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Časopis pro pěstování matematiky, roč. 110 (1985), Praha 

NOTE ON GENERALIZED MULTIPLE PERRON INTEGRAL 

JOSEF KRAL, Praha 

(Received March 31, 1984) 

We show that every real-valued function which is GP-integrable in the sense of [2] 
must be Lebesgue measurable. LIsing this result we obtain a dominated convergence 
theorem for the GP-integral which answers the question posed in [2], Remark 3 
(cf. also Remark 11 in [1]). 

By an interval (in Rm) we mean a Cartesian product of m closed one-dimensional 
intervals of positive length. Given such an interval I we choose a cube K z> I of 
minimal volume and put 

r(l) = volI/volK; 

if a point x e I has been specified in I, then the interval is termed a pointed interval 
and will be denoted by (x, 1). By a P-patrition of an interval J we mean any finite 
system 

(1) (x\ / ' ) , . . • ,{x",P) 

of mutually non-overlapping pointed intervals whose union equals J. If x = 
= [xj, ..., xm] e Rm and O > 0, then we adopt the notation 

m 

B[x, Q] = * <Xj - O, Xj + O> 
1=i 

for the cube of side-length 2q centered at x. A positive function on J is called a gauge. 
If b is a gauge on J, then the P-partition (1) is termed <5-fine provided 

(2) P c:B[x\3(xj)]9 j =l9...9p. 

Let now J be a fixed interval and consider a real-valued function 

F : I H> F(I) 

of an interval I c J. Given x e J, a e (0, 1> and Q > 0, we put 

^ ( x ) = infF(I)/volI, 

where I a J runs over all intervals satisfying 

x e I c B[x9 O] , r(I) = a ; 
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further we define 

џFjx) = sup *F£(x), *F(x) = inf *Fa(x) 
í?>0 

* F ( x ) = - , ( - F ) ( . x ) . 

If *F(x) = *F(x) e /J?, then F is said to be derivable at x and the common value of 
*F(x) and *F(x) is denoted by F'(x) and termed the derivative of F at x. 

Let us recall, for the case of real-valued functions, the definition of the GP-integral 
from [2]. 

Definition. We say that a real-valued function / on J is GP-integrable over J 
if there exists a real number k satisfying the following condition: 

For any s > 0 and a e (0, 1) there exists a gauge S on J such that 

\k~ ifW vol I*\ <s 

holds for each (3-fine P-partition (1) of J fulfilling 

(3) r(P) = a, j= l , . . . , p . 

The corresponding k is called the GP-integral off over J and denoted by 

(4) GP r j . 

Remark 1. Let us recall some basic facts established in [2]. 
The existence of the integral (4) guarantees that GP \tf exists for each interval 

/ cz J and 

(5) / h » G p f / 

is an additive function of an interval I a J. 
Iff is a function on J with a convergent Lebesgue integral 

(6) 
• / / • 

then the integral (4) exists as well and coincides with (6). 
For later use let us rephrase Proposition 9 from [2] in the following form. 

Saks-Henstock lemma. Let f be a real-valued function which is GP-integrable 
over J and suppose that s > 0, a e (0, 1). If 3 is a gauge on J corresponding to s 
and a as in the above definition, then 

p 

J=ІL 
GP j-j(V)volP < є 
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holds for each finite system of mutually non-overlapping pointed intervals (1) 
in J fulfilling the conditions (2), (3). 

Proof. If (1) is any system of non-overlapping pointed intervals in J satisfying 
(2), (3), then we can complete Ix,...,lp by adding some intervals Ip+l, ..., lp + q 

so as to get a partition I1, ...,lp+q of J formed by mutually non-overlapping in­
tervals. If r(ln) < a for some n, then I" can be further subdivided into non-overlapping 
intervals I" with r(l") = oc. 

Finally, each interval I of the new partition which did not occur in the original 
system {I1, ...,IP] can be replaced by its (5-fine P-partition which is formed by inter­
vals I similar to I, so that r(I) = r(l) _ a. In such a way we arrive at a <5-fine P-parti­
tion of J including the given system (1) and to this P-partition Proposition 9 from [2] 
applies. 

Theorem 1. Let f be GV-integrable over J. Then (5) is a function of an interval 
I a J which is derivable at almost every x e J and its derivative coincides with f 
a.e. in J; in particular, f is Lebesgue measurable. If, moreover, the Lebesgue 
integral of f over J exists, then it necessarily converges and (6) coincides with (4). 

Corollary. For any non-negative real-valued function f on J, the existence of the 
GP-integral (4) implies the convergence of the Lebesgue integral (6) and the equality 
of both. 

Proof. Let us denote by F the function of an interval I c J defined by (5). Fix 
an arbitrary a e (0, 1) and O > 0 and consider the set 

MQ = {xeJ; ,Fa(x)^f(x)-2Q}. 

Admitting that the outer Lebesgue measure of MQ equals 2a > 0 we choose e > 0 
small enough to guarantee that 

(7) s < QG . 

Now let S be a gauge on J corresponding to e and a as in the above definition. As­
sociating with each x e MQ the system of all intervals I a J satisfying the conditions 

xel c B[x, S(x)] , r(l) = a , F(I)/volI ^ f(x) - Q , 

we obtain, as x runs over MQf a system of intervals which covers MQ in the sense of 
Vitali. By Vitali's covering theorem, there exists a finite disjoint subsystem of pointed 
intervals (1) satisfying (2), (3) such that 

V vol Ij
 = a . 

Employing the Saks-Henstock lemma we arrive at 

8 > X [f(xj) vol V - F(lj)] = Q £ vol IJ
 = QG 

J=I j=i 
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which contradicts (7). Thus each Me has vanishing Lebesgue measure and, in parti­

cular, the same is true for 

M^ = {xeJ; *Fa = -00} . 

By Ward's theorem (cf. [3], p. 139), F is derivable at almost all points in J\ M0.,, 

i.e. almost everywhere in J. We have seen that the derivative satisfies the inequality 

F' = / a.e. in J. 

Since / may be replaced by —/, we have F' = f a.e. in J which means that / is 

Lebesgue measurable (cf. Theorem (4.2) in [3], p. 112). 

If/ = 0, then the corresponding F is a non-negative additive function of an interval 

whose derivative F'( = /a.e.) is known to be Lebesguesummable (cf. Theorem (7.4)in 

[3], p. 119); consequently, (6) is convergent and coincides with (4). 

If/ is of variable sign and its Lebesgue integral exists, then at least one of the func­

tions/4" = max (/, 0),/~ = max (—/, 0) must have a convergent Lebesgue integral; 

let it b e / + . The equality/" = / + — /implies t h a t / - is GP-integrable and, being 

non-negative, must also have a convergent Lebesgue integral. 

As a consequence of Theorem 1 we get the following dominated convergence 

theorem for the GP-integral. 

Theorem 2. Let {/„} be a pointwise convergent sequence of GP-integrable func­

tions over J. If there exist GP-integrable functions g, h such that 

on J for all n, then f = lim/n is also GP-integrable over J and 

> Г / = liп 
Jj 

GP f = lim GP /.. 
J 

Proof. We know that all the functions fn — g _ 0 are Lebesgue summable and 

are dominated by h — g which is Lebesgue summable as well. As n -> 00,/, — g -> 

-* f ~~ 9 pointwise on J, whence it follows by the Lebesgue dominated convergence 

theorem that 

Gpf/„ - G P L = L [ (/„ - g) -> LI* (j - g) = Gpf j - Gpf g. 
JJ JJ JJ JJ JJ JJ 
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