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Summary. Stability of solutions of stochastic differential equations in the space of probability
measures (distributions) is investigated. A modification of A. Lasota’s ‘‘/-condition’’ is used to
show (under suitable assumptions) asymptotical stability in the total variation topology and in
the time-homogeneous case also the existence of an unique invariant measure.
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INTRODUCTION

In this paper we deal with some ergodic properties of solutions of stochastic
differential equations. We slightly improve some earlier results of R. Z. Khasminskii
contained in [4] (cf. Remark 3.8) and of A. M. Il'iin and R. Z. Khasminskii contained
in [5] (cf. Remark 3.6). The method of proofs used here is based on the ““/-condition”
for a family of Markov operators which was introduced by A. Lasota in [1]

The paper is divided into three sections. Section 1 contains the basic definitions
and notations. In Section 2 we give theorems (2.1 and 2.2) which are modifications
of the *“I-condition” to a space of measures. Their proofs are similar to the original
proof in [1] and we give them mainly for the convenience of the reader. Section 3
contains the main results of the paper (Theorem 3.1, Corollaries 3.4 and 3.7) — the
applications of Theorems 2.1 and 2.2 in stochastic differential equations problems.

Fundamental statements from the theory of stochastic differential equations used
in this paper can be found for instance in [6].

I am grateful to I. Vrko& for his helpful conversations on the subject and his
valuable suggestions and comments.

1. DEFINITIONS AND NOTATIONS

Let (X, #) be a measurable space and denote by by &, ", 2, respectively, the
sets of finite real, finite nonnegative and probabilistic measures defined on %.
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Definition 1.1. A linear mapping S: ¥ — % will be called a Markov operator,
if it satisfies the conditions

(1.1) S(H)e X
and
(1.2) Sv(X) =vX) for vex .

In this paper we deal with a two-parameter family of Markov operators {S,,},
s € €0, ©), t € {s, ©), satisfying

(1.3) T

for all s < u <t, and with a one-parameter family of Markov operators {S,},
t € 0, ), satisfying

(1.4) S, 08, = St+n,

forallt; 20,7, =20 (which is the “time homogeneous™ case).

For v € £ we denote by v*, v™, var v, respectively, the positive, negative and total
variation of the measure v. We set |[v]| = var v(X) and R, = (0, ).

Definition 1.2. Let a family of Markov operators {S;,} satisfying (1.3) be given.
A system {g }.r,, ps€ A, will be called a nontrivial system of lower measures
with respect to {S, }, if

IS = 1)7[ >0, t>w,
is fulfilled for all ve 2, and p,{X) 2 o holds for some a > 0 independent of s > 0-
Definition 1.3. Let a family of Markov operators {S,} satisfying (1.4) be given.
A measure u € A" will be called a lower measure with respect to {S,}, if
(s = )] >0, 10,

holds for all ve 2. If, moreover, y(X) > 0 holds, then the lower measure u will
be called nontrivial.

A measure p* € & will be called invariant (with respect to {S,}), if S,u* = u*
holds for every t = 0.

2; THE /-CONDITION IN THE SPACE OF MEASURES

In this section we give the following two theorems which slightly modify the
I-condition (cf. [1]):

Theorem 2.1. Let a family of Markov operators {S;,} satisfying (1.3) be given.
Assume that there exists a nontrivial system {i,} g, of lower measures with respect
to {S,,}. Then
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”S.v.l’vl - Ss,tv2" -0 ’ t— ’
holds for every vie #, v, #, s = 0.
Theorem 2.2. Let a family of Markov operators {S,} satisfying (1.4) be given.
Then there exists an invariant measure p* € 2 and
(21 [Sy — p*| -0, t-> o,

holds for every v € P, if and only if there exists a nontrival lower measure p with
respect to {S,}.
Before proving the theorems we give (without proof) a simple lemma:

Lemma 2.3. Let S be a Markov operator. Then

(22) Isv] = vl
and
(23) I(s9)7] < $v-(x)

holds for every ve Z.
Proof of Theorem 2.1. Let vi e 2, v, € 2, s = 0 and write
V=v =V, n=v(X)=v(X)= '}“VU .

For every t 2 A = s = 0 we have

(24) IS, < [S,.7]
which follows from (1.3) and (2.2). Thus, if n = 0, the proof is complete. Suppose

n>0. For t = s we have
(Ss,t}' vt — ”s) - (Ss,r'l' Vo — ”s)
n - n

(2.5) [S..ev] =1

Noting that (1/n) v* € 2, (1/n) v~ € 2, we get

(55 =)
| (S"":, won)

for some t; > s, This implies that
s 1., 1, [
5.t :1 LA TR | Sa,n" v (X) - ”s(X) + 2 Ss.h -V = U
fn n

<1 - p(X) + 3 (X)) = 1 - 3u(X).

| < $u(X),

< n(X)

E

Similarly, we get
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Ss,t, 1 vo — Hs
n

and so, by (2.5),

o
IS0l < 72 = m(X)) < (1 - 5) .-
Repeating the same arguments for S ,,v instead of v we find ¢, > ¢, such that

15000l = 150509 5 1 = 1) I8, = (1= 5) -

and by induction we find an increasing sequence ¢, such that

< (1-3) 1

holds. Thus we have [|S;,, v| = 0 for n » co which together with (2.4) completes
the proof.

”Ss,,nv

Proof of Theorem 2.2. If there exists an invariant measure p* € 2 satisfying (2.1),
then it is clearly a nontrivial lower measure with respect to {S,}.

Conversely, Theorem 2.1 implies that it suffices to prove the existence of an in-
variant measure p* € 2. Denote by & the set of all lower measures with respect
to {S,}. We define the partial ordering < on & by a natural way,

vy S vy <> vy(A) S vy (A) forevery AeZ.

We will show that in & there exists the greatest element with respect to the ordering
<. For this purpose we show:

) (&, <)is a directed set, i.e., for every couple (44, ;) € ¥ x & wefind ;€ &
such that p; £ u3, 4 < ;. Indeed, we define

ua(A4) = d{var (= o) (4) + p(4) + ma(4)}, Ae 2,
and we have
ps(4) 2 3{|mi(4) = pa(A)] + 1y(A4) + n2(A)} = max (uy(4), na(4)) -

Furthermore, for every ve 2

IS = )] < IS = r)7[ + IS = w2)7|

holds, and thus, y; € &.
B) In & there exists a maximal element with respect to <. Let Z < & be a non-

empty chain. Take a nondecreasing sequence p, € £ such that
1(X) # s = sup {v(X), ve #}

holds (clearly, s < 1). Set
A(A) = lim p,(4), AecX.
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It can be easily seen that i is a measure on &, pe & and v < [ for every ve &.
For every y € 2 we have

IS — B < IS& — )7 + & — sl = (S — )| + BX) — m(X).

It follows that ji € & and we get §) by Zorn’s lemma. Now, «) and f) imply that in &
there exists the greatest element which we denote by £. It is obvious that A(X) > 0.
From (2.3) and (2.2) we get for every ve 2, t, > 0, t > t,,

"(va - Stoﬂ)_" = ”[Sto(st ¥ — ﬁ)]_"
é Slo[(st-'o ﬁ) ] X) "(Sl ™

Thus, S, A€ & holds for every t, > 0 which implies S,/ < fi. Hence, taking into
account (1. 2) we have S, /i = fl and so, the measure

IIA

is the invariant measure belonging to 2. The proof is complete.

3. APPLICATIONS OF THEOREMS 2.1 AND 2.2

In this section we consider the n-dimensional differential equation
(3.1 d¢, = b(t, &) dt + o(t, ¢,) dw,,

where w, is an I-dimensional Wiener process, b = (b;) is an n-dimensional vector
and ¢ = (0y;) isamatrix n x I, b and ¢ are defined on R, x R,.ForQ =« R, x R,
we denote by Cy ,(Q) the set of functions defined on Q whose first time derivatives
and first and second space derivatives exist and are continuous on Q. Furthermore,
we denote by L the infinitesimal operator connected with (3.1), i.e., for Ve Cy ,(Q)
we have

Ly, x)——+2b(t )—+%Z it X)

, (t x)eQ,

J

where (a;;(t, x));j=1.2,..n = 0(t, x) 67(t, x) (MT stands for the transposed matrix
to M). We assume that b and o are continuous, locally Lipschitz continuous in x
and for some functions We Cy 5(R, x R,), W 2 0, and B: 0, ) = <0, ), f non-
decreasing and continuously differentiable, the following holds:

(3.2a) LW(t,x) < cf(W(t,x)) forsome ¢ >0 andall (t,x),
(3.2b) lim inf W(t,x) = 0 forevery T>0,

|x|+0 0StST

®  du
(3.2¢) f -t
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In particular, for f(x) = x and W(t,x) = |x|* + 1 the conditions (3.2a)—(3.2c)
have the following well-known simple form

(3.2d)  |b(t, x)| + |o(t, x)] < K(1 + |x|) forsome K >0 andall (t,x).

The conditions (3.2a)—(3.2c) guarantee the existence and uniqueness of the strong
solution of (3.1) (cf. [2]), which is a Markov process whose transition function we
denote by P(s, x,t,A),0<s <t < o, xeR, A- a Borel set. In this section we
set X = R,, 4 is the o-algebra of Borel sets on X and the family {S, ,} is given by the
equality

(3.3) S, v(A) = f P(s,x,t, A)v(dx), ve¥, AeAB.

It is obvious that {S,,} is a family of Markov operators satisfying (1.3). We will
impose the following “nondegeneracy condition” (3.4):

(3.4) Let there exist a bounded nonempty region U such that

(3.42) Y agt, x) 44 2 afA]?

ij

holds for some o > 0 and all A = (1;)eR,, (t,x)eR, x U,

(3.4b) |bi(ty, x4)| + ai(ts, xl)l =K
and
(3.4¢) |bits: x1) = biltz, x2)| + |aifte, x1) = aits, x5)| <

S K(jxy = % + |6 = 0,|7?)

holds for some K > 0, > 0 and all t,t,eR,, x;,x,€U.

Theorem 3.1. Assume that (3.4) is fulfilled and that there exists a nonempty
region W, W = U, and A > 0 such that

(3.5) P(s, x,t, W) = A
holds for all xe X, s 2 0 and t Z t(s, x). Then
”Ss,tvl - Ss,tvln - 0 ’ t— o

holds for all measures v, € ?, v, € 2.
First we prove two auxiliary lemmas. With no loss of generality we can assume
that the region U has a C, boundary.

Lemma 3.2. Let (3.4) hold. Denoting by G(x,t,y,t), t = 1, Green’s function
of the problem

» 2
(3.6) E9—’1‘-=Zbi(t,x)-a—u+{~Za,-l-(t,x) ou , (tx)eR, x U,
ot i ox; i 0x; 0x

j
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we have for every set W, W = U,

()= inf G(x,7+1,5,7)>0
(x,7)eW xR,

for yeW.
Proof. Supposing that the assertion is false we find y € W and sequences 7, € R,
x, € W, x; = Xo, such that
G(xk, Tk + 1, y, Tk) - 0 .

From Schauder’s interior estimate for the solution of (3.6) we get for some R > 0,
G .
.a—-(xo,rk + 1Ly,t)| <K for i=1,2,...,n, keN,
Xy

and thus,
G(XO! T + 1, ys Tk) - 0.
Denoting by
af(t, x) = a;(t + ©, x), bi(t,x) =bft +1,x), teR,,
we get by Arzela’s theorem

aj} 3 d;, b 3b; in 0,1y x T

for appropriate subsequences of coefficients. From [3] (theorem 3.15) it follows
that G(xo, ©, + 1, ¥, 7,) = I'(xo, 1, y, 0), where I' is Green’s function of the problem

2
67 P ovbia 0 L1y 602"
ot i ox; ij Ox; 0x

, (Lx)eR, x U.
J
Hence, we get F(xo, 1,y, 0) = 0 which cannot hold in view of the strong maximum
principle for the equation (3.7).
Lemma 3.3. Let (3.4) hold. Denoting by <(s) the exit time (after s) from U and
wit, z,s) = P, [{,eH, t(s)>1t], t=s, zeU,

where H ¢ W < U, H is open, and {, is the solution of (3.1), we have
w(t, z,5) = J G(z, t,y,s)dy.
H

Proof. Let ¢, be a sequence of continuous functions, supp ¢, = U, ¢, N xu (xis
the characteristic function). Denote by w the solution of the problem

awk aw azwk
. —k(t,z,5) =Y bft, z) —(t, z, 4t
(3.8) at( z,5) Z': ‘ z)az,.( zs)+%§a,( Z)Bz,-az

J

W,‘(S, z, S) = (pk(z) ’ wk(t: z, s)l(;,w)xau = 0 .
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We have

(39) wilt, 2, ) = f

G(z,t, y,5) oy) dy ~ J‘ G(z, t,y,5)dy.
v

H

Furthermore, by a standard application of Itd’s formula we get for s £ T < ¢,
zeU,

Er wilt+s—((T) A1), Liyaps)=wlt+s—Tzs).

Hence, we have (T = s)

wilt, 2, 5) = E, wi(s, (s, ) Xy > =
= Es,z‘Pk(Ct) Aes)>e] N Es,zXH(Ct) Xte(s)y>n1 = W(t’ z, 5) >
which, together with (3.9), completes the proof.
Proof of Theorem 3.1. Let s > 0 and v € £. From (3.5) it follows that S, , v/ W) =

> 34 holds for t > to(s, v). Thus, we get by Lemma 3.3 for any H < W, H open,
and t = t,,

(3.10) Sse+1 V(H) = S1441(Ss,v) (H) =
= I P(t,x,t + 1, H) S, , v(dx) 2 f P(t,x,t + 1, H) S, , v(dx) =
x w

> 1A ini"P(t, x,t+1,H) =
2 3hinf o[ e Hy o) > 0+ 1] = 3 in;j G(x, t + 1, , i) dy.
xe xW J 4
We define the measure p € X,
uld) = %AJ W) dy, Aea
AnW

(y(y) was introduced in Lemma 3.2), and from (3.10) we get

Ss,t+1 V(H) 2 %lj‘ y(y) dy = ‘u(H) , 121,
H
It follows that
[(Se.v = )7 =0 for t=1t5+1

and Lemma 3.2 implies #(X) > 0. Hence, the system g, = p, s = 0, is a nontrivial

system of lower measures with respect to {S;,} and our assertion follows from
Theorem 2.1.

For R > 0 we set Ug = {xeR,, |x| < R}.

Corollary 3.4. Let (3.4) be fulfilled with U = Uy, for some R, > 0 and let there
exist a function Ve C, 5(R, x R,), V = 0, satisfying

303




(3.11) LVE —aV+ B in R, x R, forsome a>0, B>0,
and

(3.12) Vg, = inf v>b for some 0 <R, <R,.

' R+ (Ra\UR,) o
Then the assertion of Theorem 3.1 is valid.

Proof. Let s = 0 and denote by h, the exit time (after s) from U,. From (3.11)
and Itd’s formula it follows that

E, V(i A 0, Luno) S V(s, %) + BE[(he A 0) — 5]
holds for 6 = s, x € R,. Hence, we get (k — )
(3.13) E,.V(0,() < V(s,x) + B0 —s) < 0.
Now, let t > 6 2 s and denote by 7, the exit time (after 0) from U,. From (3.11)
and (3.13) by Ito’s formula we get
E, .Vt At, L, )=
£ V(0.0 ~ o

Tk

"V, £) du + E, B[z A 1) — 0]

IIA

Taking k — co and using Fatou’s lemma (on the left-hand side) and Lebesgue’s
monotone convergence theorem (on the right-hand side of the inequality) we get

(M@vsdﬂmggj@g—dhj@mm+m—w

]

For t 2 s we set y, = E, V(1, ¢,) and denote by 7, the solution of the equation
ne= —an, + B, t = s, n, = ¥,. We show that y, <, for t = s. Suppose, on the

contrary, that ¥, > n, holds for some ¢; > s and set 6 = sup {¥, < n,}. From

A<ty
(3.14) it follows that
lim infy, > ¥,

=t —

holds for ¢ > s and thus we have Y, < 7y and 0 < t,. Furthermore, (3.14) yields

Ve~ n, =w,—n,gwa—n,-aj(m-m)daé
[}

= "“J't('»b;. —n)dl £ “thz - n,d1
0

]

for all te {0, t;>. By Gronwall’s lemma we get ¥;, = 5, which is a contradiction.
Hence, we have for t > s

(315) E-‘-"V(t’ Ct) =y, S = (V(s’ x) - ﬂ/a) em=9) 4 ﬁ/rx .
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Now, take 4, > 0 such that Vg (1 — 4,) > Bfa holds. We show that the assumptions
of Theorem 3.1 are fulfilled with U = Up, W = Ug, and 1 = }4,. From (3.15) it
follows that

Es,xV(t’ Ct) § ﬁ/a + %ﬂ.on

holds for t = t,(s, x). Hence, we have

P(s, %, 1,Ug) = | — P(s,x,1, Ry  Ug) 2 1 — E2t/(t &) 5

VRl
SRS L1/ VTN
Vr,
which completes the proof.
Example 3.5. Assume that
(3.16) Zinbl-(t, x) + Za,{t, x) £ —ax|* + B

holds for some « > 0, 8 > 0, and the assumption (3.4) is fulfilled with U = Uy,
where Ry > ./(B/«). Then the assertion of Theorem 3.1 is valid. The proof we get
from Corollary 3.4 setting V(t, x) = |x|>.

Remark 3.6. Using a partial result from [5] (lemma 3.3) we can show that the
assumption (3.5) is satisfied if instead of (3.16) the following weaker condition is
fulfilled:

(3.17) 2Yx;bft,x) + Ya;/t,x) £ —n forsome B >0 andall
(t, x)e R, x (R,\Upg,).
This result slightly improves the one in [5] (Theorem 5’), where it is shown that
”Ss,:‘sx - Ss,t(sy" -0, t> o,

foralls > 0, x, y € R, (Where &, is the Dirac measure at the point z), provided (3.17)
holds and, furthermore, some boundedness of the fundamental solutions of the
equation

ou d
__Z._

62
ot T 0x; (bar) + %.2;' (a;u) =0

,‘aX,« ax

J
is required (a condition which is fulfilled, for instance, whenever the coefficients
b;, a;; are bounded in R, x R, together with their derivatives to the third order
and the matrix a;; is positive definite uniformly in R, x R,,).

Now, let us consider the autonomous equation

(3.18) d¢, = (L) dt + o(¢,) dw,,

whose coefficients are locally Lipschitz continuous and satisfy (3.2a)—(3.2c). Thus,

305



there exists a (unique) solution of (3.18) which is a homogeneous Markov process
whose transition function we denote by P(t, x, A). For ve &, t 2 0 we set

S, 9(4) = J Plx e, e

It is obvious that {S,},,, is a family of Markov operators satisfying (1.4). We have
the following

Corollary 3.7. Let there exist a nonempty region U < R, with a C, boundary
such that

(3.192) ¥ a;x) aa; = Blo|? for some B> 0 and all « = (x)eR,, xeU,

iJ

(3.19b) sup E.t < 00, where t is the first hitting time of the set U and K = R,
xeK

is an arbitrary compact set.
Then there exists an invariant measure p* € 2 and for every v e 2 we have

(3.20) "S,v - u*” =0, t-> .

Proof. The conditions (3.19a), (3.19b) imply (3.5) (cf. [4], Lemma 4.6.5) and
hence, the assumptions of Theorem 3.1 are fulfilled. As we have shown in the proof
of Theorem 3.1, there exists a nontrivial lower measure with respect to {S,} (the
measure ). Thus, we can apply Theorem 2.2.

Remark 3.8. The assertion of Corollary 3.7 improves a little the result contained
in [4] (Theorems 4.4.1 and 4.7.1) which claims that if (3.19a), (3.19b) are fulfilled,
then there exists an invariant measure pu* € # and for every ve 2, S,v converges
weakly to u* for t —» oo.

The assertion (3.20) follows directly from [4] provided the coefficients b;, a;; are
bounded in R, together with their first and second derivatives and the matrix (a;;)
is positive definite uniformly in R,. In this case, the measure S,v has the density
u(t, x) which is a solution of the equation

T -y (o) +13

i 0x;

62
ij#)
a5 (@)

(7xi

and therefore, it is locally Li‘pschitzian in x uniformly with respect to ¢ (for ¢ suf-

ficiently large). Thus, the weak convergence of S,v’s implies the “strong’ convergence
(3.20).

Remark 3.9. In the time-homogeneous case the assertion of Theorem 3.1 can be
also obtained as a consequence of a statement in [7] (for a more general result see

also [8]).
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Souhrn
APLIKACE /-PODMINKY
V TEORII STOCHASTICKYCH DIFERENCIALNICH ROVNIC

BOHDAN MASLOWSKI

Priace pojedndva o ergodickych vlastnostech feSeni stochastickych diferencialnich rovnic.
Je nalezena dosti obecna postadujici podminka pro asymptotickou stabilitu feSeni v prostoru
pravddpodobnostnich mér.

Pe3rome
IMPUMEHEHME [-VCJIOBUS B TEOPUU CTOXACTHUYECKHUX
JTUOPEPEHIIMAJIBHBIX VPABHEHU

BOHDAN MASLOWSKI

VlccnenyeTcsi yCTOMYMBOCTDL PEHICHHI CTOXAacTHYeCKMX AudepeHHanbHBIX YPaBHEHHIL B IPO-
CTpaHCTBE BEpOSTHOCTHBIX Mep (pacmpenenenuit). C nomoinero Momuduxaum ,,/-ycmoBua™ A.
JlacoThl moka3aHa (IPH COOTBETCTBYIOUIMX IPEAIMOJIONKEHMSAX) ACHMIITOTHYECKAs YCTOMYMBOCTH
B TONOJIOTHM IIOJHOM BapMauuM, B OZHOPDOJHOM Cliyyae TOXE CyIIECTBOBAaHHE M €OWHCTBEHHOCTH
MHBapHaHTHOH MEPHI.
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