 ] X is paracompact iff for some compactificationK of X the space X x K 
is h1 coz(X x K)-normal. 

(p) Ueh1 coz(X x K) iff U = \j{Ua
 x K] where {Ua} is a cr-discrete family 

in coz(X), and {Va) ranges in coz(K). 
Indeed, by (P) and Proposition 3 of § 2, each cozero-set in X * K is in 

h1 coz(X x K), and hence coz-normality of X *K implies h1 coz-normality of 
X x K. 

By the same method we obtain immediately: 

Proposition 4. The spaces satisfying Theorem 1 are just the coz-normal para­
compact spaces. If X satisfies Theorem 1 then so does X * K for each compact 
space K. 

Remark. If K is an uncountable compact space, and if Yis K with the uniformly 
discrete uniformity then X = Y x K does not satisfy Theorem 1 because coz(X) 4= 
* h coz(X). 

Theorem 2. The following conditions on a space X are equivalent: 

(a) Each finitely additive open cover of X is a uniform cover of mX. 

(b) For some, and then each, compactification K of X the following holds: for 
each compact C c K \ X there exists a uniform cover V of mX such that VK n G -= 
= 0 for each V in Y. 

(c) For some, and then each, compactification K of X the following holds: for 
each compact C cz K\X there exists a coz-function f on X * K which is 1 on Ax 

and 0 on X x C. 

(d) For some, and then each, compactification K of X, and each compact C c 
c= K\X there exists Ge coz(X *K) with Ax a G a X x K\X x C. 

Clearly each of the conditions (a) and (b) says exactly that 

(e) mX is uniformly paracompact. 

Examples . Let D be a non-void set, and consider on X = coj x D the uniformity 
which has the following covers ^(a) , a < <ou for a basis: 
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* ( « ) = {(P) x D | p = «} u {«y, d» | 7 < «, de D} . 

Clearly X is topologically discrete, and moreover, the first Ginsburg-Isbell 
derivative of X is the discrete uniformity on X. Hence X is ^-paracompact (i.e., XX 
is paracompact); actually XK = tfK and tfX is discrete. One can easily show that X 
is metric-fine (any uniformly continuous mapping into a metric space is constant on 
each (a) x D with a large enough). Next, X is paracompact iff D is countable, X 
satisfies Theorem 2 iff D is finite, and finally, X satisfies Theorem 1 iff D is a singleton. 
The proof of these properties is straightforward. 

It is easily seen from (a) that each space X satisfying Theorem 2 is paracompact, 
and moreover 

Proposition 5. A space X satisfies (a) in Theorem J ijfX is paracompact and each 
^-discrete cover of X consisting of cozero sets has a refinement of the form 
{Ua n Vab | a e A, beBa} such that Ua is a completely coz-additive ^-discrete 
cover, and for each a {Vab J b e Ba} is a finite cover of Ua consisting of cozero-sets. 

In the proof of Theorem 2 we shall not use any properties of paracompact spaces. 

§ 4. PROOF OF THEOREM 2 

As we noticed Condition (a) as well as Condition (b) is equivalent to uniform para-
compactness of m l . We shall prove (b) => (d) => (c) => (b) for both "some" and 
"any". 

(b) => (d). Let K be a compactification of X with the property in (b). Given 
a compact C c K \ X, choose a uniform cover *V of mX with VK n C = 0 for each V 
in V. We may assume that 'V is a <r-discrete completely coz(K)-additive cover. For 
each Ve V choose a cozero- set W(V) in K such that V a W(V) c K \ C. By Lemmal 
of §2 

G = U{Vx W(V)\ VeV} 

is a cozero-set in X * K, and clearly 

A * c G < z K x K \ X x C . 

(d) => (c). Let K be a compactification of X with the property in (d). Given 
a compact C c K \X, choose a G with the property in (d). By Proposition 3 C can 
be written in the union of a family {Ua x Va | a e A} such that {Ua} is a o-discrete 
completely coz(X)-additive family, and Va ranges in coz(K). We may assume that 
Va n C = 0 for each a. Indeed, G can be written as the union of a sequence {Gn} of 
cozero sets such that Gn a G for each n; if we take the families for each Gn as above, 
and put them together, we obtain such a family with the additional property. By 
1.3.(h) we can take an (/J-partition of unity {ha} on m l such that coz(ha) = Ua. 
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Since Va n C = 0, we can take a uniformly continuous function ga on K such that 
0 = ga S U 0« 1s 1 on Va and 0 on C. Put 

f<x, y} = l{fax . gay) 

Clearly f is uniformly continuous on m l * K, and since m l * K = m(X * K), / is 
uniformly continuous on m(X * K), and hence a coz-function on X * K. Clearly / 
is 1 on Ax and 0 on X x C. 

(c) => (b). Let K be a compactification with the property in (c). Given CaK\X 
compact choose / with the property in (c). Again / is uniformly continuous on 
m(X * K), hence on m l * K. Put 

d(x,y> = sup{|/<x, k> - / O , k>| | keK} . 

By definition of the semi-uniform product d is a uniformly continuous pseudo-
metric on mX. Now if S is any ball in <X, d> of radius _̂  J, then / = ^ on 5 x 5 
because for ( x , ; ) e S x S 

\f<x, y> - f<y, y>| = i 

and f(y, y} = 1. Hence S x S n (Z x C) = 0, and hence 5 n C = 0. Thus the 
cover ^ of X consisting of all balls of radius | is the required uniform cover of mX\ 

5. CONCLUDING REMARKS 

In a subsequent paper [F—F] it is shown that 
A. X = tfX and the topology of X is paracompact iff for some, and then any, 

compactification K of X the space X * K is normal (i.e. disjoint closed sets are 
separated by uniformly continuous functions). 

B, X is uniformly paracompact iff for some, and then any, compactification K of X 
the diagonal Ax and each X x C, C c: K\X compact are separated by a uniformly 
continuous function onX *K. 

If we apply A to the proof of Theorem 1 we obtain immediately that (3) and (4) 
are equivalent. If we apply B to the proof of Theorem 2 we obtain immediately that (b) 
is equivalent to (c). Of course, we must use Proposition 2 of § 2 ( m l * K = m(X * K)) 
and coz(X) = coz(mK). This seems to be typical for aplications of general results A 
and B in concrete situations. 

If J(f denotes the measure-fine coreflection it would be interesting to find a descrip­
tion of spaces X such that JtfX = X, and the topology is paracompact in terms of 
functional analytic properties of the space MU(X) of uniform measures on X, or 
completenes of some space of closed subsets. 

For a survey see the author's contribution to the proceedings of the International 
topological conference in Leningrad 1982. The dissertation of J.Fiied (Mathematical 
Institute of the Czechoslovak Academy of Sciences 1983) contains nice results on 
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m-paracompact spaces, and a nice notion of ^-paracompact spaces. Also spaces 
satisfying Theorem 2 are characterized similarly to the Corson's characterization of 
paracompact topological spaces in terms of clustering of certain filters. 
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