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TWO EDGE-DISJOINT HAMILTONIAN CYCLES
OF POWERS OF A GRAPH

LADISLAV NEBESKY, Praha and ELENA WiszTovA, Zilina
(Received January 30, 1984)

IfGisa graph (in the sense of the books [1] or [3]) and n is a positive integer,
then by the n-th power G" of G we mean the graph with

V(G") = V(G) and E(G") = {vv';v,v' e V(G) and | < dg(v, v') < n}.
The expressions V(H), E(H), and dy(v,, v,) denote the vertex set of a graph H,

the edge set of H, and the distance between vertices v, and v, in H, respectively.

A number of results concerning powers of graphs is known. We now mention four
results concerning low powers (the number of vertices of a graph G is called the
order of G):

Theorem A ([2] and [7]). For every connected graph G of even order, G* has
a l-factor.

Theorem B. For every connected graph G of order =3, G* has a hamiltonian
cycle.

Theorem C ([4]). For every connected graph G of even order 24, G* has three
mutually edge-disjoint 1-factors.

Theorem D. For every connected graph G of order =5, G* has a 4-factor.

Theorem B is an immediate consequence of Sekanina’s result in [6]; he proved that
for every connected graph G, G* is hamiltonian-connected. Theorem D is a special
case of Theorem 2 in [5] (for n = 4). In the present paper we shall prove the fol-
lowing theorem, which improves both Theorem B and Theorem D:

Theorem 1. Let G be a connected graph of order =5. Then there exist a hamil-
tonian cycle C of G® and a hamiltonian cycle C' of G° such that C and C’ are
edge-disjoint.

The following corollary is an immediate consequence of Theorem 1:
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Corollary. If G is a connected graph of order =5, then G* has two edge-disjoint
hamiltonian cycles.

Note that it has been shown in [5] that there exists an infinite set of nonisomorphic
trees T such that T* has no 4-factor.

Theorem 1 will be derived from three lemmas. Before stating the first of them we
shall introduce some useful notions.

We say that an ordered pair (T, 1) is a rooted tree if T” is a tree and r' € V(T").
We say that rooted trees (T, r') and (T”, r”) are isomorphic if T" and T” are iso-
morphic and there exists an isomorphism from T’ onto T” which maps ' onto r”.
Let T be a tree. By a terminal subtree of T we shall mean a rooted tree (T”, r') with
the properties that T is a subtree of T and for each v e V(T’ — 1), degr, v = degr v
(where deg, w denotes the degree of a vertex w in a graph H).

Let m =2 0 and n = 1 be integers, and let u,, ... u,, w,, ..., w, be mutually dis-
tinct vertices. We denote by A4, the path with

V(4,) = {wy,....,w,} and E(4,) = {ww;s; 1
Similarly, we denote by B,,, the path with

IIA

i<n-1}.

V(Bon) = {thps -5 g, Wy, ..., w,} and

E(B,,) = {uu;—; m2j >0} u{ugw,Ju{wws; 1S k<n—1}.
Moreover, we define
A = Ay — Wo W, + w,_,w, for n=3, and
Ay = Ay — ww, + wywy for n2z4

Finally, we define the following rooted trees:
D,, = (Bmm uo) 5
Dpps = (Bpn — Wy Wy + Wo_pW,, ) for n =3
Dypn = (Bpn — U= 1l + Uy 2ty, tp) for m = 2; and
Dymnx = (Bn — Upglhyy—y — Woe Wy + Uplhy 3 + Wa_ Wy, Uy)

for m=2 and n=3.

Lemma 1. Let T be a tree of order =6. Then there exists a terminal subtree
of T which is isomorphic to one of the twenty three rooted trees that follow:

D*ZI;
DZI’ D229
D*Sl’ D3la D*SZ’ D32a D*33*’ D33*, D33’

D*41’ D4la D*425 D42’ D*34*’ D*34’ D34*5 D34! D*44*a D44*’ D44 s
DOS*v DOS .
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Proof. Let § denote the diameter of T. Obviously, there exists a terminal subtree
(T, o) of T with the properties that

dry(ro,v) £ 5 forevery veV(T,), and
dr(ro, 0) = min (5, 8) for at least one e V(Tp).

It is easy to see that there exists a terminal subtree (T", r') of T suchthat V(T’) =
< V(T,) and (T, r') is isomorphic to one of the 23 rooted trees mentioned in the
statement of the lemma.

If G is a graph, then we denote by .#(G) the set of hamiltonian cycles of G.

Lemma 2. Let n = 5, and let T be one of the trees A,, A,x, and Ay,x. Then there
exist Ce #(T?) and C' e #(T?)such that E(C) n E(C') = 0, w,w, € E(C) and
wyws € E(C).

Proof. We determine E(C) and E(C’). If n = 5, we put
E(C) = {wyw,, wywy, wows, waws, wyws} and
E(C) = {w,w;, wyws, wyw,, wows, wyw,} .
If n = 6, we put
E(C) = {wyw,, wyw,, waws, waws, wawg, wswe} and
E(C') = {wyws, wiWe, WoWs, WoWe, W3Wy, WeWs} .
Let n = 7. Then we put
E(C) = {w Wz, WiWa, WaWs, W3Wy, W3We, Wy Wo} U {Wiwiips SSiZn =2},
If n =7, we put
E(C') = {w w3, wiWg, WaW3, WaWys, WaWs, WaW,, WsWe)
If n =8, we put ‘
E(C') = {wyw3, wiwe, WoWz, WaWq, WoWs, WaWg, WsWe, WsWg} .
If n =29, we put
E(C’) = {W1W3, W Wes WaW3, WaWq, WaWs, Wy sWpy Wy gWp—y
Wym3Was Wa2Wooy} U {Wiwpsa; 4 S 1S 6}
It is clear that C and C’ have the desired properties.
Lemma 3. Let T be a tree of order p = 5. Then there exist Ce H#(T?) and
C' e #(T*) such that E(C) n E(C') = 0.

Proof. The case when p = 5 follows immediately from Lemma 2. Let p = 6.
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Assume that for every tree T, of order p,, where 5 < p, < p, it is proved that there
exist C(o,€ H#(T3) and Cjo, € #(T5) such that E(C,)) n E(C{o,)) = 0. If T is iso-
morphic to one of the trees A, A4, ane Ay, then the result follows from Lemma 2.
We shall assume that T is isomorphic to none of the trees A,, A4, and Ay,4. Let &
denote the set of the 23 rooted trees mentioend in Lemma 1. Moreover, we denote
D, = 2 — {Dys, Dys«}. We now distinguish two cases and several subcases.

1. Assume that T has a terminal subtree isomorphic to one of the elements of 2,.
Consider such a terminal subtree (T, r,) that (T}, r,) is isomorphic to one of the
elements of 2, and that for every terminal subtree (T, r') of T which is isomorphic
to one of the elements of 2, |V(T,)| < |V(T")|. For the sake of simplicity we shall
assume that (T, r,)€ 2,. Then r; = u, and there exist m = 2 and n = 1 such
that V(Ty) = {u,, ..., 4y, Wy,...,w,}. Denote S = T —w; — ... —w,. It is clear
that 5<m + 3 < |V(S)| < p. It follows from the induction hypothesis that there
exist F e #(S%) and F' € #/(S°) such that E(F) n E(F') = 0.

The following convention will be useful for us: 1* means 2 and 2* means 1.

1.1. Assume that (T, u,) € {Dy2y, D2y, Dyy, Dyys). Then n < 2. There exist
Uy, Uy, 0}, U3 € V(S) such that u,vy, u,v, € E(F) and u,v}, u,v} € E(F’'). Since E(F) n
NEF) =0

(1 l{ul, ) 0 {vy, 0y, 01,05} S 1.

1.1.1. Assume that n = 1. We define
C? =F —uw; + uw, +v,w, for i=12;
obviously, C™", C'® e s#(T?). Similarly, we define
CU = F — upv) + u,wy + vjw, for j=1,2;
obviously, C'\"), C'® e #(T?). Let i, j € {1, 2}; if E(C®) n E(C'?’) % 0, then
Uy =0v; or u, =v; or v; =v;.

It follows from (1) that there exist g, h e {1,2} such that E(C®)n E(C'"™) = 0.

1.1.2. Assume that n = 2. We define
CO =F —uw, +uw, +o,w; +wyw, for i=1,2;
obviously, C\", C® e #(T?). Similarly, we define
C'D = F — 0} — ugvfy + u,w, + u,w, + vjwy + vjyw, for j=1,2;
obviously, C'", C'® e #(T?). Let i, j € {1, 2}; if E(C?) n E(C'Y) % 0, then

Uy =vjy OF U, =0v; Or v; =0,
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It follows from (1) that there exist g, h € {1,2} such that E(C®)n E(C'™) = 0.

1.2. Assume that (Ty, ) ¢ {Dyay, Days Dyy, Das,}. Thenm = 3. Since degguy =
= 2, there exist u* e {u,, ..., u,} and ue V(S) — {uo, ..., u,} such that uu* e E(F).
Since Fe #(S®), there exists ge{l,2} such that u, = u*. Thus, uu,e E(F).
Denote h = g*.

1.2.1. Let n = 1. Then (Ty,u,)€{Dysy, D3y, Dyay, Dyy}. Since |V(S)| 25,
there exist ie{h,3} and ve V(S) — {u;} such that vé{u,u,} and u,we E(F).
Define

C=F—uu, +uw; +uw;, and C' =F — up 4+ uw; + vw, .
Obviously, Ce #(T?), C' € #(T*) and E(C) n E(C’) = 0.
1.2.2. Let n = 2. Then (T, 4y) € { D33, Dya3, Dss}. Since |V(S)| 2 m + 3, there

exist distinct v,, v,, v; € V(S) such that u,v,, u,v,, uv; are distinct edges of F’
and if m = 4, then u, ¢ {v,, v,, v3}. Since E(F) n E(F') = 0, v, + u. Define

C=F — uu, + uw, + uw, + w;w, ;
obviously, C e #(T?). First, let vy + u,; define
C =F —upw, — uzvy + uw, + usw, + v,w, 4+ 03w, ;

we have that C' € #(T°) and E(C) n E(C') = 0. Let now vy = u,; then v, + u,;
define

C" = F' — upw, — usv3 + wyw,, + uzw, + 0w, + 03w, ;

we have that C" € #(T°) and E(C) n E(C") = 0.

1.2.3. Let n = 3. Then (T}, to) €{Dy33%> D334, D33}. Define
C=F —uu, +uw, + uw, + wywy + wowy ;

obviously, Ce #(T3). There exist distinct v,, v; € V(S) — {u,, u3} such that
uy0,, u3v3 € E(F') and F — u,v, — uzvy + u,03 + usv, is also a cycle. First,
let v,w, ¢ E(C); define

C' = F — uy0;, — usv3 + uywy + usw, + 0,w; + 03wy + ww, ;

we have that C' e #(T°) and E(C) n E(C') = 0. Let now v,w, € E(C); then
dr(ug, v,) < 2 and vyw, ¢ E(C); define .

C" = F' — U0, — U303 + Uyws + uswy + 0,w3 + 03wy + ww, ;

we have that C” € #(T°) and E(C) n E(C") = 0.

298



1.2.4. Let n =4. Then (Tl’ uo)e {D*34*, D*34, D34*, D34, D*44*, D44*, D44}.
Define .

C=F —uu, +uw, + uw, + wywy + wowy + wiWy ;
obviously, C € #(T?). First we assume that u,u, € E(F’). Define

C'=F — uju, + uwy + tawy + ww, + ww, + Wow;.
Clearly, C' € #(T°) and E(C) n E(C") = 0.

Now we assume that w,u, ¢ E(F'). There exist v, v, € V(S) — {u,, u,} with the
properties that uv,, u,v, are distinct edges of F', v,w, ¢ E(C), and v, =* u,,. Let
v,w, € E(C); if v, = u, then g = 2and u,v, = u,u, and therefore, E(F) n E(F’) + 0,
which is a contradiction; if v, = u,, then g = 1, and thus u,u, = v,u, € E(F’),
which is a contradiction. Hence, v,w, ¢ E(C). Define

C"=F — uw; — U0, + uwy + Wy + 0,w; + 0w, + WiW, + wows;

we have that C” e #(T?) and E(C) n E(C") = 0.

2. Assume that T contains no terminal subtree isomorphic to an element of 2,.
It follows from Lemma 1 that there exist n > 5 and a terminal subtree (T3, r;)
of T with the properties that (T3, r,) is isomorphic either to Dy, or to Dy, and
degy r, 2 3. For the sake of simplicity we shall assume that (75, r;) = Do,y O Dy,;
thus r, = u, and V(T, — u,y) = {wy, ..., w,}. As follows from Lemma 2, there
exist Je #((T, — up)*) and J' e #((T, — u,)’) with the properties that E(J) n
NEJ)=0, ww,eEJ) and wywyeE(J’). Denote S=T—w; —... —w,.
Since T is isomorphic to none of the trees A,, A4, and Ay, IV(S)I > 4. Since
]V(S)| < p, it follows from the induction hypothesis that there exist F e s#(S%)
and F’'e #(S°) such that E(F) n E(F') = 0. Since degyu, = 2, there exist
vy, U, V3, V3 € V(S) — {u,} such that v,v, € E(F), vjv} € E(F'),

dg(u, vy) + ds(uo, v,) £ 3 and  ds(uy, v}) + ds(ue, v3) < 5.
We shall find ey, e, € E(T?) and e}, ¢; € E(T?) such that
C =((F—v0,) U(J —wyw,)) + e, + e;e #(T?),
C' = (F —vivy) u(J — w,wy)) + ey + e € #(T?),
and E(C)n E(C') = 0.
2.1. Assume that {v;, v,} N {v}, 03} = 0. Without loss of generality we assume

that dp(uo, v,) < dr(tto, v;), and dy(uy, v}) < dr(ug, vy). We put e; = v,w,, €, =
= v,w;, €7 = VW, and e, = vyw,.

2.2. Assume that {v;,v,} A {v}, 03} * 0. Since E(F)n E(F') =0, |{v;,05} n
N {v}, v’z}l = 1. Without loss of generality we assume thatv, = v,. Ifugv, € E(T),
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then we put e, = v,w;, e, = v,W,, €, = viw, and e} = v,w;. If ugv, ¢ E(T), then
dr(ug, v;) = 2, and we put e, = v,w,, e, = v,w,, €7 = viw, and e, = v,w;.

Thus the proof of Lemma 3 is complete.

Theorem 1 immediately follows from Lemma 3. _

As follows from Theorem B, if G is a connected graph of even order p = 4, then G*
has two edge-disjoint 1-factors, which is an analogue to our Corollary. It is natural
to ask whether there exists a similar analogue to Theorem 1. The following proposi-
tion gives a negative answer,

Proposition. There exists an infinite set of mutually nonisomorphic trees T such
that for every 1-factor F of T? and every 1-factor F' of T?, E(F) n E(F') % 0.

Proof. Let n = 5 be an odd integer, let v, vy, Uy2, Vg3, -+, Up1» Upa» Un3 be distinct
vertices, and let T be a tree defined as follows:

V(T) = {”’ Uy1s Uy2s Uy3s -+ v5 Unts Unas vns} and
E(T) = {lela V110125 VgaV135 <o UV0ny, UpyUn2s v,,zv,,3} .

Assume that there exist a 1-factor F of T2 and a 1-factor F’ of T? such that E(F) n
N E(F’) = 0. Without loss of generality we may assume that

(2) 0y, V0, ¢ E(F) and vy, v, vu,5 ¢ E(F')  for every
ke{l,...,n —2}.

Since F is a 1-factor of T2, it follows from (2) that

(3) Vialys € E(F), forevery ke{l,...,n—2}.

Since F' is a 1-factor of T* and E(F) n E(F’) = 9, it follows from (2) and (3) that

4) v Ui € E(F'), forevery ke{l,...,n—2}.

Since n — 2 2 3, it follows from (2)-and (4) that F’ is not a 1-factor in T2, which is
a contradiction. Thus, the proposition is proved.
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