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ON SOME PROPERTIES OF TRIGONOMETRIC MATRICES

ONDREJ DoSLY, Brno
(Received August 15, 1984)

Summary. By investigation of selfadjoint linear differential systems of the second order the
trigonometric matrices seem to be very useful tool. These matrices are defined as the matrix
solutions of differential system

Y= 0x)Z, Y0)=0
Z'=—-Q0x»Y, ZO0)=E,
where Q(x) is a symmetric n X n matrix and E is the n-dimensional identity matrix. The trigono-
metric matrices satisfy some identities which are in the case n = 1 identical with the elementary
trigonometric identities.
In the present paper there are proved another properties of trigonometric matrices which

generalize the properties of the sine and cosine functions and the sets of singularities of these
matrices are investigated.
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1. INTRODUCTION

Let us consider the matrix differential system

(1.1) Y= 0(x)Z
Z =-0(x7,

where Q(x) is an n x n symmetric matrix of continuous functions on an interval
I = [a, ®). We denote by {S(x), C(x)} the pair of n x n matrices satisfying (1.1)
and the initial condition S(a) = 0, C(a) = E, where E is the n x n identity matrix.
This pair of the so called trigonometric matrices was introduced by Barrett [2] and
used by himself, Reid [7], Etgen [5], [6] and others in order to study the selfadjoint
matrix differential system

(12) (Fx)Y)Y +G(x)Y=10

by means of the generalized Priifer transformation. Another method of investigation
of systems (1.2) involving trigonometric matrices was introduced by the author
in [3] and [4]. :
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Etgen [5], [6] showed that the pair of matrices {S(x), C(x)} has many of the
properties of the sine and cosine functions. He also proved that if the matrix Q(x)
is positive definite, then the oscillatory behaviour of {S!x), C(x)} is analogous to

that of {sinj q(s) ds, cosJ q(s) ds} , where g(x) is a positive continuous function.

The aim of the present paper is to establish further oscillation properties of trigono-
metric matrices and to extend the well known formulae

(1.3) sin (x £ y) = sin x cos y + sin y cos x,

cos (x + y) = cos x cos y F sin x sin y

to the trigonometric matrices.

2. THE SUM FORMULAE

Barrett [2] has shown that.the matrices S(x), C(x) satisfy the identities
(2.1) ST(x) S(x) + CT(x) C(x) = E, ST(x) C(x) = C"(x) S(x),
S(x) S™(x) + C(x) C(x) = E, S(x) C'(x) = C(x) S™(x),

where (T) denotes the transpose of the matrix indicated. Etgen [6] introduced the
following double angle formulae.

Theorem A. Let a pair of matrices {Y(x), Z(x)} be the solution of the matrix
differential system

(2:2) Y= Q0(x)Z+2Z0Q(x), Y(a)=0
Z'=-Q(x) Y- YQ(x), Z(a)=E,
where Q\x) is a symmetric n X n matrix. Then the following identities hold:
Y(x) = 28(x) CT(x), Z(x) =C(x) C™(x) — S(x) S™(x),
Yi(x) + Z¥(x) = E, ¥Y(x)Z(x) = Z(x) Y(x),

where {S(x), C(x)} is the solution of (1.1). Moreover, both Y(x) and Z(x) are sym-
metric on 1.

Proof. See [6].
In the sequel, let {S(x), Ci(x)}, i = 1, 2, be solutions of the matrix systems

(2.3) S; Qix)Ci, S{a) =0,
G _Qi(x) Si, Ci(a) =E,

where Q.-(x), i = 1, 2, are symmetric matrices of continuous functions. We set
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S.+(x) = S(x, @y, 0z, +) = Syi(x) Ci(x) + Cy(x) S3(x),
S_(x) = S(x, 0y, @z, =) = Sy(x) C3(x) — Cy(x) S3(x),
C.(x) = C(x, @y, @3, +) = Cy4(x) C3(x) — Sy(x) S3(x),
C_(x) = C(x, Qy, Q2, —) = C4(x) C3(x) + Sy(x) S3(x) .
These formulae imply

S(X, 04, 0,, +) = ST(x, 03, Oy, +) s

C(x, Q;, Q,, +) = CT(xs 05,04, +) s

S(xa 04, 03, —) = ‘ST(xa 03, 01» —) s

C(x, 01, 05, —) = Cr(x, 03, 04, —) .

Hence we see that the matrix S(x, Q,, Q,, —)is “odd” and the matrix C(x, Q,, Q,, —)
is “even”.

Setting Q,(x) = Q,(x) = Q(x) in the part “+ of the following sum formulae
for trigonometric matrices, we obtain Theorem A.

(2.4)

Theorem 1. The pairs of matrices {S.(x), C,(x)} and {S_(x), C_(x)} are solutions
of the differential systems

(2.5)+ Y = Q4x)Z+ ZQy(x), Y(a) =0,
Z' = —Qyx)Y—YQy(x), Z(a)=E,
(2.5)- Y’ 0i(x)Z = Z Qy(x), Y(a) =0,
Z' = —-0x)Y + YQ,(x), Z(a)=E,

respectively, and satisfy the following identities:

(2.6)+ S+(x) ST(x) + C4(x) Ci(x) = E, S.(x) Ci(x) = Cy4(x) SL(x),
ST(x) S4(x) + CL(x) Co(x) = E, Si(x) Ci(x) = Ci(x) S4(x),
(2.6)- S_(x) ST(x) + C_(x) CL(x) = E, S_(x)CL(x) = C_(x) SL(x),
ST(x) S_(x) + CL(x) C_(x) = E, ST(x)C_(x) = CL(x)S_(x).

Proof. All relations and identities of the theorem can be verified by a direct
computation which we will not carry out here.

3. OSCILLATORY PROPERTIES
Let n = 1. Then S(x) = sin ij(s) ds, C(x) = cosJ.xQ(s) ds, S(x, @3, 05, +) =
= sinJ‘ (Q1(s) = Qa(s)) ds, C(x, 01, Q25 +) = cosJ.x(Q‘(S) + Q,(s)) ds. If Q(x) >
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> 0, the oscillatory properties of these functions follow from the well known proper-
ties of the sine and cosine functions.

To establish the oscillatory behavior of S.(x), S_(x), C.(x), C_(x) in the case
n > 1, we shall use the technique similar to that used by Atkinson in [1]. The matrices
Qi(x), i = 1,2, are supposed to be positive definite on I.

Let us denote G(x) = (C,(x) + iS,(x))(CL(x) + iSL(x)), H(x) = (C_(x) +
+ iS_(x)) (CT(x) + iST(x)), i* = —1. According to (2.6) both matrices are unitary,
ie. G7'(x) = G*(x), H '(x) = H*(x), where (*) denotes the conjugate transpose
of the matrix indicated. Consequently, their eigenvalues lie on the unit circle in the
complex plane.

Lemma 1. The eigenvalues of G(x) move along the unit circle in the positive
direction as x increases.

Proof. Let xo €I and let ¢ be such that det (e” — G{x,)) # 0. As the matrix G(x)
is continuous, there exists ¢ > 0 such that e’ is not an eigenvalue of G(x) for x e I, =
= (xo — &, xo + &). Let A(x) = i(e’ + G(x)) (e’ — G{x))~*. By a direct calculation
we can verify that A(x) is hermitian, i.e. 4*(x) = A(x), and A(x) = 2ie"(e" -
— G(x))™! — iE. Calculating 4'(x), we have A’ = 2ie"(e"" — G)™! G'(e" — G)™! =
= —2ie"(e" — G)~! G'Gre (e — G)*"1 = —2i(e’" — G)! G'GH(e" — G)* L.

Denote G, = (C, + iS,), G, = (C} + iS}). Then G, G, are unitary,

(3-1)1 G = i(Ql(x) G, + G, Qz(x)) s
(3.1); Gy = i(Q2(x) G, + G, 04(x))

and G'G* = (GG, + G,G)) G5G{ = i(Q,G, + G,Q,) G,G3Gf + iG,(Q.G, +
+ G,0,) G5GY = i(Q; + 2G,0,Gf + G,G,Q,G5G}). Hence A’ = 2(e’ — G)™*.
(Qy + 2G,0,GT + G,G,0,G5GY) (e — G)*~ 1. As the matrices Qy(x), Q,(x) are
positive definite, A'(x) is also positive definite for x € I,. Now, let a(x), i = 1,...,n
denote the eigenvalues of A(x). Since A(x) is differentiable and A4'(x) is positive
definite, the functions a,{x) are continuous and increasing, see [5, Lemma B]. Let
g(x) be an eigenvalue of G(x) with the associated eigenvector v. Then Av =
= i(e" + G)(e" — G) ' v = i(e" + g)(e"* — g) v, ie. i(e” + g(x))/(e" — g(x)) is
an eigenvalue of A(x) with the associated vector v. Consider the mapping w =
= i(e" + z)[(e" — z). This mapping maps the positively oriented unit circle onto
the positively oriented real axis. Consequently, as w increases, z moves along the
unit circle in the positive sense. Now, since the eigenvalues of A(x) are increasing
on I,, the eigenvalues of G(x) move positively along the unit circle if x €l,. As
xo €I was arbitrary, the eigenvalues of G(x) move positively along the unit circle
on I and the proof is complete.

Example 1. Let gi(x) = 2 + cos x, g,(x) = 2, a = 0. Then C_(x) = cos (sin x),
S_(x) = sin (sin x), H(x) = cos (sin x) + isin (sin x). This example shows that
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the eigenvalues of the matrix H(x) need not move on the unit circle in the positive
direction.

Lemma 2. Let g(x) = det G(x), h/x) = det H(x). Then

(3.2), 6(x) = exp {zi f:trwl(s) + 0s(5) ds},

(3.2). h'x) = exp {Zi f :tr('Ql(s) — 0,(5) ds} .

Proof. We shall prove only (3.2), since the proof of (3.2)_ is analogous. Let
G,(x), G,(x)be the same as in the proof of Lemma 1. Then G,(x) = T(x) T;(x),
G,(x) = Ty!x) T{(x), where T){(x) are solutions of T} = i Q,{x) T}, T{a) = E,j = 1,2.

The Jacobi formula yields det Tj(x) = exp {lf trQ,’s) ds}. Since G(x) = G,(x).

. Gy(x) = Ty(x) TH(x) Ty(x) T{'(x), we have det G x) = (det Ty(x))* (det T,(x))* =
= exp {2ijxtr(Q1(s) + Q,(s)) ds} which was to be proved.

a

Now, let g;(x),j = 1, ..., n be the eigenvalues of the matrix G{x). Since this matrix
is unitary, g,(x) = exp {i a/(x)}, where «;(x) are increasing real functions. Then

g(x) = det G(x) =jI=_"II g,(x) =j[="11 exp {i a(x)} = exp {ij[iocj(x)} =

~ exp {21' ftr(Ql(s) + 0,(9) ds}

and hence
(3.3), z"la,.(x) —2 f tH(Q4(s) + 0s(s)) ds

j= a

Similarly, if exp {i Bj(x)}, j = 1. ..., n are the eigenvalues of H(x), then
(3.3)_ WICEE f r(Q4(s) — 0a(s)) ds .
J= a

Lemma 3. Let x el be fixed. The number 1 is an eigenvalue of the matrix G(x)
if and only if the matrix S,(x) is singular, and the number —1 is an eigenvalue
of Gx) if and only if C(x) is singular.

Proof. Let exp {i «(x)} be an eigenvalue of G(x) with the associated eigenvector v,
ie. Gv=(Cy +iS,)(CL + iST)v = ™. Denote (C} + iS})v = z. Then

(Ci +iSy)z = e=Ch +is}) ™" z,
e i @D(C, +iS,)z = &WV(C, —iS,)z,
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o .o o o
cos— — isin—)(C, +iS;)z=[cos—+ isin—}(C, + iS,)z,
( : 2)( L +iS)) ( : 2)( . +iS))
o . a
S,zcos— = C, zsin—.
+ 5 + >

Setting o = 0 (mod 27) or o = n(mod 27) in the last equality, we obtain the
statement.

Remark 1. By the same method we prove that the number 1 is an eigenvalue
of H(x) if and only if S_(x) is singular, and —1 is an eigenvalue of H(x) if and only
if C_(x) is singular.

Theorem 1. Let S,(x)(C.(x)) be nonsingular on an interval [c,d] = I. Then
C.(x)(S,(x)) has at most n singularities on [c, d].

Proof. If S,(x) is nonsingular on [¢, d], no eigenvalue of the matrix G(x) can
be equal to 1 for x € [c, d]. Since the eigenvalues of G(x) move on the unit circle
in the positive direction, each of them can pass at most once through the point —1
on the unit circle, hence C,(x) has at most n singularities on [c, d]. If C.(x) is
nonsingular on [¢, d] the proof is analogous.

Theorem 2. Neither C.(x), nor S,(x) can be identically singular on any sub-
interval of 1. Moreover, neither the singularities of C,(x), nor the singularities
of S.(x) can have a finite cluster point.

Proof. Let C,(x) be singular for x € [¢, d] < I. Then there exists an eigenvalue
of G(x), say exp {i a/x)}, for which exp {i «(x)} = —1, i.e. o(x) = = (mod 2x) for
x €[c, d]. Since the eigenvalues of G(x) move on the unit circle in the positive
direction, the function oc(x) is increasing on I, which is a contradiction.

Now, let x, —> x, be a sequence of singularities of C,(x). Without loss of generality
we can suppose that this sequence is increasing. Let exp {i a,(x)},j = 1, ..., n, be the
eigenvalues of G(x). As G(a) = E, we can suppose that «;(a) = 0. The matrix C.(x)
has infinitely many singularities on [a, x,], hence at least one eigenvalue of G(x),
say exp {i a;,(x)}, must pass infinitely many times through the point —1 on the
unit circle. Since the functions a,(x) are positive and increasing on I, lim «;(x) = co.

Consequently,
X n
lim J tr(Qy(s) + Qa(s)) ds = 1/21im Y, a(x) > 1/2lim aj(x) = 0 .
x=X0 J q x=x9 j=1 xX=Xg

This is a contradiction, since the matrices Q,(x), Q,(x) are continuous on I. The
part of the proof which concerns the distribution of singularities of S _(x) is analogous.

Definition. A4 solution Y(x) of (2.5) is said to be oscillatory on I if there exists
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a sequence x, — oo such that det Y(x,) = 0. In the opposite case this solution is
said to be non-oscillatory.

Theorem 3. A necessary and sufficient condition for C,(x) and S.(x) to be

o0
nonoscillatory on I isj tr Qj(s)ds < o0, j = 1,2.

Proof. From Theorem 1 it follows that S.(x) and C,(x) are simultaneously
oscillatory or nonoscillatory on I. Let these matrices be nonoscillatory on I, i.e.
the eigenvalues of G(x) pass only finitely many times through the points — 1 and 1

on the unit circle. Hence there exists a constant K such that ) a;(x) < K on I,
=1

J
where a;(x), j = 1,..., n, are arguments of the eigenvalues of G(x). From (3.3),
X

it follows that J tr(Qy(s) + Q.(s)) ds < K|2 for xel. Since the matrices Q,(x),

Jj = 1,2, are positive definite on I, the last inequality implies tr j 0 j(s) ds < K/2.

As all our arguments can be reversed the proof is complete.

Recall that in the preceding theorems it is essential that the eigenvalues of G(x)
move on the unit circle in the positive direction if x increases. Since this statement
is not generally valid for the matrix H(x), the analogues of Theorems 1—3 cannot
be stated for matrices C_(x) and S_(x). However, in this case we have the following
result.

Theorem 4. If the matrix S_(x) is nonsingular on an interval [c, d] = I, then
there exists an integer k such that

kr < % J t(04(s) — 0x() ds < (k + 1) 7

for x€[e, d].

Proof. Let exp {i B;(x)},j = 1, ..., n, be the eigenvalues of H(x). From Remark 1
it follows that no eigenvalue of H(x) can pass through the point 1 on the unit circle,
i.e. there exists an integer k such that 2kn < f;(x) < 2(k + 1) = for x e [c, d].

Hence 2knn < Y B(x) < 2(k + 1) nm and from (3.3)_ we obtain
=1

kn < 1fn J “t(04(s) — Qa(s)) ds < (k + 1) 7.

Remark 2. Similarly we prove: If the matrix C_(x) is nonsingular on an interval
[c, d] < I, then there exists an integer k such that

(2k — 1)§ < % rtr(gl(s) — 0,(s))ds < (2k + l)g
for x€[e, d]. ‘
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Souhrn

O NEKTERYCH VLASTNOSTECH TRIGONOMETRICKYCH MATIC

ONDREJ DOSLY

Pti vySetfovani samoadjungovanych linearnich diferencidlnich systému 2. ¥adu jsou velmi
uZiteCnym nastrojem tzv. trigonometrické matice, coZ jsou maticova feSeni diferencialniho
systému

Y= 0x)Z, Y0)=0

Z'=—-0x)Y, ZO)=E,
kde Q(x) je symetrickd matice typu n X n a E je n-dimensionalni jednotkova matice. Trigono-
metrické matice splfiuji nékteré identity, které jsou v pripad€ n= 1 totoZné s elementarnimi
trigonometrickymi identitami.

V piedloZené praci jsou dokazany dalSi vlastnosti trigonometrickych matic, které zobectiuji

vlastnosti funkei sin x, cos x a jsou studovany mnoZiny bodu, ve ktergch jsou tyto matice sin-
gularni.

Pe3lome

O HEKOTOPBIX CBOMCTBAX TPUTOHOMETPUYECKUX MATPUIL
ONDREJ DOSLY
ITpu McCeOBaHUM CAMOCOIPSHKEHHBIX JIMHEHHbIX quddepeHuuanbHBEIX CACTEM BTOPOro MOPAIKa

OYEHb II0JIE3HBIM CPEICTBOM SBIIAIOTCSA TaK Ha3bIBAEMBIE TPUTOHOMETPHUYECKHE MATPHLBI, TIpea-
crapJisiolme co6oil pemenns nedhdepeHunanbHON CHCTEMBI

Y= Qx)Z, Y0)=0
Z'=—-0(x)Y, Z(0)=E

rae Q(x) — cumMmeTpuyecKkas MaTpHua Buna (n, n) u E — eguuu4nas MaTpuna. TpuronoMmerpuyec-
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KHE MaTpPHUbI YIOOBJIETBOPAIOT HEKOTOPBIM TOXIECTBaM, KOTOphIE B ciayyae n= 1 coBmajaior
C 3JIEeMEHTAPHBIMM TPHTOHOMETPHYECKUMH TOXIECTBAMM.
B paboTe AOKa3LIBAIOTCSA HEKOTOPHIE AajIbHEMIIME CBOWCTBA TPUTOHOMETPUYECKHX MAaTpHLI,

KoTopble 06006maroT cBojicTBa GyHKIMIL sin X, COS X, M HCCIEAYIOTCA MHOXECTBA TOYEK, B KOTOPBHIX
3TM MATPHULBI ABJISIOTCS OCOOLIMH.

Author’s address: 662 95 Brno, Jana¢kovo nam. 2a (katedra matematické analyzy PF UJEP).
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