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Časopis pro pěstování matematiky, roč. 110 (1985), Praha 

ON THE DIRICHLET BOUNDARY VALUE PROBLEM 
FOR NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL 

EQUATIONS IN SOBOLEV POWER WEIGHT SPACES 

JOSEF VOLDRICH, P I z e n 

(Received November 21, 1983) 

1. INTRODUCTION 

Let us consider the nonlinear Dirichlet boundary value problem 
N d 

(1.1) - £ — tf.(x- ", Vu) + a0(x, u, Vu) = f in Q , 
i = i dxt 

u = cp on dQ , 

where Q cz RN is a bounded domain. Our aim is to give conditions for the solvability 
of the problem (1.1) in weighted Sobolev spaces. It is motivated by the two following 
reasons: First, the behaviour of the right-hand side f near the boundary dQ may 
cause non-solvability of the problem (1.1) in a classical (nonweighted) Sobolev 
space, or the function cp may not possess the suitable trace on dQ. In such cases it 
is sometimes possible to overcome these difficulties by formulating the problem 
( l . l ) in terms of weighted Sobolev spaces (with weights of a positive power). 

Second, from the behaviour of the right-hand side f near the boundary dQ we 
should like to deduce the analogous behaviour of the solution. The use of suitable 
(negative power-type) weights could answer some of such regularity questions. 

We shall consider the equations which are elliptic within the classical Sobolev 
space theory. The case when the coefficients ax include singularities or are degenerate 
and when the ellipticity can be regarded only with respect to the weighted Sobolev 
spaces is discussed in [5]. 

The problem (1.1) for linear equations is investigated in [ l ] , [2], [9], [10]. The 
application of the generalized Lax-Milgram lemma (see e.g. [9] or [10], Ch. 6, § 3, 
p. 294) is essential in these papers. Such a procedure, which would be relatively 
simpler, cannot be applied to the nonlinear case and thus we transform the problem 
(1.1) to the operator form usually used in the theory of pseudomonotone operators 
(see [7], Ch. 2, § 2). Although we cannot prove the pseudomonotonicity of the 
operator obtained (on the other hand, we do not know of any counterexample), 
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in Section 2 we use methods of pseudomonotone operators in order to find a sequence 
convergent to a solution of the operator equation (2A). Some necessary concepts 
concerning Sobolev power weight spaces are recalled in Section 3 and the solvability 
of (1.1) in these spaces is studied in Section 4. Lemma 4.4 appears here to be the key 
to the verification of the problematical condition (2.8). It is not essential that we 
work with operators of the second order and with weights related to the whole 
boundary only. 

It remains to remark that our procedure gives the solvability of (1.1) for weighted 
spaces with small powers only. On the other hand, evidently better results were 
achieved merely for several special examples with linear operators (see e.g. [2], [10]). 
The answer as to the uniqueness of the solution is not complete, either. 

2. ABSTRACT CONSIDERATIONS 

In this part we shall study the solvability of the operator equation 

(2.1) Su = g , 

where S is a nonlinear operator acting from a real reflexive Banach space V into its 
dual V* and g e V*. 

Let Vm, m e N, be such closed subspaces of V that Vm cz Vn for m ^ n and the set 
IJ Vm is dense in V. We define gm e V* by <gm, v> = <g, v> for all v e Vm, and by Sm 

me/V 

we denote the restriction of S onto the set Vm. 
We shall suppose that the equations 

(2.l)m 5mum = gm, m e / V , 

have solutions ume Vm (i.e. <5um, y> = <g, i;> for all ve Vm) satisfying the con
ditions 

/2 2x Wm -• " weakly in V, 
^ ' ' \Sum is weakly convergent in V* (for m -• +oo) . 

Theorem 2.1. Let S be an operator acting from a real reflexive Banach space V 
into its dual V* and let g e V*. Further, let solutions um of the equations (2A)m 

satisfy the conditions (2.2) and 

(2.3) lim inf <Sum, um - v} = <Su, u - v> for all veV. 
m-+ + oo 

Then u is a solution of the equation (2.1). 

Proof. Since Sum = Smum = gm, applying (2.2) we obtain that Sum -> g weakly 
in V*. Now we have <Sum, um> = <g, um> -> <g, u> and with regard to the con
vergence <Sum, u> -> <g, u> we conclude 

(2.4) <Sum9 um - u> -> 0 . 
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This fact together with the condition (2.3) implies lim inf <Sum, u — v> = 

^ <Su, u — v> for all veV, otherwise <g, u — v> ^ <Su, u — v> for all v 6 V. 
This inequality yields Su = g. 

The verification of (2.3) for a particular operator S frequently requires elaborated 
and rather complicated procedures which are analogous to an investigation of pseudo-
monotonicity. Therefore the following modified Leray-Lions conditions (2.5) —(2.8) 
form important tools in applications (see e.g. [7], Ch. 2, § 2). 

We shall suppose that the operator S has the form Sv = S(v, v) where the mapping 
(w, v) -> S(w, v) acting from V x V into V* satisfies the following conditions (here, 
um are solutions of the equations (2.1)m with the property (2.2)): 

(2.5) For an arbitrary w e Vthe mapping v -> S(w, v) is a bounded hemicontinuous 
operator from V into V* (i.e., for all u, h e V and for an arbitrary sequence 
{tn}m tn ~* 0, we have S(w, u + tnh) -> S(w, u) weakly in V*) satisfying 
<S(w, w) — S(w, v), w — v> _ 0 whenever veV. 

(2.6) For an arbitrary v e Vthe mapping w -> S(w, v) is a bounded hemicontinuous 
from V into V*. 

(2.7) If lim <S(um, um) — S(um, u), um — u> = 0 then there is a subsequence 
m-> + oo 

{umk}k c {um}m satisfying S(umk, v) -> S(u, v) weakly in V* for all veV. 

(2.8) If S(um, v) -> {// weakly in V* then lim <S(um, v), um> = <\J/, u>. 
m-* + oo 

Lemma 2.2. Let ume Vm, meN, be solutions of the equations (2.1)m with the 
operator S satisfying the conditions (2.2) and (2.5) —(2.8). Then there exists a sub
sequence {umk}kfor which 

lim inf <Sumk, umk — v> _ <Su, u — v> whenever veV. 
k-* + ao 

Proof. We remark that (2.2) implies <S(um, um), um — u> -> 0 (see (2.4)). Since the 
sequence {S(um, u)}m is bounded in V* we can choose a subsequence (by a small 
abuse of the notation we denote it in the same way) such that S(um, u) -> q> weakly 
in V*. In virtue of (2.8) we obtain <S(um, u), um> -> <cp, u>, thus <S(um, u), 
um — u> -> 0. This fact together with the condition (2.7) yields S(umk, v) -> S(u, v) 
weakly in V* for all v e V ({umk}k is a subsequence from (2.7)) and using (2.8) we have 

(2.9) <S(umk, v), umk - u> -> 0 for all veV. 

In accordance with (2.5) we have <S(umk, umJ — S(umk, w), umk — w> ^ 0 for all 
w e Vand substituting w = (l — t) u + tv, t e <0, 1>, in this inequality we obtain 

t<S(umk9 umk), u - v> = - <S(umk, umk), umk - u> + <S(umk9 w), uMk - u> + 

+ t<S(umk, w),u - v>. 
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Now according to (2.4), (2.9) and because S(u,„k, w) -> S(u, w) weakly in V* we have 

lim inf (S(umk, umJ, u - v> = lim inf <S(w-„Jk, w), u - v> = <5(u, w), u - v> . 

Again using (2.4) we can write 

lim inf <S(umk, umJ, umk - v} = <S(u, (l - f) u + fv), u - v>. 

Finally, the convergence t -> 0+ yields the requested inequality. 

Theorem 2.2. Lei* the assumptions of Lemma 2.2 be fulfilled. Then u is a solution 
of the equation (2.1). 

Proof. The subsequence {umk}k from the assertion of Lemma 2.2 satisfies the 
conditions (2.2) as well, thus it satisfies all the assumptions of Theorem 2.1. 

3. TECHNICAL PRELIMINARIES 

Throughout this paper Q denotes a bounded domain in the Euclidean N-space RN 

with a Lipschitz boundary dQ. For a manifold M a dQ we consider the distance 
dM(x) = inf |x — y\ of a point xeQ from M. The Sobolev power weight space 

yeM 

WliP(Q; dM, e) with p = 1 is defined to be the set of all functions u defined a.e. on Q 
whose (distributional) derivatives D*u with |a| ^ 1 belong to the weighted Lebesgue 
space Lp(Q; dM, e) endowed with the norm 

\ I / P 

' ) • 

In order to avoid technical difficulties, we shall deal with the case M = dQ and 
p > 1 only. Then the space Wl-P(Q; d8Q, e) with the norm 

(3.1) H P , = ( I [\D*u(x)\pdUx)dxX/P 

\l«l^ijfl / 

is a reflexive Banach space. The set C°°(0) is dense in Wi,p(Q; den, e) for e e 
G ( — 1, p — 1) and we can consider traces of functions of this space on the boundary 
dQ (see e.g. [2]). 

The weighted analogue of the Sobolev space Wl'p(Q) is defined by the formula 
WQ,P(Q; ddQ, e) = CQ(Q) where the closure is taken with respect to the norm (3.1). 
For the sake of brevity we shall denote ddQ = d and Wx

0
tP(Q; d, e) = VPiE for 

e < p - 1. (If e = - 1 then WX'P{Q\ d, e) = W$>>P(Q; d, e).) On Vp>£ we shall con
sider the norm 

(3.2) H^-QjV^I'^dx)17', 
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which is equivalent to the norm (3A) (see e.g. [10]; it also follows directly from the 
next lemma). 

Let us mention the often used Hardy inequality. If — oo < a < b S + 00, p > 1, 
e < p — 1 and fe Lp((a, b); d{a}, s) then 

(3.3) £(x - ar*|jj/(<)|dtjd* ^ ( j _ i _ J | * ( x " «)° |/(x)|'d* 

(in the case e = 0 see e.g. [10], for e + 0 the proof is analogous). 
Further, we shall work with the set 

(3.4) Qn = \x e Q; dist (x, dQ) > - 1 

which is a domain with a Lipschitz boundary for sufficiently large integer n. 

Lemma 3.1. Let p > 1, s < p — 1. Then there exists a positive constant c = 
= c(.Q, p) such that the inequality 

(3.5) f \u(xf * - ' ( * ) dx = / 1— Y f I Vu(x)|' d'(x) dx 
J<r \ | £ - P + 1|/ Je> 

holds for all u e VpE, where 0 = Q or 0 = Q\Qn with n = n0 (n0 sufficiently large). 
Moreover, if Q is convex then c = 1. 

Proof. The application of the partition of unity and the inequality (3.3) give the 
proof in the case 0 = Q (see e.g. [2], [10]). If 6 = Q \ Qn we proceed analogously 
using the fact that the inequality (3.3) is fulfilled for every interval (a, b) with the 
same constant (pj\s — p + l|)p. 

We claim to demonstrate the inequality (3.5) in the case 0 = Q when Q is convex. 
For 0 = Q \ Qn the proof is similar. 

The first step. We shall consider (3.5) for 0 = G and u e C"(int G) where G is 
a closed convex polyhedron. We can decompose this polyhedron with sides s1 ? . . . , s„ 
into closed polyhedrons Gl9...9Gn such that x e G is an element of Gf if and only 

n 

if dist (x, dG) = dist (x, s(). Then G = (J Gi9 int Gf n int Gy = 0 for 1 + j , Gt con-
1 = 1 

tains the side si9 i = 1, . . . , n (see Fig. 1). 
It is sufficient to establish the inequality (3.5) only for 0 = Gt. There is an ortho-

normal matrix A e RN2
9 a vector y0 e RN and a local system of coordinates y such 

that y = Ax + y0, st belongs to the hyperplane y1 = 0 and Gx belongs to the 
halfspace y1 = 0. If now y = (yl9 y')eR x fl*"1, Psx = { / e R*"1; (0, y') e s j , 
^(y') = max{.v1;y = (yl9y')eGl9 y'ePsJ, then using the Hardy inequality 
(3.3) we can write 
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r r r*(y') 
/. = \u(x)\"^-"(x)dx=\ \u(yt,y)\'y\-\dyidy'^ 

J G , J PSI JO 

\e- p + i\) J,-Jo 

*\\'-p+l\)\c\& 

" " ' > I Й и 

l ^ i 
( > . , / ) 

!* 
3^ dyí dV g 

дu 
(y»y') 

2\p/2 
y\dytdy'. 

Fig. I 

Since A is orthonormal, for u e CQ(Q) we have 

y й 2 = У I— 
-—' 3 -—' Я 

i = l lOx,-! i = l loyf 
in O and finally 

Ii Ś —p-—-,Yf N N x ) ^ . 
- P + - / JG, 

The second step. With regard to the density of CJ((2) in the space Vp>e it is suf
ficient to prove the inequality (3.5) for an arbitrary u e CQ(Q). Since such a u has 
a compact support, for any sufficiently large integer n there exists a convex polyhedron 
G(w) with the properties supp u c G(M) c >G, dist (x, dQ) < ljn for all x e 5G00. 
According to the first step 

f K * ) | p » ( * ) d* ^ fi L—X f IVu(x)|" ^ . ( x ) dx 
Jew • \ | * - P + 1|/JG<»> 
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"a / ,_ / ,dx + 

and applying the Lebesgue Convergence Theorem for n —> + oo we obtain the 
inequality (3.5) with (9 = Q. 

Lemma 3.2. Let p > 1, s < p — \. Then the mapping J dsfined by J(u) = d*u 
is an isomorphism of VpE onto Vpz_ap whenever a > (e — p + 1)/p. 

Proof. It is evident that the mapping J is injective and continuous because, in 
view of Lemma 3A, 

N c du p r , r 
\d*4pp,*-p = I r - d £ d * + ^ H " M " d £ ~ " d * + \<*\pde<ix ^ c.iuW^ 

(we have |5d/3xf| = 1, / = 1, ...,N, a.e. in Q). 
Analogously for any v e VpE„yp we have 

N c i f)n \p r 
l d " a | ? l " c - S Z — d £ ~ a p d x + N | a M |v|"d£ 

+ f | v | ^ d £ - ^ d x ^ c 2 | | v | | ^ _ a / , 
Jtt 

whenever s — up < p — 1. This completes the proof. 

Let us now briefly deal with the Nemyckij operators in Sobolev power weight 
spaces. Suppose that a function h: Q x Rs -> R (h = /J(X, £1 ? . . . , £5)) satisfies the 
Caratheodory conditions (i.e., it is measurable on Q for all £ = (£l9 ..., £v)e /£P 
and continuous in £ for a.a. x in Q). If the Nemyckij operator H: (ul5 ..., us) -> 

s 

-> h(x, ul9..., us) acts from Y\ LPi(&\ d, e,) into Lq(Q; d, a), 1 S Ph CJ < + °°> 

then it is continuous. Actually, because J: Lq(Q)-* Lq(Q; d, s), J(u) = d~E/qu, 
J,-: Lp.(Q) -> Lp.(Q; d, e,), Ji(u) = d~Ci/Pi, i = 1, ..., s, are isomorphisms, the 
formula 

OAi, .-., </0 -> J~lh(x, J ^ i , ..., J> s) 
s 

defines a continuous mapping from JJ LPl.(0) into L^((2)(see e.g. [11]). Consequently, 
i = l 

the operator 
H: ( J ^ i , ..., JsiAs) -> h(x, J ^ i , .-., J A ) 

acting on weighted spaces is continuous as well. 
Finally, in Section 4 we use functions the existence of which is guaranteed by the 

following lemma. 

Lemma 3.3. Let {ak}k be an increasing sequence of integers with a sufficiently 
large ax. Then there exist functions {cpk}k satisfying the conditions: 

<pkeC™(RN), 
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<pk=\ in fíN \ Í2ak + 1 , (pk = O m Qak (for Qak see (3.4)) , 

ЯkClk 
0 = <yф) = 1 «иd |V9k(x)| = c3

 k к+í for all x e RN 

Лfc + i - я* 

with a positive constant c3 = c3(Q). 

Proof. We can consider domains Qk, k = 1,2,..., with Lipschitz boundaries 
which have the following properties: 

Q a k c=Q;c=O t f k + 1 , dist (x, Q J > V I - — ) for all xedQ'k 

3 W ak+iJ 

and 

dist (x, Qk) > - ( ) for all x e dQak 4 1 . 
3\ak "k+ij 

Let us define functions Xk o n ®N by 

y W _ I ° if * e ^ > 

and let 

V : x K i e ( - — - ) u ( y ) d y > fe = i , 2 , . . . , 

be mollifiers with a kernel 

e e C f ( ^ ) , f o(x)dx = l , 
JRN 

supp ^ = {xe RN; \x\ = 1}. If we substitute 

"-ii1--) 
4 \ a k flk+1/ 

then flyk#fc e C00^), (K^**) (*) = 1 for all xeRN\ Qak+i and we have the estimate 
dMflM < J _ m a x | V e ( z ) | . f \Xk(y)\ Ay , 

8xt yN+i

 zeR» JByk(x) 

i = 1,...,N, where Byk(x) = {yeRN; \x — y\ < yk}. Hence we can deduce 

\V(RykXk) (x)\ < V(N) max |Vg(z)| m e a & * l ( 0 ) for all xe<2, 

k = 1, 2 , . . . . Now, it is sufficient to put <pfc = RykXk-
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4. WEAK SOLUTION OF THE NONLINEAR DIRICHLET 
BOUNDARY VALUE PROBLEM 

Let us consider the nonlinear Dirichlet boundary value problem (b.v.p.) (VI). 
(We remember that Q c= RN is a bounded domain with a Lipschitz boundary.) We 
assume that functions a,-: Q x R x RN -» R, i = 0, 1, ..., N, satisfy the Caratheodory 
conditions as well as the following inequalities: 

There exist numbers p > 1, Se(0, p — 1), ee(— 1, p — 1), positive functions 
k e Lpf(Q; d, e), q e Lt(Q; d, e), where p' > 1, (\jp) + (ijp') = 1, and positive 
constants a0,..., a3 such that 

(4.1) l a ^ ^ l r g a o d ^ - 1 + \n\"~l + k(x)), i = 0,1, ...,N , 

(4.2) £ a.(x, n, i) £t + a0(x, n,Z)n^ a.|f|' - a2f.-|'-' - a3 <z(x) , 
i= 1 

(4.3) £ [a,(x, //, £) - a,(x, >/, £')] ({, - «J) > 0 , 
І = l 

for a.a. JC e (2, a/l ̂ eR, £,£'e RN, £ * <.;'. 
Let (p e W ^ G ; d, s) and fe [Fj,,-«(,,-D]*, where the latter symbol denotes the 

dual space to WQ,P(Q; d, -e(p - 1)). Analogously as in the case of classical Sobolev 
spaces there exist distributions f 0 , . ..,fN e Lpf(Q; d, e) such that 

f=fo~ £ ^ . 
i = i dxt 

Let us reformulate the b.v.p. (1.1) in the equivalent form 
N d 

(4.4) ~ I — bt(x> v> Wv) + bo(x> *> Vy) = f in O, 
i = l OXi 

v =- 0 on dQ , 

where the functions bf, i = 0,1,...,N, are defined for a.a. xe Q and for all rje R9 

£e RN by bt(x, .7, ̂ ) = a^x, ,7 + (p(x), <.; + V(p(x)). It is easy to see that bt: Q x 
x R x RN -+ R, i = 0 , . . . , N, satisfy the Caratheodory conditions and the ine
qualities (4.1), (4.3) with suitable constants and that the relation (4.2) is valid with 
8 = 0 for a sufficiently small constant a2. However, we shall require the following 
weaker inequalities: 

(4.5) There exist jS0, y > 0 and a positive function h e Lp,(Q; d, e) such that 

\b0(x, tl, «)| = fio[d-\x) \Z\o-1 + d-"(x) In]-1 + <T\x) *(*)] , 

\bt(x,n, i)\ g M | € | P _ I + rf-<p-,)+rwMP_I + * M ] . »• = 1,....JV, 

/or a.a. xeQ and all neR, £e RN. 
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(4.6) There exist j8x > 0, a positive function r e LX(Q; d, s) and for every co > 0 
a number j52(co) > 0 such that 

D 

X fr,(x, n, !) £,- + b0(x, n, c) n ^ 0 ^ ' - e* r ' (x ) |»/|' - /?2(e») r(x) 
i = 1 

/ o r a.a. xeQ and all rj e R, £e RN. 

(4.7) £ [b,(x, n, £) - b,(x, , , £')] (f, " « ) > 0 
i = l 

/ o r a.a. X G ( 2 and all rj e R, f, {' 6 « " wfft { =t= £'. 

Let us define an operator T: Vp£ -> [^P ,-e(P-i)]* by the formula 
AT /• ^ w / • 

<Fv, w> = J frj(x, i>, Vv) — dx + b0(x, v, Wv) wdx , we Vp,_e(p-
« = i j « 3xj J f i 

By the use of the Holder inequality, the inequalities (4.5) and Lemma 3.1 with 
0 = Q and with — s(p — 1) instead of £ it is not difficult to verify that 

in, wy^c,. (D-j;-1 + |h|^,>£). H , , - ^ . , , 
for all v e Vp>E, w e V^-^^-D with — 1 < £ < p — 1. Thus the operator T is 
bounded and Tv e [Pp , - e(P- i)]* for every v e Vp E (with an admissible s). 

Definition. Let p > 1, £e(— 1, p — l). A function u e Vpt is said to be a weak 

solution of the problem (4.4) if 

<7u, w> = </, w> for every w e Vp.-^-D . 

As in Section 3, the operator 

J: u -» d£u 

is an isomorphism of the space Vp<£ onto Vp^^.jj for £ e (— 1, p — 1) and there
fore its dual mapping J*: [Vp ,-e (p-i)]* -+ [^ P . j* i s a n isomorphism as well. 
The equation Tu = / n o w has at least one solution f o r / e [Vp ,-e (p-i)]* if and only 
if the equation 

(4.8) J*Tu = J*f 

has a solution. Since we cannot prove the pseudomonotonicity of the mapping 
J*T: Vpe -» [Vp,e]* we shall study its range in a similar way as in Section 2. In 
what follows, let us put 

S = J*T, g = J*f 

and let us denote 

V; = {ue Vp>E) supp u cz Qn} (for Qn see (3.4)) . 
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The space Vp is a classical (non-weighted) Sobolev space and J is an isomorphism 
of Vp onto itself. Further, the equations 

(4.8). J*Tu = J*f\yn, 
p 

where the solvability is investigated in spaces Vp, correspond to (2A)n. From Lemmas 
4A and 4.2 below we obtain that the equations (4.8)„ have solutions satisfying the 
conditions (2.2). According to Theorem 2.1 and Lemma 2.2, the forthcoming 
investigation of the solvability of (4.4) in Sobolev power weight spaces is reduced 
to the verification of the conditions (2.5) —(2.8). To verify the validity of (2.5) —(2.7), 
it is more or less sufficient to follow Lions' approach (see [7], Ch. 2, § 2). On the 
other hand, when verifying the condition (2.8) we shall essentially employ the 
assertion of Lemma 4.4 which concerns the behaviour of the solutions u„ of (4.8),, 
near the boundary. 

Lemma 4.1. There exists an interval I, 0 e int I, such that the operator S: Vpe -* 
-• [Vp , j* is coercive for every eel. 

Proof. By means of the Holder inequality and of (3.5) we obtain for u e VpE 

<[Su, u> = <[Tu, Ju> = £ [ f bfa, u, Vu) — d£ dx + 
' = i|_Jr? dxi 

+ e bt(x, u, Vu) u — d£~l dx + b0(x, u, Vu) ud£ dx = 
Jn 3xt J Jn 

= Pi I |Vu|p de dx - co J \u\p dE~p dx - p2(co) \ rd£ dx -
Jn Jn Jn 

- |e| . N . p0 T f IVu^"1 |u| d6"1 dx + f |u | ' d£~p+i dx + f h\u\ d6"1 dx l = 

= C î - 2o>c5 - |e | Np0(c\/P + c5 max d'(x))] | | |u|| |^ -

- P2(o>) I rd£dx - c6(co) J hp'd£dxy 
Jn J n 

where c5 = c(p/|e — /? + l |)p is the constant from (3.5). (We have used the ine
quality h\u\ d'"1

 = \\p(co1/ppl/p\u\ di£/p)-l)p + l\p(co-llpp-1/phd£/PY = 
= c0|u|^de"^ + l /p ' (©" 1 / ( ' " 1 V / ( ' " 1 ) / i ' ' i £ ) with o> > 0.) Since we can choose 
a) > 0 arbitrarily small the operator 5 will be coercive if 

(4.9) /?t - \s\ Nf}0 (cl» • 1— + c (• £ — - Y max d>(x)\ > 0 . 
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Obviously, this inequality is valid for the values e from a suitable interval I with 
0 e int I. 

Lemma 4.2. There exists an integer n_ > 0 such that every equation (4.8),, with 
n _̂ n_ has a solution un e Vp. 

Moreover, if eel (for the interval I see Lemma 4A), then for a suitable c1 > 0, 

(4.10) IWIP.E = ci whenever n __: nx . 

Proof. There is an integer nl such that Q„, n __ «_, is a nonempty domain with 
a Lipschitz boundary. Since J is an isomorphism of the space Vp onto itself, the 
function un e Vp" is a solution of (4.8)„ if and only if (Tun, w> = </, w> for all 
w E Vp". However, viewing the operator Fas a mapping acting from Vp into its dual 
space we can use the well known results concerning pseudomonotone coercive 
operators. (See e.g. [7], Ch. 2, §2, Theorem 2.8. The assumptions of this assertion 
result from (4.5) —(4.7).) Thus the equation (4.8)n has at leas one solution. Finally, 
from 

<Su,., un> = <Jun, Jun> = if, Juny = es\f\iVpt_Eip_X)r\un\PtE 

and from Lemma 4.1 we derive the estimate (4A0). 

With regard to the estimate (4A0), to the boundedness of the operator S and the 
reflexivity of Vp _, for e e I we can consider a subsequence {umj}j of solutions of (4.8)Wj. 
(in what follows, we shall omit the index j) with the property 

U __) [um -* u weakly in VPtE, 
^ ' ' \Sum is weakly convergent in [Vp , j* . 

For all w,v, z e VPtE we put 

<S(w, v), z> = (St(w, v), z> + <52w, z>, 

where 

<5_(w, v), z> = £ f b,(x, w, Vv) p- d* dx , 

<52w, z> = b0(x, w, Vw) zd£ dx + e ___ b^x, w, Vw) zd*"1 — dx . 
jfl ' = i j n 3X| 

Further, we shall verify the validity of the conditions (2.5) —(2.8) for the operator 
(w, v) -> 5(w, v). Applying Theorem 2.2 we get existence results for the b.v.p. (4.4) 
and (1.1) which will be formulated later in Theorems 4.6 and 4.7. 

C o n d i t i o n (2.5). Analogously as for the operator Tit is possible to show that the 
operator v -> 5(w, v) is bounded. To verify its hemicontinuity we have to deduce 

<5(w, v_ + tv2)', z> -> <S(w, v_), z> for t -> 0 
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with any w, vl9 v2, z e Vpz, But the properties of the Nemyckij operators (see Section 

3) yield 

bt(x, w, Vî  + tVv2) -> bt(x, w, Vvi) for f -»0 

strongly in Lp,(Q; d, e), / = 1,..., N. 
Further, the inequality 

<S(w, w) — S(w, v), w — v} = <Sx(w, w), w — v> - <Si(w, v), w - v> ^ 0 

is a direct consequence of (4.7). 

C o n d i t i o n (2.6). Using Lemma 3.1, the Holder inequality and (4.5) we have 

I N Г * 
Z *>.(*> vv> 

l i = 1Jß 
Vw^zd 6" 1—dx 

ÔX: є - p + 1 (IhlîГ + H ^ J И i 

Now, it is easy to see that the operator w -> 5(w, v) is bounded. Its hemicontinuity 
follows again from the properties of the Nemyckij operators. 

C o n d i t i o n (2.7). Let us put 

C M = I [&,(*, «*(*). V«m(x)) - 6,(x, «m(x), V«(x))] ( | - * (x) - ^ (x)) d'(x). 
i = i yOXf Ox,* / 

Lemma 4.3. If J f l Gm(x) dx -> 0 fhen there exists a subsequence {uk}k of {um}m 

(in what follows, our notation will not distinguish between a sequence and its 
subsequences) satisfying the condition 

b((x, uk, Vuk) -> bt(x, u, Vu) weakly in Lpt(Q; d,s), i = 0,..., N . 

Proof. With regard to (4.7) we have Gm = 0. As um -> u strongly in Lp(Q; d, e) 
(the imbedding VpE W Lp(Q; d, e) is compact) we can choose a subsequence {k} 
of integers such that 

(4.12) uk(x) -> u(x), Gjk(x) -> 0 for all X G O \ Z , meas Z = 0 . 

Let r, h be the functions from (4.5) and (4.6), r(x), h(x) < + oo for a fixed x e Q \ Z. 
Let us put Y\k = uk(x), r\ = u(x), £ = Vw(x). Further, let £* be a cluster point of the 
sequence {£k}k, where £k = Vwfc(x). We have 

(4.13) |{*| < +oo 

since 
N 

Gk(x) ž d\x) [ £ 6f(x,,,», &) &, - JV/J0|«;| ( l^ l"" 1 + 
i = l 

+ Í - " - "^*) ! , , ! ' - ' + h(x)) - NP0(\^\ + i^D-díl'-1 + 
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+ d-(p-1) + '(x)|»7*|p-1 + h(x)) + b0(x,tjk,^)r,k -

- Poh\ (d~l(x) I&I'-1 + d~>(x) \r,k\>~1 + d~\x). h(x))] Z 

^^W^|4|p-c9( |^|p-1 + |&| + 1) 
and since Gfc(x) -> 0 by (4.12). In view of (4.12), (4.13) and of the continuity of the 
functions bt in r\ and £ we obtain 

iV 

I d\x) I [&,(*, ,, £*) - *,(*, ,, «)] • (íГ - í«) = 0 , 

therefore, by (4.7), £* = {. 
Finally, the Caratheodory conditions yield 

bt(x, uk(x)> Vufc(x)) -> bt(x, u(x), Vu(x)) a.e. in Q for i = 0, . . . , N . 

Because the sequence {bt(x, uk, Vuk)}k, i = 0, ...,N, are bounded in Lpt(Q; d, e) 
and this space is reflexive we can write 

bt(x, uk, Vufc) -> bt(x, u, Vu) weakly in Lpt(Q; d, e). 

(The weak limit is independent of the selection of a subsequence of {uk}k.) The asser
tion of the lemma is proved. 

Now, in our case the condition (2.7) means that Jfi Gm(x) dx -> 0 and we can 
consider the subsequence {uk}k from Lemma 4.3. The convergence uk -> u a.e. in Q 
yields b,(x, uk(x), Vv(x)) -> bt(x, u(x), Vv(x)) for a.a. x e Q, i = 0, ..., N, and in 
virtue of the boundedness of the sequences (b/(x, uk, Vv)}*, i = 0, . . . , N, in Lp/(Q; d, e) 
we get 

(4A4) bf(x, uk, Vv) -> bt(x, u, Vv) weakly in Lpr(Q; d, e). 

Further, if z € C£(Q) then 

dE-^~, dEz, dE-l — ze[Lp,(Q;d,e)]* = Lp(Q;d>-e(p-l)), 
dxt dxt 

i = l,...,N, 

and from Lemma 4.3 and from (4.14) we obtain 

(S(uk, v), z> -> <5(u, v), z> for all z e C$(Q) . 

However, the set CQ(Q) is dense in Vpe and so 

S(uk, v) -» S(u, v) weakly in [Vp,J* . 

C o n d i t i o n (2.8). Let um satisfy the assumption of (2.8), i.e. S(um, v) -> \j/ weakly 
in [VP,J*. The first condition of (4.11) implies the strong convergence um-^ u 
in LP(Q; d, e - p + yp') (for y > 0 see (4.5)) since the imbedding Vpe W Lp(Q; 
d,e — p + yp') is compact (see e.g. [10]). By the growth conditions, for a fixed 
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v e VPtB the mappings z -> b.(x, z, Vv), i = 1 , . . . , N, act from Lp(D; d, e - p + y//) 
into Lp,(Q; d9 e) and so they are continuous due the properties of Nemyckij operators. 
Hence we obtain 

bi(x9 um, Vv) -» bi(x, u, Vv) strongly in Lp,(Q; d,e) , i = 1 ..., N , 

and so 

(4.15) <Si(um, v), um> -> <Sx(u, v), u> for an arbitrary v e VPtE. 

The most complicated part of the verification of (2.8) is to show that 

(4.16) <S2um, um - u> -> 0 ; 

we shall postpone it for a while. 
Now, the condition (4.15) yields 

<S2um, u> = iS(um, v), u> - <S!(um, v), u> -> <i/r, u> - <Si(u, v), u> 

and according to (4.16) we deduce 

<S2um, um> -> <(,?>, u> - <S1(u, v), u> . 

Finally, we have 

<5(um, v), um> = <Si(um, v), um> + <S2um, um> -> (i//, u> , 

which is the assertion of (2.8). 

In the proof of (4.16) we cannot employ the imbedding of Vp>£ into Lp(Q; d,e — p) 
since it is not compact. However, we can use the following 

Lemma 4.4. Let eel, where I is the interval from Lemma 4.1. Then there exist 
a constant cl0 = c10(f, Q9 p,e, /?0, fil9y, h9r) and an increasing sequence {ak}k 
of integers such that the inequalities 

f \Vum(x)Yd\x)dx =
 C-f9 k= 1 , 

jD\Qak + i * 

hold for all solutions um of the equations (4.8)m with m _ nt (for nx see Lemma 4.2). 

Remark 4.1. This fact together with Lemma 3.1 implies 

\"m(x)\p dE~p(x)dx =^±, k = 1 , m = n1, L } D\Dak+i 

where ctl is a positive constant. 

Proof. Since meas(Q\Qn) -> 0 for n-* +co, h,fteLp,(Q;d9e)9 i = 0, ...,N, 
r 6 L^O; d, e), there exists an increasing sequence {ak}k of integers satisfying the 
conditions 

264 



(4.17) 

where 

£ f r(x) ď(x) dx<í, | f \h(x)\-' ď(x) dx < 1, 
k= l J n\!lak

 k~ l J .Q\f2ak 

^ R , ( j ) < l , -k-±i = 2 for /c = l , 2 , . . . , 

luj) = _ ( f iLwrdt*»^ 
'=0\Jfi\fiflk 

1/p' 

Let us consider the functions {<pk}k from Lemma 3.3 corresponding to the sequence 
{ak}k. We have cpkumdEe V™ and the equality <Jum, <pkumdEy = <f,<pkumdEy yields 

(4-18) I 6,(.V, u,„, V»,„) JШSL-J dx + />0(*. »«, Vttm) %umd£ dx = 
1 Č*. Jn 

= fo<PkUmď dx + 
N /• 

Z \fi 
' = 1 J.Q 

3(<PkUmď) 
ÕX; 

dx 

for all rn _ /z,, k = 1 ,2 , . . . . 

We denote by L(P) the left-hand (right-hand) side of (4.18). Then L = It + I2 + I3 

where 

I, = £ b,(x, um, Vum) -^-? + b0(x, um, Vum) um <pfcd
£ dx + 

Jw^ k + 1L«=l dxi J 
v /• *> J 

+ £ Z Ь,-(x, um, Vum) uи<pÄď~* — dx , 
ř = 1 J í î \ ß a k + ł 

ć)X; 

r rN fin n 
I2 = X fo.(X> "». V"m) T ^ + bo(X> "m. V»m) «*-, W*' <** + 

Jn<.k + . L i = l 5 x i J 

+ e j M b,(x, um, Vum) um<pkd
£*1 ^ - dx , 

N /* r\ 

I3 = _ *>.(*, "m , Vum) um -p^d'dx. 
• = i j n dx; 

Using Lemma 3.1 for & = J2 \ f20k+, we obtain analogously as in the proof of Lemma 
4.1 

/ t = QS. - 2o)c5 - |e| tf/?o(c5/P + c5 max «*>(*))] f |Vum|" dc dx -
jceD J .QM?ak + i 

- j?2(co) f r de dx - c6(co) f hp'de dx, 
Jn\nak + ; Jn\n«k+i 
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where the term in the square brackets is positive for eel. (I is the interval from 
Lemma 4.L) The inequality (for the properties of <pk see Lemma 3.3) 

|£f ^ggj jJgic , fl*flt+i . 
I , , = 1 Jflflfc+iNflflfc ^Xi I Qk ak+l ~ ak 

f ||-,|d'-1dxg2c3f i hK- 'dx 
J fiak + i\Qak ' - l J fiafc + i\iQak *" l 

holds for all vte L^G; d, e - 1), / = 1, ...,1V, and using (4.5) and the inequality 

(4A9) ab = - | a | p + - , \b\p', a,beR , 
P P' 

we obtain 

| /2 | + | / 3 | g c I 2 f (d£|Vum|" + d£-"|um|" + d£/V')dx. 
Jfiak+i\iQa,v 

(Evident ly <pfc = 0 in Qak a n d <pfc = 1 in Q\Qak + l.) Via the Holder inequality we 
deduce, for the right-hand side of (4A8), 

|P| g f |/0| |um| d« dx + £ f |/,| IV«m| d£ dx + 

+ |«| I f |/«| K| tP"1 ^ + i c 3 - ^ ± i - £ f |/,| |um| tf- dx g 
l-1jD\Dak

 ak ak+l ~~ afc , = 1 Jfiak+,\Qafc 

^ c!3 £ f f |/.|'' tl£ d x Y " ( f |Vum|" d° d x Y " . 
' = 0\Jfi\r}ak / VJfi / 

Finally, from these inequalities and from (4.10), (4.17), (4.18) we have 

J \Vum\p dE dx g c 1 4 j J rdE dx + j hp'dE dx + 
J .Q\iQak + i L J f2\nak +1 J flM2afc 

+ Rk(f) + f (d£|Vum|" + d£-"|um|") dx] 
J f i a k + i\iQak J 

аnd 
t ! \Vum\p dE dx = c14[~3 + f (dE\Vum\» + d*-p\um\p) d x ] = c 1 0 . 

k = 1Jn\nak + l L Jn J 

Since -2\-2a i c: .Q\O f l | for i > I and since the constant c 1 0 is independent of m, 
the proof is complete. 

The proof of (4.16). The inequalities (4.5), (4.19) together with Lemma 4.4 and 
Remark 4.1 yield 
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+ e 

ѓcl5 

Xk(m) = b0(x, um, Vum) (um - u) d£ dx + 
I J n\nak +1 

£ bi(x, um> Vum) (um - u) d£*~x — dx g 
l = l Jf i \r2a k + 1 ^ i 

|"f |Vum|>rf£dx + f |um|M£-Mx + 
LJfi\-Qak + 1 J.QM2ak+i 

+ j \u\p d£~P dx + f hp'd£ dxl ^ /(k) , 
J.Q\flafc + i Jfi\iQak+i J 

where # is independent of m and #(fc) -> 0 for k -> +00. Similarly, using the Holder 
inequality, (4.5) and (4.10) we estimate 

Yk(m) = b0(x, um, Vum) (um - u) d£ dx + 
I J-Qak+i 

+ e ]T &;(x, um, Vum) (um - u) de_ * — dx ^ 
' - - J a* + . 5x--

^ c16f f K - u l M - ' d x Y " g c16flj»'// * |um - u\" d<-?^ dxY" 
VJfiafe+i / VJfl / 

with a number ft > 0. In virtue of the compactness of the imbedding VPtE
 v-> 

v—• L^Q; d, 8 — p + P) we obtain the convergence Yfc(m) -> 0 for m -> +00, where fc 
is arbitrary. 

Finally, given a > 0 we find integers k > 0 and n2 = nt such that 

|<S2um, um - u>| ̂  Kfc(m) + Yk(m)< 2a for all m = n2 , 

which completes the proof. 

Let us now summarize the results concerning the solvability of the problems (1.1) 
and (4.4) into the following theorems. 

Theorem 4.6. Let functions bt: Q x R x RN -> R, i = 0, ...,N, satisfy the 
Caratheodory conditions and the inequalities (4.5) —(4.7). Then there exists an 
interval I with 0 e int I such that if eel, then the b.v.p. (4.4) has at least one weak 
solution ueW0

,p(Q;d,e) whenever 

/ = / o - E ^ L , f0,fu...,f«eLp,(Q;d,e). 
i=lOXi 

Theorem 4.7. Let functions a{\ Q x R x RN -> R, i = 0, ...,N, satisfy the 
Caratheodory conditions and the inequalities (4.1) — (4.3). Then there exists an 
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interval I with OeintI such that if eel, then the b.v.p.(l.l) has at least one weak 
solution u e WltP(Q; d, e) whenever 

f = f o ~ l ~ , Ufu...,fNzLp,(Q;d,s), 
i=-l OX i 

and (pEW^p(Q;d,E). 

Remark 4.2. In the case of e < 0 and of a degenerate right-hand side the weak 
solution of the problem (1.1) or (4.4) belonging to the space WlfP(Q; d, e) or 
WQ,P(Q; d, e), respectively, will be a weak solution of the same problem in the 
corresponding classical Sobolev space as well. Therefore, if the b.v.p. (1.1) or (4.4) 
has a unique weak solution in the classical sense (for example, if the operator T 
is strongly monotone) then this will be the unique solution in the corresponding 
Sobolev power weight space. 

An open problem, however, is to find reasonable conditions of the uniqueness 
for e > 0. 

Remark 4.3. It would require rather lengthy and purela technical considerations 
to get analogous results for Sobolev power weight spaces WliP(Q; dM, s), M c dQ 
being a manifold with dim M _̂  N — 1, and the same is true for operators of higher 
orders. One can make use of estimates similar to that in Lemma 4.4 to verify the 
condition (2.8). 

Remark 4.4. Finally, it remains to discuss the situation from Lemma 4.1 where 
the interval I obtained in the course of the proof determines the choice of the 
suitable weight. 

Very often, the situation met in particular cases is such that I can be larger than the 
interval which we get from (4.9). For example, a finer estimate guarantees the 
solvability of the b.v.p. 

(4.20) _ £ A l | V « | * - ! _ W in Q, 
i=i dxt \ dxj 

u = 0 on dQ , 

(with p > 1 , /e [^,-c(p-i)]*) in the Sobolev power weight space for 

Є É j-(-p + 1 ____I_\ 
{c^p - 1 ' cxt>p + \j ' 

where c is the constant from (3.5); note that c = 1 if Q is convex. 
However, there is still another interesting problem to be solved. Namely, the 

problem (4.20) and the corresponding b.v.p. with non-zero boundary data can also 
be formulated in spaces VpE for se(— 1, p — 1)\J (because a suitable trace theorem 
is available), and an existence theorem would be desirable. 
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