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AN APPLICATION OF /-CONDITION IN THE THEORY 
OF STOCHASTIC DIFFERENTIAL EQUATIONS 

BOHDAN MASLOWSKI, Praha 

(Received February 14, 1985) 

Summary. Stability of solutions of stochastic differential equations in the space of probability 
measures (distributions) is investigated. A modification of A. Lasota's "/-condition" is used to 
show (under suitable assumptions) asymptotical stability in the total variation topology and in 
the time-homogeneous case also the existence of an unique invariant measure. 
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INTRODUCTION 

In this paper we deal with some ergodic properties of solutions of stochastic 
differential equations. We slightly improve some earlier results of R. Z. Khasminskii 
contained in [4] (cf. Remark 3.8) and of A. M. IFiin and R. Z. Khasminskii contained 
in [5] (cf. Remark 3.6). The method of proofs used here is based on the "/-condition" 
for a family of Markov operators which was introduced by A. Lasota in [1]. 

The paper is divided into three sections. Section 1 contains the basic definitions 
and notations. In Section 2 we give theorems (2.1 and 2.2) which are modifications 
of the "/-condition" to a space of measures. Their proofs are similar to the original 
proof in [1] and we give them mainly for the convenience of the reader. Section 3 
contains the main results of the paper (Theorem 3.1, Corollaries 3.4 and 3.7) — the 
applications of Theorems 2.1 and 2.2 in stochastic differential equations problems. 

Fundamental statements from the theory of stochastic differential equations used 
in this paper can be found for instance in [6]. 

I am grateful to I. Vrkoc for his helpful conversations on the subject and his 
valuable suggestions and comments. 

1. DEFINITIONS AND NOTATIONS 

Let (X9 $) be a measurable space and denote by by S£9 Jf, 0>9 respectively, the 
sets of finite real, finite nonnegative and probabilistic measures defined on 0$. 
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Definition 1.1. A linear mapping S: 3? -> S£ will be called a Markov operator, 
if it satisfies the conditions 

(1.1) S(X) <= X 

and 

(1.2) S v(X) = v(X) for v e Jf . 

In this paper we deal with a two-parameter family of Markov operators {S5>r}, 
s G <0, co), t G <s, oo), satisfying 

(1-3) Stti, o S5M = Sst 

for all s = w g f, and with a one-parameter family of Markov operators { S j , 
f G <0, oo), satisfying 

(1-4) StloSt2 = Stl + t2 

for all f i =" 0, f2 =" 0 (which is the "time homogeneous" case). 
For v G S£ we denote by v+, v~, var v, respectively, the positive, negative and total 

variation of the measure v. We set ||v|| = varv(X) and R+ = <0, oo). 

Definition 1.2. Let a family of Markov operators {Ss>t} satisfying (1.3) be given. 
A system {fi}seR+, [iseX, will be called a nontrivial system of lower measures 
with respect to {SStt}, if 

| | ( S 5 . t - / 0 - | | - > 0 , t->co, 

is fulfilled for all v e ^ 5 and pJX) ^ a holds for some a > 0 independent of s ^ 0-

Definition 1.3. Let a family of Markov operators {St} satisfying (1.4) be given. 
A measure fie JT will be called a lower measure with respect to {SJ, if 

| | (S f v-^ ) - f ->0 , r->oo, 

holds for all v e ^ . If, moreover, jx(X) > 0 holds, then the lower measure \i will 
be called nontrivial. 

A measure \i* e 3? will be called invariant (with respect to {St}), if Stfi* = fi* 
holds for every t = 0. 

2t THE /-CONDITION IN THE SPACE OF MEASURES 

In this section we give the following two theorems which slightly modify the 
/-condition (cf. [1]): 

Theorem 2.1. Let a family of Markov operators {SStt} satisfying (1.3) be given. 
Assume that there exists a nontrivial system {fis}sen+ of lower measures with respect 
to {SSit}. Then 
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IK.Vi - S J i f v a ] | - > O f f - * o o , 

holds for every vt e &, v2 e ̂ , s = 0. 

Theorem 2.2. Let a family of Markov operators {St} satisfying (1.4) be given. 
Then there exists an invariant measure fi* e 0* and 

(2.1) | S . v - , u * | | - 0 . í ->co , 

holds for every ve&, if and only if there exists a nontrival lower measure \i with 
respect to {Sj. 

Before proving the theorems we give (without proof) a simple lemma: 

Lemma 2.3. Let S be a Markov operator. Then 

(2-2) ||Svfl = ||v|| 

and 
(2.3) 
holds for every v e JSf. 

||(sv)-||<:sv-(x) 

Proof of Theorem 2.1. Let vx e 0>, v2 e ̂ , s = 0 and write 

v = Vl - v2 , n = v+(K) = V(X) = \\v\ . 

For every t = A = s _ 0 we have 

(2-4) «S.,.v|| ^ ||Ss,Av|| 

which follows from (1.3) and (2.2). Thus, if t\ = 0, the proof is complete. Suppose 
r\ > 0. For f _ s we have 

(2.5) ||S.,,v| = t, | | (s . i f i v+ - ft) - fa,! v- - A 

Noting that (l/?/) v+ e 0, (ijrj) v~ e &, we get 

(s,,,, - v+ - A \\^ins(X), 
\ " J II 
(£,,.. - v- - A || = ift(Z) 
V n J II 

for some r, > s. This implies that 

S,,,,, - v + - џs 

" 

Similarly, we get 
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i S„ř l - v+(X) - џs(X) + 2 || (S.,„ - v+ - Л I = 

»/ IІV f / II 

= 1 - џs(X) + i џs(X) = 1 - i /..(X). 



Ss,tl - v - џs 

П 
ž Ş l - Ы * ) , 

and so, by (2.5), 

l-5-.r.vI ik n(2 - tfV) ^ ( i - 1 ) »v|| • 

Repeating the same arguments for 5s§flv instead of v we find t2 > tx such that 

l-Wl = l-W-WOI = (i - ±/*.,(*)) l-Wl ss(i- ^ M. 

and by induction we find an increasing sequence tn such that 

K,.v| = (i - =)" l|v| 

holds. Thus we have ||-S5.fnv|| -> 0 for n -> 00 which together with (2.4) completes 
the proof. 

Proof of Theorem 2.2. If there exists an invariant measure ft* e &> satisfying (2.1), 
then it is clearly a nontrivial lower measure with respect to {St}. 

Conversely, Theorem 2.1 implies that it suffices to prove the existence of an in­
variant measure fi* e &. Denote by SP the set of all lower measures with respect 
to {St}. We define the partial ordering g on SP by a natural way, 

vx = v2 o vt(A) g v2(AL) for every AeJ. 

We will show that in SP there exists the greatest element with respect to the ordering 
g . For this purpose we show: 

a) (SP, ^ ) is a directed set, i.e., for every couple (fiu fi2) z SP x SP we find \i3e SP 
such that //i ^ JW3, /x2 = i"3- Indeed, we define 

H3(A) = i{var ( ^ - ft) (A) + nt(A) + /i2(A)} , A e a , 

and we have 

H3(A) = Mi^O 4 ) - A«2(-4)| + ii^A) + AI2(-4)} = max (pt(A)9 fi2(A)). 

Furthermore, for every V G ^ 

||(S,v - /i 3 )1 | = [(-V - #*0-II + ll(S<v - ^ 2 ) 1 | 

holds, and thus, JU3 e -Ŝ . 
0) In 5^ there exists a maximal element with respect to g . Let ^ c ^ be a non­

empty chain. Take a nondecreasing sequence nne0t such that 

ft,(.X) P s = sup {v(X), v e ^ } 

holds (clearly, s = 1). Set 

p(A) = lim /JLJA) , i e ^ . 
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It can be easily seen that /x is a measure on J , ^ e / and v = \i for every v e l . 
For every ifr e 0 we have 

||(s,</r - A)" || ̂  IKS,* - ft,)"|| + ||M - K.1 = ll(sw - AV)~II + flx) - ft.W • 
It follows that £ e ^ and we get /?) by Zorn's lemma. Now, a) and /?) imply that in Sf 
there exists the greatest element which we denote by ft. It is obvious that fi(X) > 0. 
From (2.3) and (2.2) we get for every v e 0, t0 > 0, t > t0, 

\\(stV - stofi)-\\ = \\[sta(st.tov - fi)y\\ ^ 

^ S,0[(S,-.ov - / .)"] (X) g |(S,_rov - fi)~\\ . 

Thus, Stofl e Sf holds for every t0 > 0 which implies Sf0/i ^ ju. Hence, taking into 
account (1.2), we have Stofl = fl and so, the measure 

1 * u* = ft 

is the invariant measure belonging to 0. The proof is complete. 

3. APPLICATIONS OF THEOREMS 2A AND 2.2 

In this section we consider the n-dimensional differential equation 

(3.1) dCt = b(t,Qdt + a(t,i;t)dwt, 

where wt is an /-dimensional Wiener process, b = (bt) is an n-dimensional vector 
and G = (G(J) is a matrix n x /, b and G are defined on R+ x Rn. For Q c R+ x Rn 

we denote by Cli2(Q) the set of functions defined on Q whose first time derivatives 
and first and second space derivatives exist and are continuous on Q. Furthermore, 
we denote by L the infinitesimal operator connected with (3.1), i.e., for Ve Clt2(Q) 
we have 

LV(t,X) = 8^+Y1bi(t,X)f + i'ZaiJ(Ux)^-, (t,x)sQ, 
ot i oxt ij oXi dXj 

where (dij(t,x))iJ=l2 „ = cr(r, x) GT(t9 x) (MT stands for the transposed matrix 
to M). We assume that b and G are continuous, locally Lipschitz continuous in x 
and for some functions We Cit2(R+ x R„)9 W = 0, and jS: <0, oo) -> <0, oo), ft non-
decreasing and continuously differentiate, the following holds: 

(3.2a) LW(t9 x) = c0(W(t9 x)) for some c> 0 and all (t, x) , 

(3.2b) lim inf W(t9 x) = oo for every T > 0, 
|x|->co o^f^r 

(3.2c) r_*L_-co. 
V ) Jol+A(«) 
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In particular, for fi(x) = x and W(t, x) = |x|2 + 1 the conditions (3.2a)-(3.2c) 
have the following well-known simple form 

(3.2d) \b(t, x)\ + \a(t, x)\ = K(l + |x|) for some K > 0 and all (t, x) . 

The conditions (3.2a) —(3.2c) guarantee the existence and uniqueness of the strong 
solution of (3.1) (cf. [2]), which is a Markov process whose transition function we 
denote by P(s, x, t, A), 0 = s ^ t < oo, x e Rn, A- a Borel set. In this section we 
set X = Rn, $ is the cr-algebra of Borel sets on X and the family {SStt} is given by the 
equality 

(3.3) SStt v(A) = J P(s, x, t, A) v(dx) , v e S£ , A e @ . 

It is obvious that {Sst} is a family of Markov operators satisfying (1.3). We will 
impose the following "nondegeneracy condition" (3.4): 
(3.4) Let there exist a bounded nonempty region U such that 

(3.4a) . X a , . / . , ^ , ^ 2 

ij 

holds for some a > 0 and all X = (Aj) e R„, (t,x)eR+ x U , 

(3.4b) M ' i . * i ) | + M ' i . * i ) | - ; K 
and 

(3.4c) \bjtu x.) - b£t2, x2)\ + \a,/ti, x.) - aiJ{t2, x2)| ^ 

^ K(\Xl - x2\<> + |r. - t2n 

holds for some K > 0, ft > 0 and all tu t2 e R + , xt, x2 G U . 

Theorem 3.1. Assume that (3.4) is fulfilled and that there exists a nonempty 
region W, W a U, and X > 0 such that 

(3.5) P(s, x, t, W) = X 

holds for all x eX, s ^ 0 and t ^ t0(s, x). Then 

| | S M V I - SSi-v2|| -> 0 , t-> co 

holds for all measures vt e&,v2e 2P. 
First we prove two auxiliary lemmas. With no loss of generality we can assume 

that the region U has a C2 boundary. 

Lemma 3.2. Let (3.4) hold. Denoting by G(x, t, y, T), t ^ T, Green's function 
of the problem 

(3-6) "T = S bil> x) T~ + i Z «»(*>x) T-T- ' {t,x)eR+ xU, 
Ot i CXi ij OXiCXj 
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we have for every set W, W <=. U, 

y(y) = inf G(x, x + 1, y, x) > 0 
(JC,T)€TFXJR + 

for y eW. 

Proof. Supposing that the assertion is false we find y e Wand sequences xk e R+, 
xk eW, xk-+ x0, such that 

G(xk, xk + 1, y, xk) -• 0 . 

From Schauder's interior estimate for the solution of (3.6) we get for some R. > 0, 

-— (x0, xk+ ì,y, xk) 
ÔXІ 

й Ќ for i = 1,2, ...,п, k Є . 

and thus, 
G(x0, xk + 1, y, xk) -> 0 . 

Denoting by 

akij(t, x) = a^t + xk, x) , bki(t, x) = bt(t + xk, x) , teR+, 

we get by Arzela's theorem 

ak) => dij, b\l zX hi in <0, 1> x U 

for appropriate subsequences of coefficients. From [3] (theorem 3.15) it follows 
that G(JC0, xkl + 1, y, Tkl) -> r(x0, 1, y, 0), where F is Green's function of the problem 

(3.7) ^ = £ S . ( t , * ) ? ^ E ^ ( j , * ) - ^ - , {t.x)eR+xU. 
dt i oxt ij dXi oxj 

Hence, we get F(x0, 1, y, 0) = 0 which cannot hold in view of the strong maximum 
principle for the equation (3.7). 

Lemma 3.3. Let (3.4) hold. Denoting by x(s) the exit time (after s) from U and 

w(t, z, s) = PSj2[C, e H, x(s) > t], t = s, zeU, 

where H <=. W c= U, H is open, and Ct is the solution of (3.1), we have 

w(t, z,s)= G(z, t, y, s) dy . v(t, z,s) = 
Jн 

Proof. Let <pk be a sequence of continuous functions, supp <pk a U,<pk \ XH (X ' S 

the characteristic function). Denote by wk the solution of the problem 

(3.8) ^ ( t , z, s) = £ b/t, z)^(t, z,s) + iZ aJiU -) ^ 
ôt І ' дZi ІJ őz; õzj 

wk(s, z, s) = ęk(z) , wk(t, z, s) | < S j 0 O ) x Є l / = 0 . 
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We have 

(3.9) wk(t, z,s)= J G(z, t, y, s) <pk(y) dy \ f G(z, t, y, s) dy . 
Jv JH 

Furthermore, by a standard application of Ito's formula we get for s 5g T< t, 
zeU, 

ETjZwk(t + s - (T(T) A t) , Ct(T)A„ s) = wk(t + s - T, z, s) . 

Hence, we have (T = s) 

Wk(t, Z, s) = ESt2Wk(s, C„ s) Z[T(,)>r] = 

= *s,z<Pk(Q Z[r(s)>r] ^ EstzXH(Ct) Z[t(5)>0 = W('> Z ' S ) » 

which, together with (3.9), completes the proof. 

Proof of Theorem 3.1. Let s = 0 and v e ^ . From (3.5) it follows that SStt vl W) = 

= \X holds for t = t0(s, v). Thus, we get by Lemma 3.3 for any H c W, H open, 
and t = t0, 

(3.10) SStt+l v(H) = Sttt+1(SSttv) (H) = 

= f P(t, x,t+l, H) SStt v(dx) = f P(t, x,t+l, H) SStt v(dx) = 
Jx JW 

= %X'mfP(t,x, t + 1,H) = 
xeW 

= \l inf PfjJC[Cf+i e H, <r) > f + 1] = \X inf f G(x, f + 1, y, t) dy . 
xeFP xeW J H 

We define the measure \i e X, 

\x{A) = \X f y ^ d ^ , i e J 

(y(y) was introduced in Lemma 3.2), and from (3.10) we get 

SStt+1 v(H) = U f y(y) dy = fi(H), t=t0. 
JH 

It follows that 
\\(SSttv - fi)-\\ = 0 for t = t0 + l 

and Lemma 3.2 implies fi(X) > 0. Hence, the system fis = fi, s = 0, is a nontrivial 
system of lower measures with respect to {Ss>t} and our assertion follows from 
Theorem 2.1. 

For R > 0 we set l/R = {xe .&„, |x| < R}. 

Corollary 3.4. Let (3.4) be fulfilled with U = URofor some R0 > 0 and let there 
exist a function VeClt2(R+ x Rn), V= 0, satisfying 
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(3.11) L V = - a V + 0 in R+ x Rn for some a > 0 , p > 0, 

and 

(3.12) VRl = inf V>-~ for some 0<Ri<Ro. 
R+(Rn\t/Rl) a 

Then fhe assertion of Theorem 3.1 zs yaJ/d. 

Proof. Let s ^ 0 and denote by hk the exit time (after s) from Uk. From (3.11) 
and Ito's formula it follows that 

Es,xV(hk A 0, UkhkAe) < V(s,x) + pESiX[(hk A 9) - i] 

holds for 9 1_ s, x e .7?,.. Hence, we get (k -> oo) 

(3.13) EStXV(9, Q < V(s, x) + p(0 - s) < oo . 

Now, let t > 9 = s and denote by T* the exit time (after 9) from UV From (3.11) 
and (3.13) by Ito's formula we get 

EStXV(rkAt,t;tkJ< 

< E :,x V( , Q - *ES,X Г"Л («, Q dн + Esj[(xk л í) - ] 

Taking k -> oo and using Fatou's lemma (on the left-hand side) and Lebesgue's 
monotone convergence theorem (on the right-hand side of the inequality) we get 

(3.14) EStXV(t, C) = EStXV(9, Ce) - * ^*sj(u, Q du + p(t - 9) . 

For t = s we set \J/t = EsxV(t, £f) and denote by rjt the solution of the equation 
r)t = — a*/, + /?, t ^ s, f/s = i/v We show that i/', g *;, for t = s. Suppose, on the 
contrary, that \\/ti > rjtl holds for some tt > s and set 9 = sup {\j/x ^ rjx). From 

A < f i 

(3.14) it follows that 
lim inf \J/t ^ \j/t> 

t-+t'-

holds for t' > s and thus we have \J/d < rj9 and 9 < t±. Furthermore, (3.14) yields 

kr -^\ = 1't-K£'l'e-to-*\ fyx - ^x) dA = 
J© 

g - a ( ^ - ^ dl ^ a ^ - ^ dA 

for all f e <0, *->. By Gronwall's lemma we get \\fti = r/fl which is a contradiction. 
Hence, we have for t ^ s 

(3.15) E-iXK(f, cf) = *f = IJ, = (V(s, x) - jB/a) e-*«"> + /?/a . 
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Now, take X0 > 0 such that VRl(l - X0) > pjtx. holds. We show that the assumptions 
of Theorem 3.1 are fulfilled with U = URo, W= URl and X = \X0. From (3.15) it 
follows that 

*M*V(t9 Q g /f/a + UoVRl 

holds for t ^ t2(
5> *)• Hence, we have 

P(s, x, t, URl) = 1 - P(s, x, t, Rn \ URl) = 1 - *s>xV{U Cf)
 = 

*Ri 

which completes the proof. 

Example 3.5. Assume that 

(3.16) 2 YsKt, x) + ^a-Jt, x) = -a |x |2 + /? 
i i 

holds for some a > 0, ft > 0, and the assumption (3.4) is fulfilled with U = URo, 
where R0 > VWa)- Then the assertion of Theorem 3.1 is valid. The proof we get 
from Corollary 3.4 setting V(t, x) = \x\2. 

Remark 3.6. Using a partial result from [5] (lemma 3.3) we can show that the 
assumption (3.5) is satisfied if instead of (3.16) the following weaker condition is 
fulfilled: 

(3.17) 2 5>ioi('> x) + Yanft^ x) = -V f o r s o m e P > ° a n d a11 

i i 

(t,x)eR+ x (Rn\URo). 

This result slightly improves the one in [5] (Theorem 5'), where it is shown that 

| | s ,A- ssAl|-*°> t->co, 
for all s ^ 0, x, y e Rn (where 5Z is the Dirac measure at the point z), provided (3.17) 
holds and, furthermore, some boundedness of the fundamental solutions of the 
equation 

!_E±(M) + i Z_^( a y U ) = 0 
Ot i OXi i,j OXi OXj 

is required (a condition which is fulfilled, for instance, whenever the coefficients 
bh a{j are bounded in R+ x Rn together with their derivatives to the third order 
and the matrix atj is positive definite uniformly in R+ x Rn). 

Now, let us consider the autonomous equation 

(3.18) dC, = b(Q At + G(Q dwt, 

whose coefficients are locally Lipschitz continuous and satisfy (3.2a) —(3.2c). Thus, 
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there exists a (unique) solution of (3.18) which is a homogeneous Markov process 
whose transition function we denote by P(t, x, A). For v e S£, t = 0 we set 

S, v(A) = j P(t, x, Ä) v(dx) , Aє@ 

It is obvious that {S r} f^0 is a family of Markov operators satisfying (1.4). We have 
the following 

Corollary 3.7. Let there exist a nonempty region U c Rn with a C2 boundary 

such that 

(3.19a) £ aij(x) <*flj = 0|a|2 for some ft > 0 and all cc = (a,) e Rn, xe U, 
i.j' 

(3.19b) sup E^t < oo, where x is the first hitting time of the set U and K <=. Rn 
xeK 

is an arbitrary compact set. 

Then there exists an invariant measure p* e 0* and for every v e @> we have 

(3.20) \\Stv-p*\\ - > 0 , * - > o o . 

Proof. The conditions (3.19a), (3.19b) imply (3.5) (cf. [4], Lemma 4.6.5) and 
hence, the assumptions of Theorem 3.1 are fulfilled. As we have shown in the proof 
of Theorem 3.1, there exists a nontrivial lower measure with respect to {St} (the 
measure p). Thus, we can apply Theorem 2.2. 

Remark 3.8. The assertion of Corollary 3.7 improves a little the result contained 
in [4] (Theorems 4.4.1 and 4.7.1) which claims that if (3.19a), (3.19b) are fulfilled, 
then there exists an invariant measure p* e0 and for every v e ^ , Stv converges 
weakly to p* for t -> oo. 

The assertion (3.20) follows directly from [4] provided the coefficients bh atj are 
bounded in Rn together with their first and second derivatives and the matrix (afi) 
is positive definite uniformly in Rn. In this case, the measure S,v has the density 
u(t, x) which is a solution of the equation 

| = - z f ( M + ±£^K«), 
at i ox{ ij dXi dxj 

and therefore, it is locally Lipschitzian in x uniformly with respect to t (for t suf­
ficiently large). Thus, the weak convergence of S,v's implies the "strong" convergence 
(3.20). 

Remark 3.9. In the time-homogeneous case the assertion of Theorem 3.1 can be 
also obtained as a consequence of a statement in [7] (for a more general result see 
also [8]). 

306 



References 

[1] A. Lasota: Statistical stability of deterministic systems, Proc. of the international conf. held 
in Würzbuгg, FRG, August 23—28, 1982, Lecťure Notes in Math. 1017, 386—419. 

[2] Kiyomasha Narita: Remarks on nonexplosion theorem foг stochastic differential equations, 
Kodai Math. J., 5 (1982), 3, 395-401. 

[3] A. Friedman: Partial Diffeгential Equations of Paгabolic Type, Prentice-Hall, Inc, Engle-
wood Cliffs, N.J., 1964. 

[4] R. Z. Khasminskii: Stochastic stability of differential equations (Russian). Nauka, Moscow, 
1969. (English translation: Sijthoff and Noordhoff, Аlphen aan den Rijn, Germantown, 1980). 

[5] A.M. Iľiin, R. Z. Khasminskii: Аsymptotic behavior of solutions of parabolic equations and 
ergodic properties of nonhomogeneous diffusion systems (Russian). Matemat. sbornik 60, 
3(1963), 366-392. 

[6] A. Friedman: Stochastic Differential Equations and Аpplications, vol. I, Аcademic Press, 
N.Y. 1975. 

[7] M. Duflo, D. Revuz: Proprietes asymptotiques des probabilites de transition des processus 
Markov recurrents, Аnn. Inst. Henri Poincare 5 (1969), 233—244. 

[8] L. Stettner: On ergodic decomposition of Felleг Markov processes, to appear. 

Souhrn 

APLIKACE /-PODMÍNKY 
V TEORII STOCHASTICKÝCH DIFERENCIÁLNÍCH ROVNIC 

BOHDAN MASLOWSKI 

Práce pojednává o ergodických vlastnostech řešení stochastických diferenciálních rovnic. 
Je nalezena dosti obecná postačující podmínka pro asymptotickou stabilitu řešení v prostoru 
pravděpodobnostních měr. 

Резюме 

ПРИМЕНЕНИЕ /-УСЛОВИЯ В ТЕОРИИ СТОХАСТИЧЕСКИХ 
ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ 

В0Н^АN МА^О\У8К1 

Исследуется устойчивость решений стохастических дифференциальных уравнений в про­
странстве вероятностных мер (распределений). С помощью модификации „/-условия" А. 
Ласоты показана (при соответствующих предположениях) асимптотическая устойчивость 
в топологии полной вариации, в однородном случае тоже существование и единственность 
инвариантной меры. 
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