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ON THE DIRICHLET BOUNDARY VALUE PROBLEM
FOR NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL
EQUATIONS IN SOBOLEV POWER WEIGHT SPACES

JosSEF VoLDRICH, Plzeni
(Received November 21, 1983)

1. INTRODUCTION

Let us consider the nonlinear Dirichlet boundary value problem
N a )
(L.1) -y o afx, u, Vu) + ag(x,u, Vu) = in Q,
i=10X;

u=¢ on 092,

where Q = R" is a bounded domain. Our aim is to give conditions for the solvability
of the problem (1.1) in weighted Sobolev spaces. It is motivated by the two following
reasons: First, the behaviour of the right-hand side f near the boundary dQ may
cause non-solvability of the problem (1.1) in a classical (nonweighted) Sobolev
space, or the function ¢ may not possess the suitable trace on d9Q. In such cases it
is sometimes possible to overcome these difficulties by formulating the problem
(1.1) in terms of weighted Sobolev spaces (with weights of a positive power).

Second, from the behaviour of the right-hand side f near the boundary 0Q we
should like to deduce the analogous behaviour of the solution. The use of suitable
(negative power-type) weights could answer some of such regularity questions.

We shall consider the equations which are elliptic within the classical Sobolev
space theory. The case when the coefficients a; include singularities or are degenerate
and when the ellipticity can be regarded only with respect to the weighted Sobolev
spaces is discussed in [5].

The problem (1.1) for linear equations is investigated in [1], [2], [9], [10]. The
application of the generalized Lax-Milgram lemma (see e.g. [9] or [10], Ch. 6, § 3,
p- 294) is essential in these papers. Such a procedure, which would be relatively
simpler, cannot be applied to the nonlinear case and thus we transform the problem
(1.1) to the operator form usually used in the theory of pseudomonotone operators
(see [7], Ch. 2, §2). Although we cannot prove the pseudomonotonicity of the
operator obtained (on the other hand, we do not know of any counterexample),
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in Section 2 we use methods of pseudomonotone operators in order to find a sequence
convergent to a solution of the operator equation (2.1). Some necessary concepts
concerning Sobolev power weight spaces are recalled in Section 3 and the solvability
of (1.1) in these spaces is studied in Section 4. Lemma 4.4 appears here to be the key
to the verification of the problematical condition (2.8). It is not essential that we
work with operators of the second order and with weights related to the whole
boundary only.

It remains to remark that our procedure gives the solvability of (1.1) for weighted
spaces with small powers only. On the other hand, evidently better results were
achieved merely for several special examples with linear operators (see e.g. [2], [10]).
The answer as to the uniqueness of the solution is not complete, either.

2. ABSTRACT CONSIDERATIONS

In this part we shall study the solvability of the operator equation
(21) Su=gyg,

where S is a nonlinear operator acting from a real reflexive Banach space V into its
dual V* and g € V*.
Let V,,, me N, be such closed subspaces of V' that V,, = V, for m < n and the set

U V, is dense in V. We define g,, € V* by {g,,, v} = {g, v) for allve V,,, and by S,,
mef\/
we denote the restriction of S onto the set V,,.

We shall suppose that the equations
(21),,, S, U, = gm, MEN,

have solutions u,, €V, (i.e. {Su,,v) = {g,v) for all veV,) satisfying the con-
ditions

(2 2) U, Su weakly in V,
) Su,, is weakly convergent in V* (for m — + ).

Theorem 2.1. Let S be an operator acting from a real reflexive Banach space V
into its dual V* and let g € V*. Further, let solutions u,, of the equations (2.1),,
satisfy the conditions (2.2) and
(2.3) lim inf {Su,,, u,, — V) = {(Su,u — v} forall veV.

m-=+

Then u is a solution of the equation (2.1).

Proof. Since Su,, = S,%, = gm» applying (2.2) we obtain that Su,, — g weakly
in V*, Now we have {Su,, u,> = {¢g, #,> = {g, u) and with regard to the con-
vergence {Su,,, u) — {g, u)y we conclude

(2.4) (St 1, — uy — 0.
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This fact together with the condition (2.3) implies lim inf {(Su,,u — v) =
= {Su,u — v) for all veV, otherwise {g,u — v) = {(Su,u — v) for all ve V.
This inequality yields Su = g.

The verification of (2.3) for a particular operator S frequently requires elaborated
and rather complicated procedures which are analogous to an investigation of pseudo-
monotonicity. Therefore the following modified Leray-Lions conditions (2.5)—(2.8)
form important tools in applications (see e.g. 7], Ch. 2, § 2).

We shall suppose that the operator S has the form Sv = S(v, v) where the mapping
(w, v) > S(w, v) acting from V x Vinto V* satisfies the following conditions (here,
u,, are solutions of the equations (2.1),, with the property (2.2)):

(2.5) For an arbitrary w € V the mapping v — S(w, v) is a bounded hemicontinuous
operator from Vinto V* (i.e., for all u, h € V and for an arbitrary sequence
{t.}s» t.— 0, we have S(w,u + t,h) —> S(w,u) weakly in V*) satisfying
(S(w, w) — S(w, v), w — v} = 0 whenever veV.

(2.6) For an arbitrary ve V the mapping w — S(w, v) is a bounded hemicontinuous
from Vinto V*,

27) I1f lim (S(u,, u,) — S(4,, u), 4, — uy =0 then there is a subsequence
m— + oo

{tm i = {tm}m satisfying S(u,,,v) —> S(u,v) weakly in V* for all veV.
(2.8) If S(u,, v) > ¥ weakly in V* then lim {S(u,, v), u,> = <Y, u).

m=+ ©

Lemma 2.2. Let u, € V,, meN, be solutions of the equations (2.1),, with the
operator S satisfying the conditions (2.2) and (2.5)—(2.8). Then there exists a sub-
sequence {u,, }, for which

lim inf {Su

k= +

> Wy, — U = {Su, u — v)> whenever veV.

Proof. We remark that (2.2) implies {S(t,, ,,), #,, — u) — 0(see (2.4)). Since the
sequence {S(u,, t)},, is bounded in V* we can choose a subsequence (by a small
abuse of the notation we denote it in the same way) such that S(u,,, u) - ¢ weakly
in V*. In virtue of (2.8) we obtain {(S(u,, u), 4> = <@, u), thus <(S(u,,u),
u,, — uy — 0. This fact together with the condition (2.7) yields S(u,,, v) - S(u, )
weakly in V* for allv e V ({u,, } is a subsequence from (2.7)) and using (2.8) we have

(2.9) {S(ttp,» v); Uy, — uy > 0 forall veV.

In accordance with (2.5) we have {S(i,, ) — S(tp,, W), thy, — w) = 0 for all

mgd Um,

we V and substituting w = (1 — f)u + tv, t € <0, 1), in this inequality we obtain
1S (s U, ) % — 0> = = {S(tpys U )s U, — W) + {S(Ur,s W), W, — U +
+ t{S(ty,, W), u — V).
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Now according to (2.4), (2.9) and because S(u,,,, w) — S(u, w) weakly in V* we have
lim inf (S(u,,, t,, ), ¥ — v) = liminf {(S(u,, , w), u — v} = {(S(u, w), u — v).
Again using (2.4) we can write
5im inf <ty s th, ), U, — 0 = <S(tt, (1 = £) 1 + 1), u — vy .

Finally, the convergence t — 0, yields the requested inequality.

Theorem 2.2. Let the assumptions of Lemma 2.2 be fulfilled. Then u is a solution
of the equation (2.1).

Proof. The subsequence {u,,}, from the assertion of Lemma 2.2 satisfies the
conditions (2.2) as well, thus it satisfies all the assumptions of Theorem 2.1.

3. TECHNICAL PRELIMINARIES

Throughout this paper Q denotes a bounded domain in the Euclidean N-space RY
with a Lipschitz boundary 0Q. For a manifold M < ¢Q2 we consider the distance
dp(x) = 1nf|x - yl of a point xe @ from M. The Sobolev power weight space

Wr(Q; dM, ¢) with p 2 1 is defined to be the set of all functions u defined a.e. on Q
whose (d1str1butxonal) derivatives D*u with Ial < 1 belong to the weighted Lebesgue
space L ,(Q; dyy, &) endowed with the norm

|0]a.5.c = <L|¢(x)|p (%) dx)”"

In order to avoid technical difficulties, we shall deal with the case M = 0Q and
p > 1 only. Then the space W'?(Q; d,q, £) with the norm

(3.1) ], = <“}j< 1 J 19" 9l i) dx)”’

is a reflexive Banach space. The set C*(Q) is dense in W'P(Q; dy, €) for e €
€ (—1, p — 1) and we can consider traces of functions of this space on the boundary
0Q (see e.g. [2]).

The weighted analogue of the Sobolev space Wé"’(Q) is defined by the formula
WAP(Q; dyg, €) = C3(2) where the closure is taken with respect to the norm (3.1).
For the sake of brevity we shall denote d,, = d and Wy?(Q;d,¢) = V,, for
e<p—1. (If e £ —1 then W"?(Q;d, ¢) = Wy'"(2; d,¢).) On V,, we shall con-
sider the norm

(32) il = ([ [Vt d)

253



which is equivalent to the norm (3.1) (see e.g. [10]; it also follows directly from the
next lemma).

Let us mention the often used Hardy inequality. If —co < a<b £ 400, p > 1,
e <p—1and feLy(a, b);d,, ¢) then :

(3.3) J:(x - a)e-v[ J| 1) dz]" dx < <l 2 1|)" j — ) |f(x))? dx

(in the case ¢ = 0 see e.g. [10], for & % 0 the proof is analogous).
Further, we shall work with the set

(3.4) ) Q, = fx € Q; dist (x, 0Q) > l}
n

l

which is a domain with a Lipschitz boundary for sufficiently large integer n.

Lemma 3.1. Let p > 1, ¢ < p — 1. Then there exists a positive constant ¢ =
= ¢(®, p) such that the inequality

(3.5) f Ju(x)f? d*~2(x) dx < c(l L 1|> f [Vux)|? d<(x) dx

holds for allue V,,, where 0 = Q or 0 = Q\ Q, with n = n, (n, sufficiently large).
Moreover, if Q is convex then ¢ = 1.

Proof. The application of the partition of unity and the inequality (3.3) give the
proof in the case @ = Q (see e.g. [2], [10]). If © = @\ Q, we proceed analogously
using the fact that the inequality (3.3) is fulfilled for every interval (a, b) with the
same constant (p[le — p + 1|)".

We claim to demonstrate the inequality (3.5) in the case 0 = Q when Q is convex.
For 0 = Q\ Q, the proof is similar.’

The first step. We shall consider (3.5) for 0 = G and u € CJ(int G) where G is
a closed convex polyhedron. We can decompose this polyhedron with sides sy, ..., s,
into closed polyhedrons Gy, ..., G, such that x € G is an element of G; if and only

if dist (x, 0G) = dist (x, 5;). Then G = U G;, int G;nint G; = @ for i * j, G; con-

tains the side s;, i = 1, ...,'n (see Fig. 1)

It is sufficient to estabhsh the inequality (3.5) only for 0 = G,. There is an ortho-
normal matrix A € R, a vector y, € RY and a local system of coordinates y such
that y = Ax + yo, 5; belongs to the hyperplane y, = 0 and G, belongs to the
halfspace y; = 0. If now y = (y,, y’)e R x R¥"!, Ps;, = {y’ e R¥"*; (0, y') € 54},
R(y') = max{ys; ¥ = (v1,¥')€ G,, y'€Psy}, then using the Hardy inequality
(3.3) we can write
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R(y")
I, =J‘ |u(x)|? d*~7(x) dx —'[ j |u(vs, ¥)P i 2 dyy dy” <
G, Ps;J O

p 14 R(y")
('8 —-p+ Tl) JPS;[O

IIA

, yi dy, dy’ <
all.\’)l.) 3

p N ou , 2\p/2 . ,
= (—p———) > |z 0 y) ) yidydy'.
Is—p-i—ll 6, \i=1 [0y,
7
Y
/
/
//
Y, G
/
/
AN
~
N
~
N
N
5
N
~
N
~
AN
y1 N
Fig. 1
Since A is orthonormal, for u e Cg(2) we have
ou 2 _ a_u 2
i=1|0x; i=1|0y;

in Q and finally

I < <|7§—+1I) f V()P d(x) dx.

The second step. With regard to the density of C3(®) in the space V,, it is suf-
ficient to prove the inequality (3.5) for an arbitrary u € C3(). Since such a u has
a compact support, for any sufficiently large integer n there exists a convex polyhedron
G™ with the properties suppu = G < @, dist (x,9Q2) < 1/n for all xe dG™.
According to the first step

J mn,l"(")‘ diah(x) dx = (%)J' |Vi(x)|? digem(x) dx

p+1|
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and applying the Lebesgue Convergence Theorem for n — + oo we obtain the
inequality (3.5) with 0 = Q.

Lemma 3.2. Let p > 1, ¢ < p — 1. Then the mapping J d:fined by J(u) = d*u
is an isomorphism of V, . onto V,,_,, whenever « > (¢ — p + 1)/p.

Proof. It is evident that the mapping J is injective and continuous because, in
view of Lemma 3.1,

N
MWLwéZf
i=1 0

(we have lad/é’xil <lL,i=1,..,N,ae in Q).
Analogously for any ve V, we have

ooz s Y

du
0x;

pds dx + Nlalr‘f 'ulf’ d*™Pdx +J‘ lu}” d*dx < cl”u”gE
[ 2

ovl?

& dx + N|a f o] d==*r7 dx +
Q

+ [ anse oz
o
whenever ¢ — ap < p — 1. This completes the proof.

Let us now briefly deal with the Nemyckij operators in Sobolev power weight
spaces. Suppose that a function h: Q@ x B* > R (h = h(x, &y, ..., &)) satisfies the
Carathéodory conditions (i.e., it is measurable on Q for all & = (&,,..., &) e R®
and continuous in & for a.a. x in Q). If the Nemyckij operator H: (uy, ..., u) >

- h(x,uy,...,u) acts from [[L,(Q;d,¢) into L(Q;d,¢), 1 £ p;, q <+,
i=1

then it is continuous. Actually, because J: L,(Q)— L(Q;d,¢), J(u) = d™*u,
JiL,(Q) - L,(2;d,¢), Ju)=d */", i=1,..s, are isomorphisms, the
formula

(ps oo tb) = I h(x, T gy oy Joiby)

defines a continuous mapping from H L,(Q)into L(Q)(see e.g.[11]). Consequently,
i=1

the operator
H:(Jyy, o Jbs) = h(x, Ty, ooy Jby)

acting on weighted spaces is continuous as well.

Finally, in Section 4 we use functions the existence of which is guaranteed by the
following lemma.

Lemma 3.3. Let {a,}, be an increasing sequence of integers with a sufficiently
large a,. Then there exist functions {¢,}, satisfying the conditions:

¢ e C*(RY),
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=1 in R"\Q, .., ¢.=0inQ, (forQ, see(3.4),

0<o(x)=1 and IV(pk(x)I < csia";‘_ forall xeRY
vy — Gy

with a positive constant c3 = c3(Q).

Proof. We can consider domains Q;, k = 1,2, ..., with Lipschitz boundaries
which have the following properties:

Q, < cQq,,,, dist(x,Q,)> l(l _ > forall xe d0Q;
K AN P

and
1 1

dist (x, ;) > %(— -

Ay Ogyg

an 4.1

) forall xeodf2

Let us define functions y, on RY by
_ 0 if xe,
(x) = {1 if x¢Q,
and let

1 x—};
Rvku:xb—»——NJ‘g( )u(y)dy, k=1,2,...,
Yk Jo Yk

be mollifiers with a kernel
0 e CP(RY), J e(x)dx =1,
RN

supp o = {xe R"; |x| < 1}. If we substitute

then R,y € C*(R"), (R, %) (x) = 1 for all xe RV \ Q,

|5(Rvkxk) () <

0x

and we have the estimate

k+1

- max |Vo(2)| . '[ )| 4y »

N
" =R By(x)

i=1,...,N, where B, (x) = {y e R"; |x — y| < . Hence we can deduce
[V(R, ) ()] = \/(N) max |VQ( ) — feas Bl(o) forall xeQ,
k =1,2,.... Now, it is sufficient to put ¢, = R,, xs.
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4. WEAK SOLUTION OF THE NONLINEAR DIRICHLET
BOUNDARY VALUE PROBLEM

Let us consider the nonlinear Dirichlet boundary value problem (b.v.p.) (1.1).
(We remember that Q = R" is a bounded domain with a Lipschitz boundary.) We
assume that functionsa;: @ x R x R¥ - R,i = 0, 1, ..., N, satisfy the Carathéodory
conditions as well as the following inequalities:

There exist numbers p > 1, € (0,p — 1), ee(—1, p — 1), positive functions
keL,(Q;d,e), qeL,(2;d,¢), where p'>1, (1/p) + (1/p’) =1, and positive
constants oy, ..., a3 such that

(4.1) aien &) S aolEf T+ 0Pt + k(x), i=0,1,..,N,
(42) ~§1ai(x’ n, 5) 6;’ + aO(x7 n, é) n —2- al,élp - aZI”lp—J — O3 q(x) s
(43) gl[ai(x, n, ) — aix,n, &)] (& = &) > 0,

foraa xeQ, allneR, EEeRY, &+ ¢.

Let o€ W"(Q;d,¢) and fe[V, _,,-1,]*, where the latter symbol denotes the
dual space to Wy*(Q; d, —¢(p — 1)). Analogously as in the case of classical Sobolev
spaces there exist distributions fo, ..., fy € L,(2; d, €) such that

f=tfo-3y %
i=10x;

Let us reformulate the b.v.p. (1.1) in the equivalent form
N

(4.4) -2 “ai bi(x,v, Vo) + by(x,v,Vv) = f in Q,
i=10x;

v=0 on 0Q,

where the functions b;, i = 0,1, ..., N, are defined for a.a. x € Q and for all y € R,
EeRY by byx,n, &) = aix,n + ¢(x), £ + Vo(x)). It is easy to see that b;: Q x
xR xR"—>R, i=0,...,N, satisfy the Carathéodory conditions and the ine-
qualities (4.1), (4.3) with suitable constants and that the relation (4.2) is valid with
d = 0 for a sufficiently small constant a,. However, we shall require the following
weaker inequalities:

(4.5) There exist Bo,y > 0 and a positive function he L,{(Q; d, &) such that
|bo(x, . )] < Bo[d™*(x) [¢]P™" + d™7(x) [n*™" + d7*(x) h(x)] ,
|bi(x, 1, €| < Bol|efr™" + d==DT() [Tt + h(x)], i=1. LN,
fora.a. xeQand allneR, ¢ e R".
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(4.6) There exist B; > 0, a positive function r € L,(Q; d, &) and for every @ > 0
a number By(w) > 0 such that

™M=

bi(x, , 6) 61’ + bo(X, n, gv) ” g Bllélp - wd“’(_x) |'7Ip - ﬂz(w) r(x)

i=1

for a.a. xeQ and all ne R, £ € R,

N
(@) 31001 8) = bl )] 6 - £ > 0
fora.a. xeQandallneR, & & eRY with & + &',

Let us define an operator T: V, . = [V, —.,-1,]* by the formula
N ow
(Tv,w)y =Y | byx,v, Vv) ™ dx + | bo(x,v,Vo)wdx, weV, _,,-1-
i=1)o Xi 2

By the use of the Hdlder inequality, the inequalities (4.5) and Lemma 3.1 with
0 = Q and with —¢(p — 1) instead of ¢ it is not difficult to verify that

(To,wy < e ([o52" + [RlEa ) - [Wlp—eo-1)

for al veV,, weV, _,,-1) With —1 <& < p — 1. Thus the operator T is
bounded and Tve [V, —,-1,]* for every ve V,, (with an admissible &).

Definition. Let p > 1, ee(—1, p — 1). A function u € V,,, is said to be a weak
solution of the problem (4.4) if

(Tu, wy = {f,w) forevery weV, _.,-1)-
As in Section 3, the operator
J:u - du
is an isomorphism of the space V,, onto V, _,,-;,foree (—1, p — 1) and there-
fore its dual mapping J*: [V, _.,-1)]* = [V,.]* is an isomorphism as well.

The equation Tu = f now has at least one solution for f € [V, _.,-1,]* if and only
if the equation

(4.8) J*Tu = J*f

has a solution. Since we cannot prove the pseudomonotonicity of the mapping
J*T: V,,— [V,.]* we shall study its range in a similar way as in Section 2. In
what follows, let us put
S=J*T, g=J%
and let us denote
V,={ueV,, suppu < 2,} (for Q,see(3.4)).

.82
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The space ¥V} is a classical (non-weighted) Sobolev space and J is an isomorphism
of ¥, onto itself. Further, the equations

4.8), J*Tu = J*f| n,
| 4
p

where the solvability is investigated in spaces V;;, correspond to (2.1),. From Lemmas
4.1 and 4.2 below we obtain that the equations (4.8), have solutions satisfying the
conditions (2.2). According to Theorem 2.1 and Lemma 2.2, the forthcoming
investigation of the solvability of (4.4) in Sobolev power weight spaces is reduced
to the verification of the conditions (2.5)—(2.8). To verify the validity of (2.5)—(2.7),
it is more or less sufficient to follow Lions approach (see [7], Ch. 2, § 2). On the
other hand, when verifying the condition (2.8) we shall essentially employ the
assertion of Lemma 4.4 which concerns the behaviour of the solutions u, of (4.8),
near the boundary.

Lemma 4.1. There exists an interval I, O € int I, such that the operator S: V, , —
— [V, .]* is coercive for every e I.

Proof. By means of the Hélder inequality and of (3.5) we obtain forue V,,
y ou

{Su,u)y = {Tu, Juy =Y bi(x, u, Vu) . dsdx +

i=1 X;

Q i

+ sj bi(x,u, Vu)u -?id"‘ dx] + J‘ bo(x, u, Vu) ud® dx =
Q i 2

)

> ﬂl.[ |Vul? d° dx — wJ. |u|? d==7 dx — ﬁz(w)j rd®dx —
Q Q Q2

—|¢| - N . Bo [J. |Vu|r=* |u| d*=* dx + J |u|r @==P*7 dx + j hlu| d==* dx:l >
2 2 2

2 [By — 2wes — [¢] NBo(es”” + es max d'(x))] [lu]|5.. —

xef

Q2

- ﬂz(w)J‘ rdcdx — c6(w)J h?'d® dx,
2

where ¢s = c(p/le — p + 1)) is the constant from (3.5). (We have used the ine- -

quality hlul a1 < l/p(cu”"p””,ul d(s/p)—l)p + l/p'(m'””p_l“’hd‘/”')"' =

= o|ul? d*™? + 1p'(w~ P~ Vp P~ DY) with o > 0.) Since we can choose

o > 0 arbitrarily small the operator S will be coercive if

(4.9) By — |¢| NBo (c”” L4 c( L4 )p max dy(x)) >0.

+
le = p + 1] le—p+1|) .a
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Obviously, this inequality is valid for the values ¢ from a suitable interval I with
Oeintl.

Lemma 4.2. There exists an integer n; > 0 such that every equation (4.8), with
n = n, has a solution u,eV,.
Moreover, if e €I (for the interval I see Lemma 4.1), then for a suitable c¢; > 0,

(4.10) l,]|p.c < €7 whenever n = n,.

Proof. There is an integer n, such that Q,, n = ny, is a nonempty domain with
a Lipschitz boundary. Since J is an isomorphism of the space V, onto itself, the
function u, eV, is a solution of (4.8), if and only if (Tu,, w) = {f, w) for all
we V;. However, viewing the operator T as a mapping acting from V' into its dual
space we can use the well known results concerning pseudomonotone coercive
operators. (See e.g. [7], Ch. 2, § 2, Theorem 2.8. The assumptions of this assertion
result from (4.5)—(4.7).) Thus the equation (4.8), has at leas one solution. Finally,
from

<SLL", un> = <Tuns Jun> = <f’ Jun> § CS”f”[V‘,._,(p_.)]‘

and from Lemma 4.1 we derive the estimate (4.10).

tnl .

With regard to the estimate (4.10), to the boundedness of the operator S and the
reflexivity of V, ., for & € I we can consider a subsequence {umj}j of solutions of(4.8)mj
(in what follows, we shall omit the index j) with the property

p.e>

(4.11) u,, — u weakly in V,
‘ Su,, is weakly convergent in [V, ,]*.

For allw,v,z€V,, we put

<S(W’ U), Z> = <Sl(w’ U)’ :> + <S2W, Z> ’
where

N 0z
{Sy(w, ), 2> =Y | bilx,w, Vv) = d°dx,
i=1 ) 0)&‘5

N
{S,w, z) = J. bo(x, w, Vw) zd*dx + & )
o .

i=1

J bi(x, w, Vw) zd*~! o dx
o

0x;

Further, we shall verify the validity of the conditions (2.5)—(2.8) for the operator
(w, v) > S(w, v). Applying Theorem 2.2 we get existence results for the b.v.p. (4.4)
and (1.1) which will be formulated later in Theorems 4.6 and 4.7.

Condition (2.5). Analogously as for the operator T'it is possible to show that the
operator v — S(w, v) is bounded. To verify its hemicontinuity we have to deduce

(S(w, vy + t0,), 2> = (S(w, vy),z) for t—0
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with any w, v,, v,, z € V,, .. But the properties of the Nemyckij operators (see Section
3) yield

bi(x, w, Vo, + tVv,) > by(x,w, Vv,) for t—0

strongly in L,(Q; d,¢), i =1,...,N.
Further, the inequality

(S(w, w) — S(w,v), w — vy = (Sy(w, w), w — v) — (S;(w,0),w — 0> =0
is a direct consequence of (4.7).

Condition (2.6). Using Lemma 3.1, the Hélder inequality and (4.5) we have

> .y 0d c -
2] b v 28 Fan] < e 52t i) [l

Now, it is easy to see that the operator w — S(w, v) is bounded. Its hemicontinuity
follows again from the properties of the Nemyckij operators.

Condition (2.7). Let us put

6.9 = X564, T1o9) = i ) V] (52 () = 55 9) ¢

0x;

Lemma 4.3. If [, G,(x)dx — O then there exists a subsequence {u}; of {t,},
(in what follows, our notation will not distinguish between a sequence and its
subsequences) satisfying the condition

bi(x, u, Vu,) — b(x, u, Vu) weakly in L,(2;d,g), i=0,..,N.

Proof. With regard to (4.7) we have G, = 0. As u,, —> u strongly in L,(£; d, &)
(the imbedding V,, “— L,(®; d, ¢)iscompact) we can choose a subsequence {k}
of integers such that

(4.12) w(x) > u(x), G(x)—>0 forall xeQ\Z, measZ =0.

Let r, h be the functions from (4.5) and (4.6), r(x), h(x) < + oo for a fixed x € Q\ Z.
Let us put , = w,(x), 7 = u(x), £ = Vu(x). Further, let £* be a cluster point of the
sequence {,};, where & = Vu,(x). We have

(4.13) &%) < +o0

since
N
Gx) 2 dGo) [ 3 bi( o ) & = NBole] (&~ +
+ d=E= 04 (x) |77t + h(x)) — NBo(Jg + |&]) - (et +
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+ d= 7 D*Y(x) |nk|”“‘ + h(x)) + bo(x, m, &) M —
- ﬁol’?k, (d_l(x) |§klp—l + d_p(x) |’7k|p_1 + d—l(x)- h(x))] =
Z de(x) ﬂlléklp - Cg(lfklp—l + Ifk| + 1)

and since G,(x) — 0 by (4.12). In view of (4.12), (4.13) and of the continuity of the
functions b; in n and ¢ we obtain

% [0 m, £0) = b, ) (6 — ) =0,

therefore, by (4.7), &* = ¢&.
Finally, the Carathéodory conditions yield

bi(x, wy(x), Vuy(x)) = bi(x, u(x), Vu(x)) a.e.inQ for i=0,...,N.

Because the sequence {b,(x,w,, Vu,)}, i =0,...,N, are bounded in L, (2;d,¢)
and this space is reflexive we can write

bi(x, w, Vi) = by(x,u, Vu) weaklyin L, (Q;d,¢).

(The weak limit is independent of the selection of a subsequence of {u,},.) The asser-
tion of the lemma is proved.

Now, in our case the condition (2.7) means that [, G,(x)dx — 0 and we can
consider the subsequence {u,}, from Lemma 4.3. The convergence u, — u a.e. in Q
yields by(x, u(x), Vo(x)) = b(x, u(x), Vo(x)) for a.a. xeQ, i =0,...,N, and in
virtue of the boundedness of the sequences {b;(x, u, Vo)l i = 0,...,N,inL,(Q; d, ¢)
we get

(4.14) bi(x, uy, Vv) = by(x,u, Vv) weaklyin L,(Q;d,¢).
Further, if z e C§(Q) then
92 a2 oL (@ 0)]* = L(Q: d, —s(p — 1)),
0x; 0x;
i=1,...,N,

and from Lemma 4.3 and from (4.14) we obtain
{S(uy, v), 2> - {S(u, v), z) forall zeCF(Q).
However, the set C§(Q) is dense in V,, , and so
S(uy, v) - S(u, v) weaklyin [V, ]*.

Condition (2.8). Let u,, satisfy the assumption of (2.8), i.e. S(u,, v) - ¥ weakly
in [V, ]*. The first condition of (4.11) implies the strong convergence u,, — u
in L(Q2;d,e — p + yp’) (for y > 0 see (4.5))since the imbedding V,, “— L,(2;
d,& — p + yp’) is compact (see e.g. [10]). By the growth conditions, for a fixed
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veV,, the mappings z —» b,(x, z, Vv), i = 1,...,N, act from L,(Q;d, e — p + yp’)
into L, ,(2; d, £) and so they are continuous due the properties of Nemyckij operators.
Hence we obtain

bi(x, ., Vv) = bi(x, u, Vv) strongly in L,(Q;d,¢), i=1..,N.
and so
(4.15) {Sy(m» V), ey = {(S;(u,v), uy for an arbitrary veV,,.
The most complicated part of the verification of (2.8) is to show that
(4.16) Sty thy — Uy > 0;

we shall postpone it for a while.
Now, the condition (4.15) yields

{Sathyy ) = {S(thy, ), > — {S;(thy, 0), u) = W, u) — (S,(u, v). u)
and according to (4.16) we deduce
(Sattyy Uy = Y, uy — (Sy(u, ), u).
Finally, we have
(S (s v), Upy = S (thy V), Uy + {S3thy, Uy = Y, 1),

which is the assertion of (2.8). :
In the proof of (4.16) we cannot employ the imbedding of ¥, , into L,(Q; d, ¢ — p)
since it is not compact. However, we can use the following

Lemma 4.4. Let c €I, where I is the interval from Lemma 4.1. Then there exist
a constant ciy = c1o(f, 2, P, & Bos P15 7, b, 7) and an increasing sequence {a}:
of integers such that the inequalities

J' Vi, (x)|7 di(x) dx < 22, k> 1,
2N\Qay 44 k

hold for all solutions u,, of the equations (4.8),,, withm 2 n, (for n, see Lemma 4.2).

Remark 4.1. This fact together with Lemma 3.1 implies

J‘ Ium(x)l" d*7P(x)dx < ‘U k>1, mz ny,
2N\Qay +1 k

where c,, is a positive constant.

Proof. Since meas (2\Q,) - 0 for n > +o0, h,f;€L,(2;d,¢), i =0,...,N,
re L,(£2; d, &), there exists an increasing sequence {a,}, of integers satisfying the
conditions
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INgk]

k=1

J H(x) di(x) dx < 1, z AP di(x) dx < 1,
2\Qay

2\Qay

R(f) < , ettt for k=1,2,...,
1 a,

18

k

(4.17) i[
l

where

Let us consider the [unctions {¢,}, from Lemma 3.3 corresponding to the sequence
{a},. We have @,u,d* €V, and the equality (Tu,, ou,d°> = {f, pu,d") yields

= 0x;
N 0 z
= [ fupuadeax + 3 [ 7,80 %) g
° i=1Jq 0x;

forall m 2 n,, k=1,2,..

We denote by L(P) the lefi-hand (right-hand) side of (4.18). Then L =I; + I, + I,
where

N €
(4.18) Y J‘ bi(x, u,,,,Vu,,,)a—((p;———u'"d)dx + j bo(X, thys Vity) Guttyd® dx =
Q 9]

11 =J‘ [Z b(V m> Vum) P + b (Y Uy, Vu"') '":I (p"de dx +
\ay 4 LY

N .1 0d
+ &) by(x, u,, Vu,,) ¢ d a—— dx,

i=1J)o\aa 4, Xi

N
I, = J [Z bi(x, wy, Vit,,) —(;u'" + bo(X, thyy Vity) u,,,] @ dtdx +
Quay + 4

N ad
+e) bi(x, Ups Viky,) @y d ™! P dx,

i=1 Qay + 1 X;

I =§ b(xu Vu,,) u,, 9P e gx.
3 = 'm»> 'm ax.

Using Lemma 3.1 for 0 = @\ Q, ., we obtain analogously as in the proof of Lemma
4.1

Iy 2 [By — 2wcs — |g| NBo(cy? + ¢5 max d?(x))] |V, |7 de dx —
xe 2\Qay + 1
—By(w) rd dx — cq(w) h?'d* dx,
MNQay 4 { 2\Qay +1
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where the term in the square brackets is positive for ¢ I. (I is the interval from
Lemma 4.1.) The inequality (for the properties of ¢, see Lemma 3.3)

N -
Y J‘ v; 99k g¢ dx
i=1) oy 0@, OXi

J. ‘Elvil d~ldx < 263J‘ :\:“Iv,-|d‘_ldx
P P

a3+ 1\Qay 1= 1 ar + 1\ $= 1

1 a,a,
_S_—‘CJ—L,&—I—.

Ay Gpyy — G

holds for all v; € LI(Q; d,e — 1), i=1,...,N, and using (4.5) and the inequality
(4.19) ab §1|a|"+i'|b|”', a,beR,

14 14
we obtain

Ll sen| @

Qay + 1\ay,

Vu,,,l" + d*7P

w,|P + dh?’) dx .
(Evidently ¢, = 0in Q, and ¢, = 1 in Q\Q

e,r) Via the Holder inequality we
deduce, for the right-hand side of (4.18),

N
R I o I N R
O\Qa, i=1J) o\Qa,
l e—1 1 A,y 4 N e—1
+ e X Ifi] || @~ dx + = —22— Y Ifi] ] @71 dx <
i=1J o\0aq; A, Qg — Ari=1 ) o5 . 1 \Qa

N . 1/p’ 1/p
< C”‘ZO<J‘ |£i]7" ar dx> (j |Vue,q|” d dx) .
= 2\Qay, Q

Finally, from these inequalities and from (4.10), (4.17), (4.18) we have

J‘ |V, |P dedx < cu[-[ rd®dx + '[ h?'ds dx +
2N\Qay 4+ 4 O\Qay + 1 O2\Qay

+ RJ(f) + I

Qay + 1\Qay

(Tl + ) 35
and

f |Vit,|? df dx < c14|:3 +'[ (| Vu,|” + d*77|u,|?) dx] < ¢
Q2

k=1J o\Qay 4+,

Since 2\ Q, = @\ Q, for i > I and since the constant c,, is independent of m,
the proof is complete.

The proof of (4.16). The inequalities (4.5), (4.19) together with Lemma 4.4 and
Remark 4.1 yield
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X (m) =

J. bo(x, Uy, Vit,,) (4, — u) d*dx +
2N\Qay + 1

IIA

Y e~ 1 ad
+&) bi(x, ty, Vu,,) (u,, — u)d a—dx

=1 o\0ax+, i

= clsl:-[ |Vum|p de dx +J. Ium|p &P dx +
2N\Qay 4+ ON\Oa 4y

+ I lul" dé P dx + f hP'de dx:l < xk),
2MN\Qay 4+ 1 2X\Qay + 1

where y is independent of m and y(k) — 0 for k — + co. Similarly, using the Holder
inequality, (4.5) and (4.10) we estimate

Yy(m) =

J‘ bo(x, thp, Vut,,) (thy, — u) d° dx +
Qay + 1

N od
+e) [ by(x, tpy Vi) (4, — ) d*1 5~dx| <
i o Qap 4y

=1 i

1/p 8 r 5 1/p
- .
c,6<J. |t — u]” a® ”dx) < clsak,j’l(J |thm — ulP @*=7*# dx
Qay +1 Q

with a number B > 0. In virtue of the compactness of the imbedding V,, “—
“—L,(Q;d, e — p + B)we obtain the convergence Y,(m) — 0 for m — + oo, where k
is arbitrary.

Finally, given « > 0 we find integers k > 0 and n, = n, such that

IIA

<83ty thy — u)| < Xi(m) + Yi(m)< 22 forall m = n,,
which completes the proof.

Let us now summarize the results concerning the solvability of the problems (1.1)
and (4.4) into the following theorems.

Theorem 4.6. Let functions b;: Q2 x R x R" > R, i =0,...,N, satisfy the
Carathéodory conditions and the inequalities (4.5)—(4.7). Then there exists an
interval I with 0 € int I such that if e €I, then the b.v.p. (4.4) has at least one weak
solution ue Wy'P(Q; d, €) whenever

N
F=fo =Y Y0 ot ntye L (@ d,5).

i=1 aX,-

Theorem 4.7. Let functions a;:Q x R x RN - R, i =0,...,N, satisfy the
Carathéodory conditions and the inequalities (4.1)—(4.3). Then there exists an
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interval I with 0 € int I such that if eI, then the b.v.p. (1.1) has at least one weak
solution u € W"?(Q; d, &) whenever
N
ar
r=f-y %

i=10x;

’ fOifl, --.7fN€ Lp/(Q’ d: 8) ]

and ¢ € W (Q; d, ¢).

Remark 4.2, In the case of ¢ < 0 and of a degenerate right-hand side the weak
solution of the problem (1.1) or (4.4) belonging to the space W'?(Q; d, &) or
W(‘,'”(Q; d, s), respectively, will be a weak solution of the same problem in the
corresponding classical Sobolev space as well. Therefore, if the b.v.p. (1.1) or (4.4)
has a unique weak solution in the classical sense (for example, if the operator T
is strongly.monotone) then this will be the unique solution in the corresponding
Sobolev power weight space.

An open problem, however, is to find reasonable conditions of the uniqueness
for ¢ > 0.

Remark 4.3. It would require rather lengthy and purela technical considerations
to get analogous results for Sobolev power weight spaces W"P(Q; Ay, €), M = 0Q
being a manifold with dim M < N — 1, and the same is true for operators of higher
orders. One can make use of estimates similar to that in Lemma 4.4 to verify the
condition (2.8).

Remark 4.4. Finally, it remains to discuss the situation from Lemma 4.1 where
the interval I obtained in the course of the proof determines the choice of the
suitable weight.

Very often, the situation met in particular cases is such that I can be larger than the
interval which we get from (4.9). For example, a finer estimate guarantees the
solvability of the b.v.p.

N .
(4.20) -y 9 i MN_f i e,
i=1 axi axi
u=0 on 0Q,
(with p > 1, f€ [V, -«(,-1,]*) in the Sobolev power weight space for

ceJ = -p+1 p—1
c’p — 1" ¢’Pp 4+ 1)’

where c is the constant from (3.5); note that ¢ = 1 if Q is convex.

However, there is still another interesting problem to be solved. Namely, the
problem (4.20) and the corresponding b.v.p. with non-zero boundary data can also
be formulated in spaces V, . for g € (-1,p - 1)\ J (because a suitable trace theorem
is available), and an existence theorem would be desirable.
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