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Časopis pro pěstování matematiky, roč. 110 (1985), Praha 

CONTINUOUS DEPENDENCE FOR SEMILINEAR PARABOLIC 
FUNCTIONAL EQUATIONS WITHOUT UNIQUENESS 

JAROSLAV MILOTA, HANA PETZELTOVA, Praha 

(Received April 16, 1984) 

1. I N T R O D U C T I O N 

In [4] we have proved the existence theorem for an abstract semilinear equation 
with infinite delay 

r{ 

(1.1) u(t) + A u(t) = f(t, ut) + g(t, s, u(s)) <\s , 
J to 

(1.2) ut0 = (p. 

Henceforth ut denotes the shift of a function u, i.e. ut(s) = u(t + 5), s e ( — 00, 0], 
The assumptions of the theorem do not guarantee the uniqueness of a solution to the 
problem (1.1), (V2), thus the question of continuous dependence is more delicate 
than in the cases of uniqueness. Recently, theorems of this type for the equation (1.1) 
have been proved in [2], [5]. 

In the present paper, the continuous dependence theorem (Theorem 2) is proved 
in case of nonuniquess of a solution. As an important step of the proof a Kneser 
type theorem on compactness of the funnel of solutions (Theorem 1) is established. 

The operator A will be supposed to satisfy 

(H 1) A is a sectorial operator in a Banach space X, 

(H 2) A~l is a compact operator in X, 

(1.3) inf{ReA; Xe<r(A)} > 0 . 

If A is sectorial then —A generates an analytic C0-semigroup which will be denoted 
by Q~A\ t ^ 0. Further, all real powers Aa are defined and if X* denote their domains 
endowed with the norms ||x||a = | |A ax| | x, we obtain Banach spaces and the following 
estimates of the semigroup in these spaces (see e.g. [1], [3]): 

(1.4) (Va ^ 0 3Kx(a) Vx eX Vt > 0) => \\e'Atx\\a ^ Kt(a) t"a||x|| , 

(1.5) (Va e [0, 1] 3K2(a) Vx e Ka Vt > 0) => 

= > | | ( e - ^ - I ) x | | ^ K2(a) f | |x( | a. 
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Let us note that if the sectorial operator A does not satisfy the assumption (1.3), 
then the spaces X* are defined in terms of the powers of the operator A + al9 which 
satisfies (1.3). The estimates (1.4), (1.5) for the semigroup e~At hold on compact 
intervals, which is sufficient for our purposes. The condition (1.3) is introduced solely 
for simplification of the exposition. Let us repeat some properties of the operators 
satisfying (H l), (H 2). 

Lemma 1. Let A satisfy (H 1). Then the following statements are equivalent: 

(i) A satisfies (U. 2). 
(ii) t~At is a compact operator in X for any t > 0. 

(iii) For 0 = P < a the natural embeding X* -> Xp is compact. 
The following assumptions concern nonlinear operators / , g. For T — 0 denote 
by Ya(T) the Banach space of all bounded, uniformly continuous maps of the interval 
(—00, T] intoXa with the norm ||w||ya(T) = sup ||w(^)||a. 

te(-oo,T] 

(H 3) There exist an open subset UY a [t0, +co) x Yx(0) and ft > 0 such that f 
is continuous map of U1 into Xp. 

(H 4) There exists an open subset U2 c {[t, s~\; t0 = s — t < + GO} X X1 such that 
(i) g is continuous map of U2 into X9 

(ii) g is locally Holder continuous in the first variable and locally Lipschitz 
continuous in the third one on U2. 

The initial value is required to satisfy 
(H 5) (t0, cp) E Ul9 (t09 t09 cp(0)) E U2. 

The local existence of a solution is proved in [4] under the assumptions (H 1) —(H 5). 
This solution is a mild solution as well, i.e. it satisfies the integral equation 

(1.6) u(t) = Q-A(t-to\p(0) + f e-^('-s> f/(5, us) + 

+ g(s9 a, u(o)) d<7 ds 
J t0 J 

with the initial condition (1.2), for t in the interval of existence. 
Note that the existence theorem for a mild solution can be proved even by replacing 

X\ Y\0) respectively by X", Ya(0), a < 1 and taking ft = 0. However, the case a = 1 
(for example, g depends on Au if A = —A) is the most interesting. Further, for con
tinuous, X1 — valued solution to the problem (1.6), (1.2), the assumptions (H 1) — 
— (H4) guarantee regularity, i.e. such solutions satisfy the equation (1.1). Thus, 
in the sequel, we shall deal with the integral equation (1.6). 

A solution u: [t0, T) -» X1 can be continued if lim u(t) = U(T) exists for t / T 
and (T, ur) e Ul9 (T, T, U(T)) E U2. In fact, if v is a solution of 

(1.7) v(t) = Q-A^-^U(T) + V A ( r - s ) \f(s9 vs) + 
J x L 
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g(s9 Ü, V(G)) à(7 + g(s, G, V(G)) d<т ds , 

(1.8) vx = ux 

on [T, tx) then the joint of u and v is a solution to the problem (1.1), (1.2) on \t0, t^). 
So there is a maximal, noncontinuable solution of the problem. 

2. PRELIMINARIES 

For Q = (Ql9 Q2), where Qx c Ul9 Q2 c U2 denote JF(g) = {(/, a); / satisfies 
(H 3), g satisfies (H 4), there exist positive constants M, L, y such that 

\\f(t,xls)l = M for any (f, tfr) e Qi -

(2.1) 1 ^ , s, x^l l ^ M and \\g(tl9 s, xx) - a(f2, s, x2)|| ^ 

^ Z.(|t! - f2|
y + \\xx - x2\\t) for all [ti9 s, x,] e Q2} , 

^M,L,v(2) = {(/, g) e ^(G); /, g satisfy (2.1)}. 
For T > 0 denote by Z(T, Q) the set of all functions u e Y\t) such that (t, ut) e Qu 

(t, s, u(s)) e Q2 for all t0 = s = t < T Let /, g satisfy (H 3), (H 4). Then for u e 
e Z(T, Q), t0 = t < T, let us define the following operators: 

(2.2) G(t, u) = J gj, s, u(s)) ds , 

*.(.-, u) = I Ae-^l('-1f(s, «,) ds , 
J to 

(2.3) <P2(t, u) = f Ae-^('-s'G(s, u) ds = 
J to 

= P Ae"',('-s,[G(s, u) - G(t, u)] ds + [/ - e-"«-<°)] G(f, u) . 
J t0 

We denote the operators on the right hand side of the last equality by Ht(t, u) and 
H2(t, u). For (/, g) e ^M,L,y(Q), u,ve Z(T, Q) we have 

(2.4) \\G(tu u) - G(t2, v)\\ = L(t2 - t0) [(t2 - tiy + 

+ sup ||u(s) - «(s)||. + M(t2 - l.) 
se[to,t2~\ 

for t0 = t1'=t2< T, and 

(2.5) \\H2(t, u) - H2(t, v)\\ = K2(0) L(t - t0) \\u - v\\YHt) 

for t0 = t<T 
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Lemma 2. Let (f g) e ^M,L,y{Q)^ u e Z(f> Q), t0 < t < +co and d < min (/?, y). 
Then there is a function c increasing in all its arguments and such that the estimate 

(2.6) H^ l !, u) - <2>/t2, u)|| ^ c{M, L, t) {t2 - t/f 

holds for any t0 = t1 ^ l2 < t and i = 1, 2. 

Proof. According to (1.4) and (1.5) we have 

|Wt2,")-<*>l(tl,«)l ^ 

< Г||[e-^-"> -/]e-^"-s )/(5,И,)|1dS + ГI||e-^*--У(S,Ил)||1 dS ^ 
J to J ři 

ß~ð 
< K2(8)Kt(l +5-0){t to\ M(t2 - tiy + 

+ ±Kl(i-p)M(t-t0y-*(t2-tly. 

Moreover, using (2.3) and (2.4) we get 

\\<P2(t2,u)- &2(tltu)\\ _ 

= ["||4e-^ ( ,2-"> - / ] e-^("-s>[G(s, u) - G(tu «)]|| ds + 
J to 

+ [|Ae-Ж'2-s)[G(s, м) _ G ( / 2 > uщ d s + 

+ | | [ l-e-^-" ) ]e-^ ( "- '» ) G0 1 ,u) | | + 

+ | | [ / - e - ^ - ' 0 ] [ G ( / 2 > I l ) _ G ( , 1 , t t ) ] | g 

< K2(5)KI(I + s){-±-g{t- t0y-+' + ̂ rd(<- ' o ) 1 " 5 ) ]^ - hy + 

+ K .(I ) ^ (t - t0y
+y~* + M(t - t0y-»\ (t2 - tly + 

+ K2(8)K1(s)M(t-t0y-*(t2-t1y + 

+ K2(O) [L(t - t0y
+>-° + M(t - t0y->] (t2 - tly. 

Corollary 1. Let u e Z{T, Q) be a solution to the equation (1.1) and (f g) e ^{Q). 
Then for t / Tthe limits lim u{t) in the space X1 nad lim ut in the space Y1{0) exist. 

Proof. The function u satisfies also the integral equation (1.6). As e~At is a Co-
semigroup, the limit lim e~A(t~to)A cp{0) exists. According to Lemma 2, the limits 
lim <Px{t, w), lim <P2(t, u) exist as well and this implies the existence of lim u{t). If 
this limit is denoted by u(T), one can easily see that lim ut — uT. 
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Corollary 2. Let (f, g) e ^(Q) whenever QA cz Uu Q2 cz U2 are bounded and 
closed. Let u be a maximal solution to the problem (1.1), (1.2) with the domain of 
definition [t0, T), where T < +oo. Then there is a sequence tn / T such that either 
(t,„ II J -» 8Ut or (tn, tn, u(tn)) -> 3U2. 

Proof. Choose sequences Q\ cz U1? Q'] cz U2 of closed bounded sets such that 
Ui = U 2 i , U2 = [JQ2, let T„ / T. Set* K? = Qnu{(t,ut); *G[f0,T,,]}, Rn

2 = 
n n 

= Ql v {(>> 5> U(*)Y *o = * = t = Tn}, Rn = (Rn, Rn
2). If u e Z(T, K") for some n, 

then according to Corollary 1, lim u(t) = u(x) and lim ut = ut exist. As Qn, Q2 are 
t/x t/x 

closed we get (T, i/r) e Q\, (T, T, W(T)) G Qn
2, which contradicts the maximality of u. 

Corollary 3. Let the assumptions of Corollary 2 be fulfilled with U1 = \t0, +oo) x 
x Y^O), U2 = {(t,s)eR2; t0 = s ^ t < +00} x X1 and let u be a maximal 
solution of (1.1) defined on [t0, T) with T < +00. Then there is a sequence tn, tn / z 
such that ||w(0||i ""* + 00-

Proof. It suffices to take Q\ = \t0, t0 + n\ x {i/r G Y^O); ||i/>||ri(o) = n) a n d 62 
analogously as in the proof of Corollary 2. 

The next lemma concerns a simultaneous continuation of all solutions starting 
in a neighbourhood of a compact set of initial values. 

Lemma 3. Let Qt cz Uh i = 1,2, be open sets, 0 cz YA(0) a compact set such 
that (t, cp) G Qu (t, s, <p(0)) G Q2 for any *o = s = t ^ b, cp e <P, and let M, L, y 
be positive constants. Then there exist A > 0, £ > 0 such that the following con
tinuation property is valid: Whenever (f, g) e ^M,L,y(Q) ana^ v *5 a maximal solu
tion to (1.1) for which there is T G [t09 b] such that v e Z(x, Q), dist(vr, <P) < e, 
then v is defined at least on the interval \t0, T + A) and v e Z(x + A, Q). 

Proof. As Ql9 Q2 are open sets and <P is compact, there are v > 0, T > b such that 

Gi(v) = {(*> ^Y *o = t=T, dist (i/y, <*>) = v} cz Qx , 

Q2(v) = {yt, s,x); t0 = s=t = T, inf ||x - ^(O)^ = v} cz Q2 . 

Let v be a solution to (1.1) and let cp e # be such that ||vt — <p(yi(0) < e. Denote 
by co^ the module of continuity of the function xj/. According to the above, results, v 
can be continued whenever (t, vt) e Ql9 (t, t, v(t)) e Q2. For the distance dist (v„ <P), 
/ ^ T w e get the following estimate: 

K - <H|Yi(0) = sup ||v(r + s) - (p(s)\\i = 
se ( -oc ,0 ] 

^ max { sup (\\vj(t + s - T) - <p(t + s - T)||,. + \q>(t + s - T) - <p(s)||i), 
s e ( - o o , t - f ] 

sup (\\v(t + 5) - <T)flx + | |<T) - «<0)fl. + \\<pl0) - cp(s)\\1)} Z 
se [ t -» ,0 ] 
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^ IK - «p||r.(o) + a>J(t - T) + K,(0) sup ||(e-"» - 1) p(0)||.. + 

/ i e [ 0 , t - T ] 

+ <*>*.(..„)(* ~ t ) + CO02(<jU)(^ - ") • 

By the compactness of <£, the estimates (2.6) of Lemma 2 and the properties of the 
Co-semigroup e~At, we can find A and e such that e < v/5 and 

max {sup OVA), c[M, L, T) A\ K,(0) sup \\yAh - /) A p(0)||} < - . 
tpeO Ac[0,J] ' 5 

Therefore \\vt — <p||yi(0) < v a n c ' ^ i e assertion of Lemma 3 follows. 

3. COMPACTNESS OF THE FUNNEL 

In this section we shall investigate the equation (1.1) with the fixed initial condition 
(1.2). We denote by 9Jt the set of all maximal solutions to the problem (1.1), (1.2) 
and by F(a) the funnel of solutions up to the point a, i.e. 

F(a) = {(t,u(t)); te[t0,a], ueW}. 

Lemma 4. Let (f, g) e J~(Q) whenever Q is bounded and let all solutions of (1.1), 
(1.2) exist on the interval [t0, b]. Let F(b) be bounded in the space R x X1. Then 9ft 
is compact in C([t0, b], X1). 

Proof. We proceed according to the generalized Arzela-Ascoli theorem, i.e., we 
shall prove: 

(i) 9N is closed in C([l0, b],*1); 
(ii) the elements of $* are uniormly equicontinuous on [t0, b]; 

(Hi) the cross-section {u(t); u e9Jt} is relatively compact in X1 for each te [t0, b]. 
It is easily seen that (i) holds, (ii) follows immediately from Lemma 2. It remains to 
prove (Hi). By virtue of (1.6), (2.2), (2.3) we can write 

A u(t) - H2(t, u) = Q"A^-to)A <p(Q) + 0x(t, u) + Hx(t, u) . 

The sets {<PY(t, u); u e W)9 {Ht(t9 u); ueffl) are bounded in Xs for 0 < 8 < 
< min (p, y), t0 = t ^ b, and consequently they are compact in X. The estimate 
(2.5) shows that H2(t, •) is Lipschitz continuous with a constant less than one for 
t — t0 ^ A! < (K2(0) L)"1, and H3(t9 u) = A u{t) — H2(t9 u) has the property 
\\H3(t9u) — H3(t9 v)\\ = (\ — A1K2(0)L) ||u — u||y-(f). Hence each sequence un(t), 
where une

sM, t0 g t g l0 + Al9 contains a convergent subsequence and, conse
quently SR is compact in C([t0, t0 + A^X1). If tx = t = tt + Al9 tx = t0 + Au 

we write H2(t, u) in the form 

H2(t, u) -= (/ - e - ^ ' - o ) ) [ rg(t, s, u(s)) ds + I" g(t, s, u(s)) d s l . 
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The second term is again a contractive map and the set 

j(I - e -^ ( f - ' 0 ) ) [Ug(t, s, u(s)) ds ; u eSwl 

is compact, as has been just proved. The same argument as above yields after a finite 
number of steps that {u(t); u e W] is compact for all / e [t0, b]. This completes the 
proof of the lemma. 

Theorem 1. Let the assumptions (H 1) —(H 5) be fulfilled with Ut -= [t0, +00) x 
x Y'(0), U2 = {(t,s)eR2; t0 = 5 = t < +00} x X1. Let (fg)e^(Q) for each 
bounded Q = (Qu Q2), Q <= (Uu U2). Let b > t0 be such that all solutions to the 
problem (1A), (1.2) are defined at least on [t0, b]. Then SM is compact in 

c'lT./o.-O.*1)-
Proof. In accordance with Lemma 4 we are to prove the boundedness of F(b) 

in R x X1. Suppose t* = inf{t;F(t) is unbounded}. It follows from Lemma 3 
that t* > t0. If t* = b and F(t*) were bounded, then 90i would be compact in 
^([fo- f ^ K ^ a n d thus {ut+;uE?0i} would be compact in Yl(0), and, according 
to Lemma 3, F(t* + A) would be bounded for some A > 0, which contradicts the 
definition of t*. Hence we can find a sequence tn f t* and un e $)t such that || w/fn)ll 1 ~~* 
-> 00. As F(t) is bounded and consequently SD1 is compact in C([t0, t], X1) for all 
t < t*, there is a subsequence, denoted again by un, which converges to a solution 
u e 9Jt uniformly on each interval [f0, t] where t < t*. Now we can set 

* ={ut;te[t0,t*]}, 

Qx = [t0, b + 1) x ty e Yl(0); inf ||^ - i i r j | y l ( 0 ) < 1} , 
telt0,t*2 

Qi = {(*, s, x); 0 = s = t < b + 1, inf ||x - u ^ < 1} 
T6[f0,t*] 

and use Lemma 3. Let e, A be the corresponding values given by Lemma 3. By the 
uniform convergence of the sequence un on the interval [t0, t* — A], the functions un 

belong eventually to Z(t* — A, Q) and dist ((un)t*_A, 0) < e. It follows that un e 
e Z(t*, Q) eventually, which is a contradiction. 

R e m a r k 1. The compactness of 901 in C([t0, b]^1) implies the compactness of the 
set {(t, ut); t e [t0, b], u e Wl} in R x Yx(0) and of {{t, s, u(s)); t0 = s = t = b, 
ueWl} in R2 x XK 

Corollary 4. Let the assumptions of Theorem 1 be satisfied and let all maximal 
solutions of the problem (1.1), (1.2) be defined on [t0, b]. Then there is A > 0 
such that they are defined on [t0, b + A). 

Corollary 5. Let the assumptions of Theorem 1 be satisfied and 

(3.1) T = sup {b; F(b) is bounded in R x X1} . 
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Then either T = +co and all maximal solutions are defined on [t0, -{-co) or T < 
< +co and all maximal solutions are defined at least on the interval [l0, T) and 
there is a solution which is not defined on any larger interval. 

Proof. If u e $)l were defined on [l0, T), T < T, then Corollary 3 would give a con
tradiction to the boundedness of F(x). The rest of the proof repeats the arguments 
of the proof of Theorem 1. 

4. CONTINUOUS DEPENDENCE 

In this section we shall deal with the sequence of equations of the type (l . l) 

(4.In) u{t) + A u(t) = fn(t, ut) + gn(t, s, u(s)) ds, 
J t0 

(4.2n) ut0 = cpn. 

Theorem 2. Let ( H 1 ) - ( H 5 ) be satisfied for A,fn,gn,(pn, n = 1, 2, ... with 
V1 = [t0, +oo) x Y\0), U2 = {(t, S)ER2; t0 ^ 5 = t < +00} x X1. Let / , g 

satisfy the assumptions of Theorem 1 and let the following conditions be fulfilled: 
(1) <pn -> q> in Y\0); 

(ii) for each (t, \jj) e Ul9 (t, s, x) e U2 there exist neighbourhoods Vl9 V2 such that 
(/„, gn) e &((Vl9 V2)) eventually; 

(iii) if t e [t0, + 00), \j/n -> xj/ in Y\0), then fn(t, fa) -> f(t, xj/) in Xp; 
if (t, s) G R2, t0 ^ s ^ t, xn -> x in X1, then gn(t, s, xn) -> g(t, s, x) in X. 

Let vn be a maximal solution to the problem (4.In), (4.2n) and let T be given by 
(3A). Then for each b e [t0, T) there exists a subsequence vnk which converges to 
a solution of the problem (1.1), (1.2) in the space C([t0, b], X1). 

Proof. According to Theorem 1 and Remark 1, the sets 

fit = {(t, ut); t e [t0, b], uem}, 

Q2 = {(t, s, u(s)); t0 = s ^'t = b, tie 9)1} 

are compact. The assumption (ii) yields the existence of neighbourhoods Q\ of Qh 

i = l ,2 , and constants M, L, y, n0 such that (/„, gn), (/, g) e ^M,L,y(Q
d) for n = n0. 

Now we set 0 = {ut; t e [t0, b], u e 5R} in Lemma 3. First, we set z = t0 and get 
the existence interval [t0, l0 + A) for all vn with n sufficiently large. In a similar way 
as in Lemma 4 we can prove compactness of the sequence vn on the interval [t0, tx], 
tl < t0 + A, because (t, (vn)t) e Q\ and the operators H2(t, u) (gn) are contractive 
uniformly with respect to n. We take a subsequence of vn converging uniformly on 
[t0, t j . The dominance convergence theorem together with (ii), (iii) guarantees 
that the limit is a solution of (1.1), (V2). Now, we can apply Lemma 3 with x = t1 

n = ni = % an<i a ^ e r a finite number of steps the assertion of Theorem 2 follows. 
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Remark . If the assumptions of Theorem 2 are satisfied and the problem (1.1) (1.2) 

possesses a unique solution, then every sequence vn converges uniformly to this 

solution in the norm of X1 on any compact subinterval of [t0, T). 
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