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Časopis pro pěstování matematiky, roč. 110 (1985), Praha 

ON DE BLASTS DIFFERENTIATION THEORY 
FOR M U L T I F U N C T I O N 

ANDRZEJ SPAKOWSKI, Opole 

(Received December 5, 1983) 

1. DEFINITION OF DIFFERENTIABILITY 

Let K be an abstract convex cone, i.e. K is a nonempty set in which an addition 
x + y and positive scalar multiplication 0.x = 0, t.x = 0, 1.x = x, t.(x + y) = 
= t.x + t.y, t.(s.x) = (t.s).x for all x, y e K and t, s = 0. We say thatK is a topo
logical abstract convex cone if K is a topological space such that the addition and 
scalar multiplication are continuous. 

Throughout this and the next sections we will assume: 

1) K is a topological abstract convex cone, w its topology, and another topology w' 
on K is given such that xn -> 0 in w' implies xn -> 0 in w. 

2) K0 c: K is a subcone of K, i.e. t.K0 c K0 for t ^ 0. 
3) The topology w is semimetrizable by a semimetric d which is a metric on K0. 

4) If x e K and y, z e K0 then d(x + y, x + z) = d(y, z). 

5) The semimetric d is positively homogeneous, i.e. d(t.x, t.y) = t.d(x, y) for 
all x, y e K and t = 0. 

Remark that condition 4) implies the law of cancellation: x + y = x + z 
implies y = z, but the converse is not true in general (see [4]). 

Now, let / be a map from an open subset U of a normed space X into K. We say 
that / is differentiate at x G U if there exists a w'-continuous and positively 
homogeneous map T(x) from X into K0 such that 

(1) d(f(x + h),f(x) + T(x)(h)) = o(h) 

where o(h)/||h|| tends to 0 if h tends to 0. 
Of course, if K = K0 = Y is a normed space, w = w' is its norm topology and 

d(x, y) = I x — y\\, then we get the classical Frechet differentiation theory. 
Using the methods of M. Boudourides and J. Schinas ([2], [3]) we can develop 

our theory. 

Proposition 1. There exists at most one map T(x) satisfying the condition (1). 
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Proof. Suppose that there exist two maps T(x) and S(x) satisfying (I). Thus we 
get d(T(x)(h), S(x)(h)) = d(f(x) + T(x)(h), f(x) + S(x) (h)) = ox(h) + o2(h\ 
By the homogeneity we obtain d(T(x) (h/||h||), S(x) (h/||h!)) g ^i(-^)/||^|| + 
+ O2(h)/||h||. Take hn = n~xv, where veX is arbitrary such that ||v|| = 1. We get 
d(T(x) (v), S(x) (v)) g n ox(n~xv) + « O2(«

_1v) tends to 0 if n tends to infinity. There
fore T(x) (v) = S(x) (v). Hence T(x) = S(x,) which completes the proof. 

The unique map T(x) defined by (1) will be called the derivative off at the point x, 
and will be denoted byf '(x). 

Proposition 2. If f: U -> K is dijferentiable at xeU, then ||f'(x)l!i = 

= sup Hlhll"1 d(f'(x) (h), 0) : h * 0} is finite. 

Proof. We have ||f '(*)|i = sup [d(f'(x) (v), 0) : ||v|| = 1}. Suppose that 
l|/'(x)|i = °°- ^ o r e a c h n t h e r e e x * s t s vm lvn\ = 1 an<3 d(f'(x) (vn), 0) > n. Then 

df(/'(x) (n"1!;,,), 0) > 1. Since n~lv„ tends to 0 and f'(x) is w'-continuous at 0 
then d(f'(x) (n~lvn), 0) tends to 0 and we get a contradiction. 

2. MEAN VALUE THEOREM 

First we state some helpful results on differentiable maps from X to K. 

Proposition 3. If f: U -> K is differentiable at xeU, then f is lipschitzian at x. 

Proof. Let e > 0 be arbitrary There exists S > 0 such that for |h | | < (5, 
d(f(x + h),f(x) +f'(x)(h)) < £||h||. By Proposition 2 we have d(f'(x) (h), 0) ^ 
^ ll/'WIli |!h||.Theiefore,for 0 < ||h|| < 6 we get d(f(x + h),f(x)) = d(f(x + h), 

f(x) + f'(x) (h)) + d(f(x) + f'(x) (h),f(x)) = £||h[| + rf(f'(x) (h), 0) ^ £Jh|| + 

+ ll/'(x)l|i ll̂ ll = (e + ll/'WIli) \\hh w h i c h c o m P l e t e s the Proof-

Proposition 4. Iff: U -> K is differentiable at x then f is w-continuous at x~ 
This follows by the Lipschitz condition from Proposition 3. 
Now, let g: [a, fa] -> K. We say that a is right differentiable at t e [a, b) if there 

exists a w ' — continuous and positively homogeneous map P(t): [0, oo) -> K0 

such that d(g(t + h), g(t) + P(t) (h)) = o(h) where o(h)/h -> 0 if h -> 0 + . The map 
P(t) defined above is unique and will be denoted by g'+(t). 

Propositions. Let g:[a, b]-> K be w-continuous, right differentiable on 
[a, b) and let \g'+(t) (1)||0 = d(g'+(t)(\), 0) = M for all te[a, b). Then 

d(g(b),g(a)) = M(b-a). 

Proof. Let J = {t e [a, b]: for some e > 0, d(g(t), g(a)) > M(t - a) + 
+ s(t — a) + e}. It is sufficient to prove that the set J is empty. Since the semi-
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metric d is w-continuous the set J is open. Suppose that J is nonempty and let c 
be the infimum of J. We have ce (a, b) for a $ J and ||g'+(c) (-)||o = M. Let e > 0. 
By the right differentiability there exists 6 > 0 such that for t G [c, c + 6), d(g(t), 
g(c) + g'+(c) (t — c)) g F.(t — c). Therefore, for t e [c\ c + S) we get d(g(t), 
g(c)) = d(g(t), g(c) + g'+(c) (t - c)) + d(g(c) + g'+(c) (t - c), g(c)) = e(t - c) + 
+ d(g\(c) (t - c), 0) = e(t - c) + (t - c) \\g'+(c) (t - c)||0 = e(t - c) + M(t - c). 
But c 4 J and consequent by d(g(c), g(a)) g M(c — a) + F.(C — a) + s. Hence 
d(g(t),g(a)) = d(g(t),g(c)) + d(g(c), g(a) = c(t - c) + M(t - c) + M(c - a) + 
+ E(C — a) + S = M(t — a) + e(t — a) + c for t e [c, c + O), which means that 
t $ J, a contradiction. The proof is complete. 

Proposition 6. Let f: U -> K be differentiable at x e U and continuous in a neigh
bourhood of x. Then the map f'(x) is w-continuous. 

Proof. It is sufficient to show thatf '(x) is w-continuous on every ball B(0, r) in X. 
Take e > 0. The differentiability implies that there exists r > 0 such that for 
||ft|| < r , d(f(x + h),f(x) + f'(x)(h)) = e\\hl Take any keB(0,r). By the w-
continuity off in a neighbourhood of x there exists 3 > 0, d < r — ||k|| such that 
d(f(x + k)J(x + ft)) < e for all ft e B(k, 6) c B(0, r). Therefore, for all k e .8(0, r) 
and all ft e B(k, 5) we get d(f'(x) (ft), / ' (*) (k)) = d(f(x) + f'(x) (ft), f(x) + 
+ f'(x)(k)) ^ d(f(x) +f'(x)(k),f(x + ft)) + d(f(x + h),f(x + k)) + d(f(x + k), 

f(x) + f'(x)(k)) < £||ft|| + e + e||fc||, which completes the proof. 

Proposition 7. Let X and Y be normed spaces, U an open subset of X, g:U -> Y 
differentiate at x G U, let V be an open subset of Y,f: V-> K differentiate at g(x) 
which belongs to V. If f'(g(x)) is w-continuous then the composition f o g is dif
ferentiate at x and (fo g)' (x) = f'(g(x)) o g'^)-

Proof. By the hypotheses we obtain d(f(g(x + h)),f(g(x)) + f'(g(x)) (g'(x))(h)) = 

= d(f(g(x) + g'(x)(h) + o(h)),f(g(x)) + d(f(g(x)),f(g(x)) + f'(g(x))(g'(x))(h)) = 
= 0l(g'(x) (ft) + o(h)) + d(0,f'(g(x)) (g'(x)) (ft)) = o,(h) + ||ft[| o(h), which com-
pletes the proof. 

Finally we are ready to prove the following mean value theorem. 

Theorem 1. Let f:U -> K be differentiate and let [xl9 x2] <=• U be a segment. 
Then 

d(f(x2)J(xL)) = ||x2 - x , | sup {HEWII,: x e [*., x2]} . 

Proof. Let g(t) = f ( ( l — 0 x i + tx2)> te [0 ,1] . By Proposition 7 the map g is 
right differentiate on [0,1), g'+(t) (h) = f'((l — t) xt + tx2) (hx2 — hxt), and 
lff'+(0(-)l|o = [/'((- - 0 * i + tx2)(x2 - x,)||o = supd(E(( l - 0 * i + tx2). 
.(x2 - x , ) , 0 ) : r e [ 0 , 1 ] } = | x 2 - x.|| sup {||E(*)(*2 - *i)/l*2 - * , | | | | : x e 
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e[*i>*2]} = \\x2 - -x-ill sup{sup{| | f , (x)( t ; ) | | 0 :xe[x 1 ,x 2 ]}: ||v|| = 1} = 
= ||*2 ~ *i | | sup{sup{||f '(x)(v)||0: ||v|| = l}:xe[xi9x2~]} = 

= ||x2 — -xi|| SUP {||/'(x)||i : X G [xi> x2]} = M. If M = oo the theorem holds 
trivially. If M < oo, then applying Proposition 5 we get the result. 

Remark. We may also consider higher order derivatives for f: U -> K. For 
example, let f be differentiable on U. We say that f is twice differentiable at x e U if 
there exists a w'-continuous and positively two-homogeneous map P(x) from X x X 
into K0 such that dx(f'(x + h), f'(x) + P(x)(-, h)) = o(h), where d^P, Q) = 
= sup {\\h\~1 d(P(h), Q(h)): h # 0}, see [3]. 

3. DIFFERENTIABILITY OF MULTIFUNCTION 

Let Ybe a Banach space, K the family of all nonempty and bounded subsets of Y 
and K0 the family of all nonempty bounded convex and closed subsets of Y. K is 
an abstract convex cone with the following operations: A + B = [a + b: ae A, 
b e B}, tA = [ta: ae A} for A, B eK and t = 0. Let d be the Hausdorff distance 
on K and let w be its topology, w' the upper Hausdorff topology on K, i.e. for A0 e K 
and Va neighbourhood of 0 in Y, the set V(A0) = {A e K: A cz A0 + V} is a neigh
bourhood of A0. Then the conditions 1) —5) are satisfied and we get De Blasi's 
differentiation theory (see [ l ] , [2], [3]). 
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