
Časopis pro pěstování matematiky

Richard C. Brown; Don B. Hinton
Sufficient conditions for weighted Gabushin inequalities

Časopis pro pěstování matematiky, Vol. 111 (1986), No. 2, 113--122

Persistent URL: http://dml.cz/dmlcz/118268

Terms of use:
© Institute of Mathematics AS CR, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/118268
http://project.dml.cz


ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY 
Vydává Matematický ústav ČSAV, Praha 

SVAZEK 111 * PRAHA 30. 4 . 1 9 8 6 * ČÍSLO 2 

SUFFICIENT CONDITIONS FOR WEIGHTED 
GABUSHIN INEQUALITIES 

RICHARD C BROWN, University, DON B. HINTON, Knoxville 

Dedicated to Professor Jaroslav Kurzweil on the occasion of his sixtieth birthday 

(Received May 25, 1985) 

Let I = [a, co) be a ray. The purpose of this paper is to develop sufficient con­
ditions for the "product" inequality, 

(1) f N\/»\> <; KH w\yif'"[( P\/n)iJP/r 

or the equivalent "sum" inequality (with e arbitrary in (0, co)), 

(2) (N\/»\* = Kt L-pU+u*-i/p)f T W\y\*Y* + fi-«»-/-i/'+W j"P|/->|rY/ri , 

to hold. Here n is a positive integer, 0 iC j _̂  n — 1, 

(3) 1 g p, q9 r < oo , 

(4) !L*!Lll+it 
p q r 

(5) p = p(p) = („ -j - l/ r + \\p)\(n - 1/r + 1/q) , a = 1 - jB , 

and N, W9 P are positive Lebesgue measurable functions satisfying additional pro­
perties stated below. The (interrelated) constants K and Kj are independent of the 
functions y in a domain 2i on which the inequalities are defined, but they may depend 
on N, W9 P as well as on the numbers p9 q9 r9 n9j. Concerning j l e § we require 
only that the integrals involving IF and P exist and that y(n"1) be locally absolutely 
continuous on I. Thus (l)—(2) assert that J/N |y ( ; ) | p exists when the integrals on the 
right are finite. Further, although our method allows explicit calculation of K in (1), 
we do not concern ourselves with the determination of the least such K. 

Many special cases of inequalities (1)—(2) are well known. I f N = J V = P = l 
and p = q = r = 2oroo, then (1) is a function inequality of Landau type, see e.g. 
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[8]. The weighted case with p = q = r has recently been studied by Kwong and 
Zettl [8,9] , Goldstein, Kwong, and Zettl [6], and the present authors [2]. When 
p, q, r may be unequal but N = P = W = 1,(1) was established by Gabushin [3] 
in 1967 under the condition (4). Further results on (l) with unequal p, g, r and 
nonconstant weights were given by Kwong and Zettl [10] under the condition of 
equality in (4). 

In this paper we extend certain portions of [10] and [2] to allow inequality in (4) 
and a new class of weights N, W, P. In fact the weights we consider satisfy generaliza­
tions of the point and integral bound conditions in [2] for the case p = q = r. In 
particular an immediate consequence of Theorem 2 below is an easy derivation of 
Gabushin's original inequality. 

Gabushin's inequality is closely related in form though distinct from a family of 
one variable inequalities established by Nirenberg [5] (especially (2.2), p. 125; (2.7), 
p. 130) in preparation for a theory of multidimensional interpolation inequalities. 
See also Adams [1], Gagliardo [4, 5], Kufner, John, and Fucik [11], Triebel [16], 
Miranda [13], and Henry [7]. 

We use the notation ^ioc(I) to denote the Lebesgue measurable, complex-valued 
functions on / which are Lebesgue integrable over all compact subsets of /. 

In addition to the above we assume 

(6) N e &]oc(l); for q > 1, W~q'lq e J^loc(/) where \\q + \\q' = 1 and for q = 1, 

W'1 is bounded on / ; for r > 1, p - r ' ' r e J2?,oc(J) where Ijr + 1/r' = 1 and for 

r = 1, P"1 is bounded on / . 

(7) / is a positive, continuous, nondecreasing function on / . 
We define 

s/n = {y: j ; ( ; , ~ 1 ) is locally absolutely continuous on /} , 

$q = )y, y is measurable and 

%r =\yes/H:\ P | / " > | ' < c r 4 , 

W\y\q < ool, 

cf/VT 
and 

2 = £q n ^ r . 

Additionally we establish the following notation for a positive function z: 

{[sup {z(s)~1: t ^ s ^ t + sf(t)}]u if v = 1 , 

MO)"1 z~VlV\ if v>1 (1IV+ - > ' = ! ) • 

First we recall a result of [2]. 
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Lemma 1. For 0 ^ j_^ n — 1 there is a constant M, depending only on n and j 
such that if J = [c, d] c: I, te J, and y e jtfn, then 

(8) |/»(*)| <. ML'''1 f \y\ + L - ' - 1 ! \y™\ , 

where L = d — c. 

Lemma 2. Suppose (3), (6), and (7) ho/d a/id M /s as in Lemma 1. TAc« for 
tel, e > 0, )*e^, and se J, := [/, t + ef(f)], 

(9) |y(i)(5)|p = 2 ' " 1 | M " L7^+,/«> T™(IV) ( f IV|y|*Y * + 

+ LP(n-/-i/D ^ p ) / f p | /«) | 'Y / r l , 

where Lt = ef(t). 

Proof. Inequality (9) follows from (8) by applying Holder's inequality and the 
inequality (u + v)p ^ 2p_1(wp + vp) which holds for u, v ^ 0 and 1 g p < oo. 

Theorem 1. Suppose 1 ^ r, q, (5) —(7) ho/d, p ^ max {r, q} (this implies (4)), 
and 

(10) Rt : = sup {f(t)-p°'+1/«-1/p)N(r) T£«(PV)} < oo , 
feJ,0<£<oo 

(11) R2:= sup {/(0P("-J'"1/r+1/'')N(f)T^r(P)} < oo. 
fej,0<£<oo 

Then (1) holds for ye 9 if j", P|j;(n)|r * 0 with 

(12) K=K2:=2p max {2-"« M ^ ! , 2p/r R2} 

Proof. Fix e > 0 and set f0 = a, ti+1 = tf + 2f(/,) for i = 1, 2, Then by 
(9) with s = t, 

+ N(t) |>'0')(t)|p ^ 2""1 | A Í ' 8 - ' W + 1 ' « > / ( . ' ) - 1 * I ( f FF|y|«Y 

+ E^-- ř-^^/(O"1 * 2 ( f Pí/"'!')'''! • 

Next we integrate this inequality over [ti9 f i+1] and use the fact thatfnondecreasing 
implies 

^ / - ^ / ( ^ C I + I - ' I ) - -

to conclude that (note t e [ti9 f i + 1] implies Jt c: [*., f i+2]) 
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p/q 

+ 
ru+i c / rtt+2 y 

(13) N|/'>|' = (K\2)h-p/qE-p^+l/q-i/pU W\y\q\ 

a ti + 2 \Pln 

P|y(n)|r) I . 
Summing (13) over i and using the inequality £af = (Y,at)R which is vahd for 
ax;t 0 and R = 1, yields that 

(14) f N|yU>|* ^ (K/2) \l~p/q s~pU+ l/q~ l/p> f 2 f jViyi^y7' + 

+ 2-p/r Ep(n-j-l/r+l/p) U f p|j,00|'Y '1 . 

Now choose £ so that the two terms on the right of (14) are equal; this gives 

(is) cp(.--/r+-J«> = (r w\y\
qSs\lq( f Piy(n)irY/r. 

Substitution of (15) into (14) and simplifying gives (1). 

Corollary 1. / / in Theorem 1 W, P, and Pl/t\Wi/q are nondecreasing on I and 
NW-mp)l*p-pV-Kp))lr is nonincreasing, then defining f by fn~1/r+i/q = P1/r\Wi/q 

yields 

(16) Rl = R2= N(a) W(a)-pKp>/qP(a)-p^-Kp))/r < oo . 

Proof. Since W, P are nondecreasing the proof is immediate from TP,q(W) — 
= W(t)-p/q, Tp;r(P) = P(t)-p/r, and simplification in (10) and (11). 

Another case in which (10) and (11) hold is when TV and P are nondecreasing, 
f(t) = 1, and NW-p/q and NP~p/r are nonincreasing, e.g., if W(t) = t\ P(t) = f, 
and N(t) = t*, then these conditions reduce to (when a > 0), y > 0, a ^ 0, and 
<\)\p = min (a/r, y\q). The conditions of Corollary 1 require that y ̂  0, a = 0, 
tf/r ^ y\q, and 0/p ̂  y p(p)\q + a(l - j3(p))/r. 

Theorem 2. Suppose (3) —(1) hold and 

" + £/(') 
(17) S.:= sup ( / (O-^^ -^ /W]- 1 f,+ N)T™(W)\ 

fSJ,0<£<a>(. V it J J 

(18) S2:= sup (f(0P(-''-1/r+1/'')f[ef(0]-ir+£/(O^T/:''(P)l 
feJ,0<e<oo( \ J, ) J 

T/icn (1) holds for ye2>if$, P | / n , | r * 0 with 

(19) X = K3 := 2"{max M'S., S2} . 
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Proof. With t fixed, multiply (9) by N(s) and integrate over Jt; using (17)—(18) 
this gives 

(20) f N\yW\' <. 2""- ÍM> £~P(J+»/«--/')s. ( í W|jf \ 

+ eK»-.í-l/r+l/-)52 / f P|-r.W|'V/'l <. 

<. (X/2) i e - ^ + v . - ! / - ) / f FF|^|«y/€ + 

-J-l/r + l/,) / f P^wA" 7 ' ! . 

p/ч 
+ 

p(n-j-i 

Fix a compact interval [a, c]. We want to cover [a, c] with intervals Jt chosen 
so that the two terms on the right of (20) are equal. To make this possible, let 5 > 0 
and h(t) be a positive continuous function such that J7 h < oo. From (20) we have 

(21) f N\yU>\* = (Kj2) jfi-*1+*/*-i//>) / f ~w\y\q + sliA
P/* + 

+ eP(n-j-l/r+l/p) ( f p l / ^ k Y ' i . 

Set t0 = a. Choose t1 = t0 + e1f(t0) so that with t = r0, 2 = ex, the two terms on 
the right of (21) are equal. This is possible since the second term varies from 0 to oo 
as e varies from 0 to oo (recall p _ min (r, q) by (4)); the first term goes to 0 as 
8 -> oo, and as e -* 0, it is bounded below by ce~^+ 1 where c is a positive constant. 
The term e"pJ+1 either does not tend to 0 as e -> 0 (j > 0) or tends to zero more 
slowly than the second term which is o(8p(n"J"Ur+Up)). With this choice of s9 (21) 
becomes after simplifying 

Pd-ß(p))/r r-i / ru \pP(p)/q / rti \ 

(22) j N\y^\^K(\ [W\y\" + Sh]\ (J P\y^\ 

Now choose 2 = e2 so that with t = r2 and f2 = tt + £2./Vi)>tne t w o terms on the 
right of (21) are equal; inequality (22) results with [t09 tx] replaced by [tl9f2]. 
Continue this process. Calculation of equality of the two terms on the right of (21) 
for t = tt shows that 

(23) fip(-i/r+i/-i) = / f -w\y\* + &h]\P,ql( f P\y(n)\r\/r ^ 

If the sequence {tt} constructed above satisfies t( < c for all /, then (23) yields a con-
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tradiction since the right of (23) when divided by zPlq tends to oo as i -• oo while 
the left side remains bounded. Thus there is an n such that tn = c. 

Summing for i = 1,..., n we get 

Pß(P)/q / fti 
' " {P(í-ß(p))/r 

re n / /V| \PP(p)/q / rti \ 

(24) \N\y">\^K£(\ [W\y\< + 6h]\ (J P|/->|'\ 

A calculation using (4) and (5) shows that 

P P{p)lq + p(l - P(p))lr = 1 I 

hence by Jensen's generalization of Holder's inequality [14, p. 52], 

pfi(p)/q / n rti \Pd-P(p))/r 

< 
re / n MÍ \pp(p)/q / n rtt \ 

(25) j J V | / * | ' Š K ( S ; J [w\y\< + óh]\ ( s j p|/n)M 

a \pP(p)/q / r \J 

w + <5hv) (jp|/n)h 

vPí3(p)/€ / /• \P(l-P(p))/r 

Since c and o* are arbitrary in (25), the proof is now complete. 
Note that with N=W=P = lin Theorem 2 we may take f(t) = 1 to obtain 

Sx = S2 = 1; thus an alternate proof of Gabushin's inequality is obtained. 
We remark that if (1) holds on rays [a, oo) and (— oo, a], then application of 

Jensen's inequality as in the above proof shows that (1) holds on ( — oo, oo). Thus 
the (—oo, oo) case is subsumed in the case of rays. 

We recall the following result of Kwong and Zettl [10, Theorem 3] which will 
required for our final weighted generalization of Gabushin's inequality. 

Lemma 3. Suppose —co<^a<b = oo9 p'9q' satisfy 1 < p'9 q' and ijp' + 
+ ijq' = 1, and s is a non-negative function such that sp' and s~q' are integrable 
on [0, T] for allT> 0. Define 

u(i) = f sp', v'кt) = f s~q' for t = 0 . 
Jo Jo 

If for some non-negative functions f, g9 h there is a constant C such that 

jy«(j/ra:--r 
for all ce (a9 b)9 then for all ce [a9 b)9 

rb / rb \i/p' / rb \ 

j/"sc(J>>) M 
for any nondecreasing non-negative function fi on (a, b). 

US 
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Theorem 3. Suppose (3) —(7) hold, p ^ max {q, r}, 
(i) W, P, N, Pl'r\Wllq are nondecreasing, 

(ii) NW-pip(Pi)/q p-Pid-MpOVr is nondecreasing where 

p1 := max{q, r} , 
and 

(iii) Tfwre is a number c such that p'c + 1 > 0, 1 — q'c > 0 and WJN*'0*1 > 
P/JV1"9'0 are nondecreasing where 

p' = qjPo P(Po) > i' = rIPo(l - P(Po)), and p0 : = n( J- + J-\ . 

Then there is a number K so that (l) holds for all y e 2i. 

Proof. We také the čase q ^ r; the r < q čase is similar. Then q ^ p0 ^ p ^ 
^ /?! = r. From (i) —(ii) we háve by Corollary 1 and Theorem 1 that for ye@, 

Í
f r \rP(r)/q / f \ 1-0O) 

N\yM\'šK2n W\y\q\ M P\/*\'\ 
Notě that from (i) above we háve that / j P ^ 0 0 ! ' = 0 implies that J7 N\yU)\p = 
= fi W\y\* = 0. 

Define # = 1, j ^ = WJNp'c+\ and P = P/N1'^. Then with/(ř) = 1 and p = />0, 
we apply Theorem 2 to obtain for y eQ) and a < c < oo, 

foo / f oo \PoP(Po)/q / fco \Po(l-P(Po))/r 

(27) I |y»|<*g£3M %|«j ( I i>jf">|'j 
where 

K3 = 2P0 max {MPo í^(c)-po/ í, P(c)-po/r} ^ 

^ 2P0 max {MP0 Wr(a)'Poíq, P(a)"Po/r} := K3 . 

A calculation shows ljpr + l/g' = 1; hence Lemma 3 applies with s(t) = ť and 
/i = N. Since u(í) = tp'c+íl(p'c + 1) and i?(f) = tl~q'c\(i - q'c) this gives for y e § , 

f / C \PoP(Po)/l / r \ P o ( l - ^ ( P o ) ) / r 

(28) JVl^ l" £ K* M W|j,|«J / P|/->M 

where X 4 = K3/(p'c 4- I)w>««>>/«(1 _ 9'cy*(i-*<»))/«•. We set K5 = max {X2 ,X4} 
and apply Lyapunov's (interpolation) inequality [12, p. 459] to Jf iV|>>0)|p and then 
use (26) and (28). This gives 

(r-p)f(r-po) f (* \(p-Po)/(r-p0) 

< 
r / r \ ( r - p ) / ( r - p o ) / /• \ l 

N | / J ) | p ^ j N\yu)\pA ( N\yW\'\ 

[ / C- \PoP(Po)/q / r \ Po ( l - ^ (Po ) ) /H< 
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r / r , . v ^ ' / r \(--/w)-i(p-po)/(r-po) /r v - / r \ J -

where 

j = Po P(Po) (r - P) r jg(r) (p - p0) 

4(r ~ Po) «(>* - Po) 

with a similar expression for A2. A lengthy calculation shows that 

*i = Pp(p)lq, A2 = p(l - p(p))jr ; 

thus the proof is complete. 
As an application of Theorem 3, we apply it to the case 

(29) N = r*, w=n, p = r 

where F is a positive, non-decreasing function on /. Condition (i) of Theorem 3 
holds if 

(30) 0 = a,tf>,y, y / q ^ a / r , 

and since p fl(p) and p(l — f}(p)) are nondecreasing with respect to p9 (ii) holds if 

4> - [Po P(Po) y\q + Po(l - J8(PO)) a/r] = 0 

which is equivalent to 

(31) <t>IPo = A := J8(P0) 7/? + (1 " /fao)) a/r . 

Condition (iii) of Theorem 3 requires p'c + 1 > 0, 1 — q'c > 0 and 

(32) #£y/(p 'c + l ) , * £ «/(l - 4'c) 

We choose c by making the right sides of (32) equal; this results in 

c = (y - a)/(ap' + yq') 
and consequently 

p*c + 1 = p'y + yg/ = y W + W = J L > o 
ap' + yq' a\q' + y\p' p0A 

after substitution. Thus with this choice of c, p'c + 1 > 0, 1 - q'c > 0, and (32) 
is equivalent to (31). We summarize these calculations as 

Corollary 2. Suppose (3), (4), (5), (29), (30), and (31) hold. Then there is a K so 
that (1) holds for all ye®. 

Note that (30)-(31) hold for 4> = a = y = 1 if r = q so that (1) is 
p , r / • "|j»p*(p)/fl r f -iP(i-/J(p))/r 

jr|^)|^xrrr|>-H [J-IJ^N 

which is a generalization of the Gabushin inequality in the r ^ q case. 
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For T(t) = t in (29) and / = [a, oo), a > 0, we now derive a necessary condition 
for (1). Suppose (1) holds for all j> e .^. Let i/> e C% be such that \j/(0) = 1, ̂ (k)(0) = 0 
for k _ 1, and ^k\\) = 0 for k _ 0. Define 

" a , a < * < T 

.VГÍ0 = fт> Ѓф - ) , T < í < 2 T 

0, 2T < í 

where 5 is chosen so that each of 5 — n, <j> + (S — j) p, y + qS, and a + (8 — n) r 
are positive. Then yTsQ) and calculations show there are positive constants m and M, 
independent of T, such that 

(33) pNlyW _ m(T* + (5-;>+1 - fl*+«-J>*+i) , 

V|j>r|«_ MT7+qS+1 , Í 
І P\y^\r <. MT"+HS~n)+1 . 

From (1) and (33) we conclude, since Tis arbitrary, that 

(34) (j) + (8-j)p+l^(y + q8+ l)pfi(p)lq + 

+ (a + r(8 - n) + 1) p(l - f}(p))Ir. 

After simplification, (34) becomes 

(35) <Mp^yP(p)lq + «(l-(}(p))lr. 

When (30) holds and p _ max {q, r}, Theorem 2 implies that (35) is a sufficient 
condition for (1). For p = p0, (35) is equivalent to (31). We conjecture that when 
(29)—(30) hold, (35) is also a sufficient condition for (1) in the range p0 < p < 
< max {q, r). At present however we are only able to establish sufficiency for the 
somewhat stronger hypothesis (31). 

Clearly if (1) holds for N(t) = t*° on [a, oo), a > 0, it also holds for N(t) = t+ 
with <f> _ 0O since t^jt* is bounded below. An open question when (29) holds is the 
determination of what negative values of 7 and a will imply (1) under the Gabushin 
condition (4). 
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