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Časopis pro p stování m a t e m a t i k y , roč . 110(1985), Praha 

TWO EDGE-DISJOINT HAMILTONIAN CYCLES 
OF POWERS OF A GRAPH 

LADISLAV NEBESKÝ, Praha and ELENA WISZTOVÁ, Žilina 

(Received January 30, 1984) 

If G is a graph (in the sense of the books [ l ] or [3]) and n is a positive integer, 
then by the n-th power G" of G we mean the graph with 

V(Gn) = V(G) and E(Gn) = {vv'; v, v' e V(G) and 1 ^ dG(v, v') = n) . 

The expressions V(H),E(H), and dH(vl9v2) denote the vertex set of a graph H, 
the edge set of H, and the distance between vertices vt and v2 in H, respectively. 

A number of results concerning powers of graphs is known. We now mention four 
results concerning low powers (the number of vertices of a graph G is called the 
order of G): 

Theorem A ([2] and [7]). For every connected graph G of even order, G2 has 
a 1-factor. 

Theorem B. For every connected graph G of order ^ 3 , G3 has a hamiltonian 
cycle. 

Theorem C ([4]). For every connected graph G of even order ^ 4 , G4 has three 
mutually edge-disjoint 1-factors. 

Theorem D. For every connected graph G of order ^ 5 , G5 has a 4-factor. 

Theorem B is an immediate consequence of Sekanina's result in [6]; he proved that 
for every connected graph G, G3 is hamiltonian-connected. Theorem D is a special 
case of Theorem 2 in [5] (for n = 4). In the present paper we shall prove the fol­
lowing theorem, which improves both Theorem B and Theorem D : 

Theorem 1. Let G be a connected graph of order =S. Then there exist a hamil­
tonian cycle C of G3 and a hamiltonian cycle C of G5 such that C and C are 
edge-disjoint. 

The following corollary is an immediate consequence of Theorem 1: 
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Corollary. If G is a connected graph of order = 5 , then Gs has two edge-disjoint 
hamiltonian cycles. 

Note that it has been shown in [5] that there exists an infinite set of nonisomorphic 
trees Tsuch that T4 has no 4-factor. 

Theorem 1 will be derived from three lemmas. Before stating the first of them we 
shall introduce some useful notions. 

We say that an ordered pair (T', r') is a rooted tree if V is a tree and r' e V(T'). 
We say that rooted trees ( T \ r') and (T", r") are isomorphic if T' and T" are iso­
morphic and there exists an isomorphism from T' onto T" which maps r' onto r". 
Let Tbe a tree. By a terminal subtree of Twe shall mean a rooted tree (T', r') with 
the properties that T is a subtree of Tand for each v e V(T — r'), deg r, v = deg- v 
(where degw w denotes the degree of a vertex w in a graph H). 

Let ra = 0 and n = 1 be integers, and let u 0 , . . . uOT, w1 ? . . . , wn be mutually dis­
tinct vertices. We denote by An the path with 

V(An) = {wu ..., wn} and E(An) = {wtwi+l; 1 = i = n - 1} . 

Similarly, we denote by Bmn the path with 

V(Bm„) = {um , . . . , u0, w l 5 . . . , w„} and 

E(Bmn) = {UJUJ.^ m = j > 0} u {UQW-} U {wfcwk + 1 ; 1 = k = n - 1} . 

Moreover, we define 

^„* = -4„ - w „ - i ^ + w„_2wn for n = 3 , and 

A*,,* = A,,* - w^w2 + wxw3 for n = 4 . 

Finally, we define the following rooted trees: 

Vmn = (£„.„> "o) ; 

Dmn* = (5m„ - w„.1w„ + wn_2w„, u0) for n = 3 ; 

-̂ *m„ = (-̂ mn - "m-i"*, + um_2um, u0) for m = 2; and 

£*m„* = (5m n - * V m - l - ^ - 1 ^ « + "m"m-2 + ^«-2^> "o) 

for m = 2 and n = 3 . 

Lemma 1. Lef T be a tree of order = 6 . Then there exists a terminal subtree 
of T which is isomorphic to one of the twenty three rooted trees that follow: 

^ * 2 1 > 

D2l5 -^22> 

-9*31> -^31> -^*32> -^32> -^*33*> -^33*> -^33> 

-^*41> -^41> -^*42> I^42> -^*34*> -^*34> -^34*> -^34> -9*44*> I^44*> -^44 > 

-^05*> -^05 • 
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Proof. Let 5 denote the diameter of T. Obviously, there exists a terminal subtree 
(T0, r0) of T with the properties that 

dTo(r0, v) = 5 for every v e V(T0) , and 

dTo(r0, v) = min (5, S) for at least one v e V(T0). 

It is easy to see that there exists a terminal subtree (T', r') of T such that V(T') _z 
=" V(T0) and (V, rf) is isomorphic to one of the 23 rooted trees mentioned in the 
statement of the lemma. 

If G is a graph, then we denote by Jf (G) the set of hamiltonian cycles of G. 

Lemma 2. Let n = 5, and let T be one of the trees An, An*, and A%n*. Then there 
exist Ce'J^(T3) and Ce^f(T5)such that E(C) n E(C) = 0, wtw2eE(C) and 
wtw3eE(C). 

Proof. We determine E(C) and F(C'). If n = 5, we put 

E(C) = {wxw2, wxw4, w2w3, w3w5, w4w5} and 

E(C) = {w!W3, w^s, w2w4, w2w5, w3w4} . 

If n = 6, we put 

E(C) = {w^^ wtw4, w2w3, w3w5, w4w6, w5w6} and 

E(C) = {wxw3, wxw6, w2w5, w2w6, W3W4, w4w5} . 

Let n = 1. Then we put 

E(C) = {wiW2, wxw4, w2w5, W3W4, w3w6, wn_xwn} u {wtwi + 2; 5 = i = n - 2] . 

If n = 7, we put 

E(C) = {w!W3, wyw6, w2w3, w2w7, w4w5, w4w7, w5w6} . 

If n = 8, we put 

E(C) = {wxw3, wxw6, w2w3, w2w7, w4w7, w4w8, w5w6, w5w8} . 

If n = 9, we put 

E(C) = {w^^ wxw6, w2w3, w2w7, w4w5, wn_5wn, wn.4wn.1 , 

w«-3<> w*-2Wi,-i} u { ^ I H ; 4 = i = 6} . 

It is clear that C and C have the desired properties. 

Lemma 3. Let T be a tree of order p = 5. Then there exist Ce J^(T3) and 
C e J^(T5) such that E(C) n _ (C) = 0. 

Proof. The case when p = 5 follows immediately from Lemma 2. Let P _ 6. 
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Assume that for every tree T0 of order p0, where 5 g p0 < p9 it is proved that there 
exist C(0) G Jf (T3) and C('0) G ^T(T^) such that F(C(0)) n F(C;o)) = 0. If T is iso­
morphic to one of the trees Ap, Ap*9 ane A*p*, then the result follows from Lemma 2. 
We shall assume that Tis isomorphic to none of the trees Ap9 Ap*9 and A*p*. Let Q) 
denote the set of the 23 rooted trees mentioend in Lemma 1. Moreover, we denote 
£>l = Q) — {D059 D05x}. We now distinguish two cases and several subcases. 

1. Assume that Thas a terminal subtree isomorphic to one of the elements of Q)l% 

Consider such a terminal subtree (Tl5 rt) that (Tl9 r,) is isomorphic to one of the 
elements of ^ t and that for every terminal subtree (T', r') of Twhich is isomorphic 
to one of the elements of Ql9 |V(T,)| <; |V(T')|. For the sake of simplicity we shall 
assume that (TX9 rx)e@x. Then r. = u0 and there exist m = 2 and n = I such 
that V(T,) = {um9 . . . ,u 0 , w,,. . . ,w,,}. Denote 5 = T— w, — ... — wn. It is clear 
that 5 ^ m + 3 ^ |^(^) | < P- ^ follows from the induction hypothesis that there 
exist F e Jf(S3) and F' G tf(S5) such that £(F) n F(F') = 0. 

The following convention will be useful for us: 1* means 2 and 2* means 1. 

1.1. Assume that (T., u0) G {D%21, D21, D22, D*32}. Then n = 2. There exist 
v,, v2, vi, v2 G V(S) such that uxvi9 uxv2 G F(F) and u2vi, u2v2 G F(F'). Since F(F) n 
n E(F') = 0. 

(1) |{ui,"-2} n{vl9v29v'l9v'2}\ = 1 . 

1.1.1. Assume that n = 1. We define 

C0 ) = F — Ujv,- + UjW, -f- v.w, for i = 1, 2 ; 

obviously, C ( n , C(2) G JP(T3). Similarly, we define 

C'(jl = F' — u2vy + u2wt + VjW1 for j = 1, 2 ; 

obviously, C'(l)9C'(2)ejf(T5). Ui i9j e {\9 2}; if E(C(,)) n E(C'(J)) * 0, then 

ux = v'j or u2 = vt or v(- = vj . 

It follows from (1) that there exist g, he{l, 2} such that E(C(9)) n E(C'(h)) = 0. 

1.1.2. Assume that n = 2. We define 

C(i) = F -» uivl + UjW2 + viwl -f w-w2 for 1 = 1, 2 ; 

obviously, C(1), C(2) G .^(T 3 ) . Similarly, we define 

C ' 0 ) = F' — U2vy — M2Uy# + U2W1 + U 2 W 2 + ^ w l + VJ9W2 f ° r I = 1J 2 J 

obviously, C'(1), C'(2) G j f (T5). Let i,j e {1, 2}; if E(C(i)) n F(C'a)) * 0, then 

U l = y } * "Or u2 = vi o r y i = VJ • 
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It follows from (1) that there exist g, he {1,2} such that E(C(^) n £(C'f,,)) = 0. 

1.2. Assume that (Ti9 u0)$ {D*2i, D2i, D22, D*32}. Then m = 3. Since deg su0 = 

= 2, there exist u* e {ui9..., um} and ue V(S) — {u0 , . . . , um} such that uu* e E(F). 
Since Fe^f(53), there exists ge{i,2} such that ug = u*. Thus, uu f feE(F). 
Denote h = a*. 

1.2.1. Let n = l. Then (T,, u 0 ) e {D,.31, D31, D*41, D41}. Since |V(S)| = 5, 
there exist i e{h , 3} and veV(S)— {u,} such that v £ {u, u j and uiveE(F'). 
Define 

C = F — uu,, + uvit! + u ^ and C' = F' — u,v + û Wj + vWj . 

Obviously, C e «#(T3), C' e tf(T5) and F(C) n F(C') = 0. 

1.2.2. Let n = 2. Then (Ti9 u0)e {D32, D*42, D4 2}. Since \V(S)\ = rn + 3, there 
exist distinct vi9 vl9 v3 e V(S) such that u{ou u2vl9 u3v3 are distinct edges of F' 
and if m = 4, then u4 £ {vx, v2, v3}. Since E(F) n F(F') = 0, vg + u. Define 

C = F - uug + uw9 + u^w,, + wxw2 ; 

obviously, Ce Jf(T3). First, let v3 + ug\ define 

C' = F' - u,i>, - u3v3 + ugwg + u3w,, + vgwg + v3w„ ; 

we have that C e jf(T5) and K(C) n F(C') = 0. Let now v3 = ug\ then vA + u^; 
define 

C" = F' - uhvh - u3v3 + uAwA + u3wg + v„w„ + v3wg ; 

we have that C" e Jf(T5) and K(C) n £(C") = 0. 

1.2.3. Let n = 3. Then (7\- u 0 )e {D*33s|e, D33*, D3 3}. Define 

C = F — uug + uwg + û wA + wiw3 + w2w3 ; 

obviously, C e ^f (T3). There exist distinct v2, v3 e V(S) — {u2, u3} such that 
w2y2, u3v3 GF(F') and F — u2v2 — u3v3 + u2v3 + u3v2 is also a cycle. First, 
let v2wx £ F(C); define 

C = F' — u2v2 — u3v3 + u2w3 + u3w2 + v2wx + v3w3 + wxw2 ; 

we have that C e J f (T5) and £(C) n F(C') = 0. Let now v2wi e E(C)\ then 
dr(u09 v2) ^ 2 and v3wx £ £(C); define 

C" = F' — u2v2 — u3i;3 + u2w3 + u3w2 + v2w3 + v3wx + wxw2 ; 

we have that C e J^(T5) and £(C) n £(C") = 0. 
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1.2.4. Let n = 4 . Then (Ti9 u0)e {-9*34*, D*34, D34*, D34, -9*44*, £44*, £44}. 
Define 

C = F - uug + uw9 + u^w,, 4- wxw3 + w2w4 + w3w4 ; 

obviously, C e «^(F3). First we assume that uiu2 e E(F'). Define 

C = F' — UiU2 + UiW4 + U2W3 + W ^ + WXW4 + ^2W3 • 

Clearly, C' e j f (T5) and K(C) n F(C') = 0. 
Now we assume that uiu2 $E(F'). There exist vi9 v2 e V(S) — {ui9 u2} with the 

properties that uivi9 u2v2 are distinct edges of F'9 viwi £ E(C)9 and v2 4= um. Let 
y2w2 G F(C); if v2 = u, then g = 2 and u2v2 = ugu9 and therefore, K(F) n F(F') + 0, 
which is a contradiction; if v2 = ug9 then g = 1, and thus uxu2 = v2u2e E(F'), 
which is a contradiction. Hence, v2w2 $ E(C). Define 

C" = F' — uxvx — u2v2 + utW4. + u2w3 + v^! + v2w2 + wxw4 + w2w3 ; 

we have that C" G tf(T5) and F(C) n F(C") = 0. 

2. Assume that T contains no terminal subtree isomorphic to an element of Q)^ 
It follows from Lemma 1 that there exist n = 5 and a terminal subtree (F2, r2) 
of T with the properties that (F2, r2) is isomorphic either to D0n* or to D0n and 
deg r r2 _ 3. For the sake of simplicity we shall assume that (T2, r2) = D0n* or D0n; 
thus r2 = u0 and V(T2 — u0) = {wu ..., w„}. As follows from Lemma 2, there 
exist Je«#((T2 - u0)3) and J' G ̂ ((T0 - "0)5) w ^ h the properties that E(J) n 
n E(J') = 0, M / ^ ^ ^ J ) and wiw3 eE(J'). Denote 5 = T- wx - ... - w„. 
Since T is isomorphic to none of the trees Ap, Ap#, and A*p*9 |V(S)| > 4. Since 
|V(5)| < p, it follows from the induction hypothesis that there exist F e jf(S3) 
and F' G W(S5) such that F(F) n F(F') = 0. Since deg^ u0 = 2, there exist 
vx, v2, v\9 v2 G V(5) — {u0} such that u . ^ G F(F), 1^2 G ^C*7')' 

ds(u09 vx) + d^(u0, v2) = 3 and d^(u0, v;) + ds(u0, v2) = 5 . 

We shall find e l5 e2 e E(T3) and e'l5 e2 e E(T5) such that 

C = ((F - v!v2) u (J - Wlw2)) + et + e2 G ^ ( T 3 ) , 

C = (F' - v\v2) u (J' - w ^ ) ) + e; + e2 G ^ ( T 5 ) , 

and F(C) n F(C) = 0. 

2.1. Assume that {vi9 v2} n {v\, v2} = 0. Without loss of generality we assume 
that dT(u09 vx) = dT(u09 v2)9 and dT(u0, v\) = dT(u0, v2). We put ex = vtw29 e2 = 
= v2wi9 e\ = v\w3 and e2 = v2wv 

2.2. Assume that {vl9 v2} n {v\9 v2} + 0. Since E(F) n F(F') = 0, \{vi9 v2} n 
n {v\, v'2}\ = 1. Without loss of generality we assume thatt;2 = v2. Ifu0v2 e E(T), 
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then we put eY = v{wl9 e2 = v2>v2, e\ = vin^ and e2 = v2w3. If u0v2 $ E(T), then 
dT(u0, v2) = 2, and we put ex = v1w2, e2 = v2w1, e\ = v'^ and e2 = i>2w3-

Thus the proof of Lemma 3 is complete. 
Theorem 1 immediately follows from Lemma 3. 
As follows from Theorem B, if G is a connected graph of even order p _• 4, then G3 

has two edge-disjoint 1-factors, which is an analogue to our Corollary. It is natural 
to ask whether there exists a similar analogue to Theorem 1. The following proposi­
tion gives a negative answer. 

Proposition. There exists an infinite set of mutually nonisomorphic trees T such 
that for every 1-factor F of T2 and every 1-factor F' of T3, E(F) n E(F') 4- 0. 

Proof. Let n ^ 5 be an odd integer, let v, vn, v12, v13,..., vnl, vw2, vw3 be distinct 
vertices, and let Tbe a tree defined as follows: 

V(T) = {v> vn> vu, v13,..., vnU vn2, vn3] and 

E(T) = {vvu, vnv12, v12v13, ..., vvnl, vnlvn2, vn2vn3} . 

Assume that there exist a 1-factor F of T2 and a 1-factor F' of T3 such that F(F) n 
n E(F') = 0. Without loss of generality we may assume that 

(2) vvu, vvk2 $ E(F) and vvkl, vvk2, vvk3 $ E(F') for every 

fce{l,...,n-2}. 

Since F is a 1-factor of T2, it follows from (2) that 

(3) vk2vk3eE(F), for every fee { l , . . . , n - 2} . 

Since Ff is a 1-factor of T3 and E(F) n F(F') = 0, it follows from (2) and (3) that 

(4) vuvk3 6 E(F') , for every k e {1,..., n - 2} . 

Since n — 2 ^ 3, it follows from (2) and (4) that F' is not a 1-factor in T3, which is 
a contradiction. Thus, the proposition is proved. 
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