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Časopis pro pěstování matematiky, roč. 111(1986), Praha 

CARDINAL ARITHMETIC OF A CERTAIN CLASS 
OF MONOUNARY ALGEBRAS 

JIRI NOVOTNY, Brno 

(Received November 1, 1983, in revised form October 5, 1984) 

1. INTRODUCTION 

In the thirties Birkhoff [1], [2], [3] defined and studied three operations on the 
class of partially ordered sets: the cardinal sum, the cardinal product and the cardinal 
power. Many authors considered properties of these operations — see for example 
M. Novotny, Fuchs, Jonsson, McKenzie [4], [5], [6], [7], [8] — even on other 
structures (e.g. Tarski [9]), among them monounary algebras. Marica, Bryant [10] 
studied the cancellation law for multiplication and Simersky [11] proved the basic 
rule for exponentiation. Hyman [12] described the group of automorphisms on an 
arbitrary monounary algebra. This description was used by Hyman and Nation 
[13] for constructing groups of automorphisms on a monounary algebra provided 
these groups belong to some special classes. Some properties of the group of auto
morphisms on a monounary algebra are also mentioned in Jonsson [14], 

This paper is concerned with the cardinal arithmetic of a natural class of monounary 
algebras. Further, we consider endomorphisms and automorphisms on an arbitrary 
algebra of the given class of monounary algebras. 

2. BASIC NOTIONS 

The cardinal number of a set M is denoted by the symbol \M\. 
The ordered pair A = (-4,f), where A is a set and f a mapping of A into itself, 

is called a monounary algebra. 
We put f° = id A, fn = ffrt-1 for any positive integer n. 
For arbitrary x, y e A, we put (x, y) e QA iff there exist nonnegative integers p, q 

such that fp(x) = fq(y). 
Clearly, QA is an equivalence on A. Each class of the equivalence QA is called 

a component of the algebra A. 
If A has exactly one component, then it is said to be a connected monounary 

algebra. 
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The set [x e A; there exists n(x) > 0 such that fn(x\x) = x] is called a cycle of 
a connected algebra A. 

If A = (A,f), B = (B, g) are monounary algebras, then a mapping q>\ B -• A 
is said to be a homomorphism of B into .A iff (p(g(x)) == f(<p(x)) for each xe B. 

Horn (2?, y*) denotes the set of all homomorphisms of B into A. 
The bijective homomorphism is called an isomorphism. We write A = B if there 

exists at least one isomorphism of A onto B. 
To any algebra A, we can assign an algebra t(A) isomorphic to A such that A £ B 

implies t(A) = t(B). The algebra t(A) is called the type of the algebra A (compare 
[15] axiom VIII). 

We shall study the class of monounary algebras which includes the empty set and 
the algebras consisting of a finite number of components, each being a cycle. This 
class is denoted by the symbol 91. 

The type of empty algebra is defined to be 0, the type of any which is a cycle of k 
( > 0) elements is denoted by k. 

3. SUM AND PRODUCT 

1. By the sum A + B of two algebras A = (A,f), B = (B,g)e% A n B = 0, 
we mean the algebra C = (C, h) such that C = Au B, h = fu g. 

2. By the product A . B of two algebras A = (A,f), B = (B, g) we mean the 
algebra C = (C, h) such that C = A x B and h(a, b) = (f(a), g(b)) for any 
(a, b) e C. 

3. The operation of addition is commutative and associative. The operation of 
multiplication is commutative and associative and distributive over addition. 

4. If a is the type of an algebra A, /? the type of an algebra B, then provided 
A n B = 0 we define the sum of types a + /? to be the type of the algebra A + B. 
Further, we define the product of types a . /? as the type of the algebra A . B. 

The operation + and . for types are, clearly, commutative and associative. This, 
above all, provides the possibility of making sums and products of a finite number 
of types. 

Let n > 0, k > 0 be integers. The type of an algebra consisting of n cycles each 
having k elements is denoted by nk. 

We have, of course, 0A: = 0. 
Thus, the type of a nonempty algebra A e 91 can be expressed in the form of a poly

nomial atl + a22 + ... + ann, where n is the cardinality of the largest cycle of the 
given algebra A, an =t= 0. 
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If p > n and we put a{ = 0 for n < i ^ p, the same type can be expressed in the 
form ax\ + ... + app. If a + 0, a = ax\ + ... + ann, where an =f= 0, we say that the 
type is expressed in the canonical form. Clearly, any type which diners from zero 
has exactly one canonical form. 

5. For any integers m, n > 0 we have 

m. n = g.c.d.(m, n) l.c.m.(m, n) , 

where g.c.d. means the greatest common divisor and I.cm. the lowest common 
multiple. 

Proof. Let M = (M,f), N = (N,g), where M = {al9a2, ...,am},f(a) = ai+1, 
1 = i < m,f(am) = aly N = {bu b2,..., bn), g{bj) = bj+1, 1 = j < n, g(bn) = bx. 
The product M . IV will contain the elements (ah bj), I = i = m, 1 = j = n and 
its operation h satisfies 

r(ai+1,bJ + 1) for i<m, j<n, 

(<*\, bJ+1) for i = m, j < n , 

(ai+1,bx) for i < m, j = n, 

(ai> ^i) f° r i — m , j = n . 

h{ah bj) = 

Clearly each element (ah bj) lies in a cycle whose number of elements is l.c.m.(m, n). 
Since the number of elements of the product considered is m.n and m.n = g.c.d.(m, n) 
l.c.m.(m, n), the type of M . IV is g.c.d.(m, n) l.c.m.(m, n). • 

If at least one of numbers m, n is equal to zero, then, clearly, m . n = 0. 

6. By induction we can prove: For any integers i1. i2,..., ik > 0 we have 

• • • i\ . ^2 ••• ^k r• • • ~j 
l\ • li ••• h — p—: r̂ -j L 1 ! ' *2> •••> h] •> 

\}\-> ^2> •••» h] 

where [il9 i2,..., /fc] denotes the l.c.m. of iX9 i2, •••, ik-

7. The class 2t is closed with respect to addition and multiplication. 
In more detail: If t(A) = at\ + a22 + ... + amm,t(B) = bt\ + b22 + ... + bnn, 

then we can write t(A) = ax\ + ... + app, t(B) = bx\ + ... + bpp, where p = 
= max (m, n). Then 

t(A+B) = Z(aк + Ьк)к 

and 

p 

z 
fc=i 

t(A.B) = ^ X fl.Ь, ö.c.d.(i,;) Le.m.(Џ). 
f = l 7 = 1 
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8. Since any algebra of the class $1 has the uniquely defined type in the canonical 
form, it is clear that the following cancellation law for addition holds: 

A + B =- A + C implies B =• C. 

The cancellation law for multiplication: 

A . C =" B. C implies A ^ B 

holds only for connected algebras A, B, Ce 2t. 
This is a direct consequence of 3.5. 
The simplest example of its failure in the general case is the following: 

Let A be a two-cycle algebra and B the sum of two one-cycle algebras. In this case 
A . A =- B . A and A % B. 

Marica, Bryant [10] proved that 

A .A i= B. B implies A s B 

for any finite monounary algebras A, B. 

9. If a is the type of an algebra from the class 5t, a 4= 0, then we define a0 = 1, 
aw+1 = a*a for an arbitrary nonnegative integer n. 

4. POWER 

1. By the power of the base A = (A,f) with the exponent B = (B, g) we mean 
the algebra C = (C, h) such that C = Horn (B, A) and h(cp) = cp . g for each 
cpeC. 

2. Simersky [11] proved the following result: If A, B are connected algebras such 
that Horn (B, A) * 0, then AB ^ A. 

3. It can be proved that exponentiation satisfies similar rules as in arithmetic: 

AB+C^AB.AC, (A.B)C^AC.BC 

for arbitrary A, B, Ce 9t. 

Proofs are analogous to those for ordered sets. If we denote R = £ -#,-, these 

formulas yield by induction 

A* s n ^ , ( n ii,)1 s n f̂ 
Igjgn l%i^m l^i^m 

for arbitrary _4, Ah Bj e 21, m = 1, n ^ 1, 1 g i ^ m, 1 S j =" "• 
Further, we have: (^ + B)c ^ Ac + Bc for /*, J?, Ce % C connected. 
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Proof. Since C is connected, we have Horn (C, A + B) = Horn (C, A) u 
u Horn (C, B). The union is disjoint because C is mapped either to A9 or to A 
This implies the assertion. • 

We can prove by induction that 

( Z Aif = £ ^f f o r w - l , arbitrary ,4,, 

1 ^ i !g m, C connected. 

4. If a is the type of an algebra A9 /? is the type of an algebra B, then we define 
the power of the types at? to be the type of the algebra AB. 

Clearly, we have 1* = 1 for any type a . a0 = 1, 0* = 0 for any a 4= 0. 

5, Any integers m, n > 0 satisfy 

Í0 if rø^n, 
"̂  \m if m / » • 

Proof. Let t(M) = m, r(/V) = n, then Horn (IV, M) + 0 iff m is a divisor of n. 
The assertion follows from 4.2. • 

6. For any integers a, b, m,n, >0 we have 

ramVb">-í° if mJí"' 
(am) ~\abmb-l

m if т / и . 
Proof. 

( a w ) N = (aii i) ( - + B + - + " ) = (am)" . (am)n ... (am)", 

where the dots indicated that the term repeats b-times. Now, if m is not a divisor 
of n, we obtain 0 and otherwise (am)*. The assertion follows by induction with respect 
to b. U 

7. The class 21 is closed with respect to exponentiation. In more detail: We 
transform 

( f l l l + a22 + ... + flMm)<M + M + ... + »-> 

to the canonical form. 
Let us proceed via 4.3 and 4.6 in the following way, denoting S = ( £ bjj) 

( z a/f = n ( z ««ow = 
l ^ i g m l^j^n l£i£m 

- n a z - w = n ( z «#' • 
'VI 

Put: D(f, m) = {i; 1 ^ i 'g m, 0'}. We are to compute ( £ a,i)*'. 
isDU,m) 
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Let D be a finite nonempty set of positive integers. We prove that for k > 0, 

(!>.'?= z «...-.«.tf
A^i[-i....,y. 

ieD ii...ikeDfc L'-> •••>**J 

The proof will proceed by induction with respect to the exponent k. The formula 
clearly holds for k = 1. Let us admit that it holds for some k and let us compute: 

(i-vrwz-#(.£-«-)-
ieD izD ieD 

= ( Z, -. . . .•a f c F^ :4-[ ' i . . . . .4]) .(I-«i)-
VV-ikCD* L*->--->**J / f'eD 

= ( I A|, '•• *ik • «lk + , r-
11'"1*! t'1' •••' 'J ) í fc+ l — 

Z
l \ ••• **+l r- ; T 

' a i , •••fl*k+, p: :—=: L f i ' •••» ffc+iJ • 
i1...ik+,€D'c + l L*l>--'>**+lJ 

Thus, the formula is proved. In the case k = 0, the result is 1 by 3.9. 
We write the result in a better arranged form. Clearly, i\ . . . ik is a word from the 

set Dk = D x D x . . . x D. Now, a can be considered as the mapping which assigns 
at = a(i) to any i e Z>. Then afl . . . aik = a ^ ) . . . a(ik) = a(w) can be considered 

as the image of the word w. Moreover, let us put [w] = \iu . . . , i j . Then we can 
write 

(£*,.?= Z « M ^ M , 
ieD weDk LWJ 

where w denotes at the same time also the unmultiplied product formed by the 
elements of the word w which can be dealt with as a word. 

The above mentioned relation includes also the case k = 0 if to the usual con
ventions for the empty chain we add another one, \A\ = 1. 

Thus, if we return to the beginning, we have 

( z «.«T= n ( z ^ n w ) 
l ^ i ^ m l^jšn\weDbjU,m) [W] ) 

= w^Tu-m) a(w.) . . . a(wn) W*"'™' [ „ ,J . . . [ w j . 
mjsn [wj...[wj 

If we put here W = wt... w„, then We Db,(l, m) . . . DK(n, m) and atyi) . . . a(wB) 
can be denoted by a(W). Further, 

["J... W = fT^]-':4Hi -M» •••• -"J- b*3-6' 
[[wj,...,[wj] 
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thus we obtain 

( I -Jf-

Z <W) - W [[w.],..., [wj] . 
WeD>i(l,m)...D*>n(n,m) LL^-J' * *> LW»JJ 

Now, evidently, JV = wx ... w„ and each vv,. is a word from Db-/(I, m). We put 
[JV] = [ [wj , . . . , [wj]; clearly, it is the least common multiple of all elements 
contained in wu ..., wn. Then we can put 

( £ *.<?= I -Wr^-*--
l S . S m HpcDbi(l,m)...I>,>R(nlm) x 7 [ITJ 

8. The computation of a power is illustrated by the following example: 

(32 + 23 + 45 + l6)<34+26) = 

= (32 + 23 + 45 + 16)34. (32 + 23 + 45 + 16)2< = 

= (32)3 . (32 + 23 + 16)2 . 

(32)3 = 33222 by 4.6. 

(32 + 23 + 16)2= £ «(W)-^-M>, 
>TeD2(6,6) [ w j 

D(6, 6) = {1, 2, 3, 6} , w = tki2 , 

D2(6, 6) = {(1,1); (1,2); (1,3); (1,6); 

(2,1); (2, 2); (2, 3); (2,6); 

(3,1); (3, 2); (3, 3); (3,6); 

(6,1); (6, 2); (6, 3); (6, 6)}, 

a(l) = 0, a(2) = 3 , a(3) = 2 , a(6) = 1, 

{a(w); weD2(6,6)} = {0 ;0;0;0; 

0; 3 .3; 3 .2; 3 .1; 

0; 1 . 3; 1 . 2; 1 . 1}, 

{[w]; weZ)2(6,6)} = { l ;2 ; 3; 6; 

2; 2; 6; 6; 

3; 6; 3; 6; 

6; 6; 6; 6} . 

Thus 
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I <^M = 3.372 + 3 ' 2 T 6 + 

weD2(6,6) \Wj 2 6 

-. «2. 6 , _ - 3 . 2 - _ - 3 . 3 - - ..3.6, 
+ 3 . 1 6 + 2 . 3 6 + 2 .2 3 + 2 . 1 6 + 

6 6 3 6 
-. o . 6 . 2 , . - 6 . 3 , , « 6.6 , 

+ 1 . 3 6 + 1 .2 6 + 1.1 6 = 
6 6 6 

= 2 . 322 + 2233 + 2 . 3 . 76 . 
Together, 

(32)3 . (32 + 23 + 16)2 = 33 . 222(2. 322 + 22 . 33 + 2 . 3 . 76) = 
= 24 . 352 + 24 . 346 + 24 . 34 . 76 = 24 . 352 + 27 . 346 . 

9. For exponentiation the cancellation law for exponents: 

Ac £ Bc implies A s B 

holds only for connected algebras A, B, Ce 21 such that Hom(C, A) + 0. Indeed, 
then A s Ac s -9C .= -9. 

For disconnected algebras the law does not hold in general. For example: 

(2 + 3)4 = 24 = 2 , (2 + 5)4 = 24 = 2 

and at the same time 2 + 3 + 2 + 5. 
The cancellation law for bases: 

AB s Ac implies B s C 

does not hold even for connected algebras. 
Indeed, AB ^ A whenever Horn (B, A) # 0. 

5. ENDOMORPHISMS AND AUTOMORPHISMS 

A homomorphism of A into A is called an endomorphism. End A denotes the set 
of all endomorphisms of the algebra A = (A,f). 

1. Let A e 21, t{A) = atl + a22 + ... + amm. Then 
m 

|EncM| = n(E j-«,)0 ' . 
*=i ili-

Proof. By 4.7, denoting T = £ a î we have 

( I «iOT- I -(*)j5j[»']. 
I S i S m Hr€D«l(l,m)...D°m(m,m) |_KKJ 
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Thus, the number of endomorphisms is 

£ a(W).W= n ( S «(w).w) = 
WeDai(l,m)...Danx{m,m) 1 Zi^m weDai{i,m) 

n ( i a,1...<w1...L.)= n (Zj.^r-n 
- _i *^ w Ji...JateDbJ(i,m) lZi^m j/i 

An isomorphism of ^ onto y4 is called an automorphism. Aut A denotes the set 
of all automorphisms on the algebra A. 

2. Let A e 21 be such that t(A) = atl + a22 + ... + amm. Then an arbitrary 
automorphism F of the algebra A can be expressed in the form 

F = ň /. ( 1 ) . . . .wy 
Í=I Vo[ . . . ol

ai ) 

where <rt is a permutation on the set {1,..., at} of /-element cycles, which expresses 
that the fc-th component is mapped onto the (7,:(fc)-th component of the algebra A 
by the automorphism F, and where ol are numbers from the set {0, 1,..., i — 1} 
expressing the rotation of these cycles with regard to identity. This form is called 
the canonical description of the automorphism. 

3. By 5.1, taking into account that any endomorphism of a connected algebra 
A e 2f is an automorphism, we obtain: 

Let A E 21 be a connected algebra. Then 

|Aut_4| = \EndA\ = |A | . 

4. For any integers m,n9a> 0, m 4= n, we have 

a) 
b) 

Aut (m + n)\ = m . n, 
Aut(am)| = a\ma. 

Proof, a) follows from 5.3. An arbitrary automorphism of the algebra A whose 
type is t(A) = am, has the canonical description 

\o. . . . oa j 

(Compare 5.2.) Thus, for a fixed d, we obtain ma words of the form ot . . . oa 

(0 ^ ot ^ m — 1); the number of permutations a is a\. Hence, we obtain the as
sertion b). • 

5. Let A e 21, t(A) = a{L + a22 + ... + amm. Then 

< = i 
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Proof. An arbitrary automorphism of the algebra A can be expressed in the 
canonical form 

MU -<•) 
(Compare 5.2.) Now, the assertion follows from 5.4. • 

6. CONCLUSION 

The studied arithmetic is the simplest extension of the usual arithmetic of natural 
numbers for the special class of monounary algebras. In the case when the algebra A 

consists of m and algebra B of n one-element cycles, the operations m + n, m . n 

and m" have their current sense and the numbers |End m\ and |Aut m\ reach well-
known values. 
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