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HYPERGRAPHS AND INTERVALS, III

LADISLAV NEBESKY, Praha
(Received December 18, 1985)

Summary. Similarly to author’s papers ,,Hypergraphs and intervals” and Hypergraphs and
intervals, I1” a projectoid means an ordered pair (V, &), where V is a finite nonempty set, & is
a set of nonempty subsets of ¥, and V can be ordered as a sequence (v, ..., iy ) in such a way
that for each E€ &, there existi,j€ {1, ... |V|}suchthati < jand E= {v , ..., v’g. In the present
paper special kinds of projectoids (called X-projectoids and active X-projectoids) are studied.

Keywords: hypergraph, sequence of vertices.
AMS Classification: 05C65.

The present paper is a free continuation of papers [1] and [2]. However, the
results of Parts 1 and 2 of the present paper are independent of the results of [1]
and [2].

0. Let X and X' be arbitrary sets. If at least one of the sets X — X', X n X’, and
X’ — X is empty, we write X ~ X'. Otherwise, we write X ~ X'.

By a nonempty sequence we shall mean an arbitrary finite sequence (uy, ..., u,,),
where m = 1. If « = (vy,...,v,) is an arbitrary nonempty sequence (n = 1), we
define '

{a) = {v; there exists ie{1,...,n} such that v = v;} .

If oty = (Vygs-es V)5 oo % = (Uhys -5 Ugy,) are nonempty sequences (where k = 2
and ny, ..., n, = 1), then the sequence

(V115 o> Vgmys - ovs Okt o Upy)

will be denoted by «a ... a,. Moreover, we introduce the empty sequence w satisfying
aw = o = wo for any nonempty sequence «, and ww = w. By a sequence we shall
mean either a nonempty sequence or the empty one.

Let V be a finite nonempty set with n elements. We denote by V* the set of all
sequences (vy, ..., v,) such that

vy .. vy = V.

Obviously, |V#| = n! (note that if X is a finite set, |X| denotes the number of its
elements). Let o € V*; we say that a set I is an interval set in o if there exists a non-
empty sequence ¢ and sequences f and y such that « = f¢y and I = {¢); we denote
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by Int («) the set of all interval sets in o.. [f A < V* and 4 # 0, then we denote

Int (A) = N Int ().
acA
Similarly to [1] and [2], by a hypergraph we mean an ordered pair (V, &), where V
is a finite nonempty set and & is a set of nonempty subsets of V. If H = (V, &) is
a hypergraph, we write V(H) = V and §(H) = &. If H = (V, &) is a hypergraph,
then we denote
I(H) = {ae V% & < Int(a)} .

We say that a hypergraph H is a projectoid if IT(H) % 0.

The following definition can be motivated by some results of papers [1] and [2].
Let H be a projectoid. We shall say that H is a X-projectoid if the following con-
ditions hold:

(1) V(H) e &(H),

(2) if ve V(H), then {v; € &(H), and

(3) if E,E'e &(H) and E ~ E’, then EU E/, En E, E — E' ¢ &(H).
Theorem 2 in [1] can be reformulated as follows:

Lemma 0. If H is a Z-projectoid, then &(H) = Int (IT(H)).

Let V be a finite nonempty set, and let A = V#, A = 0.1t is obvious that (¥, Int («))
is a X-projectoid for each a € A. Combining this fact with (1)—(3) we can easily
get that (V; Int (4)) is also a Z-projectoid. This observation together with Lemma 0
gives the following result:

Theorem 0. Let V be a finite nonempty set, and let H be a hypergraph such that
V(H).= V. Then H is a X-projectoid if and only if there exists a nonempty subset A
of V* such that &(H) = Int (A).

1. Let H be a X-projectoid. We denote

F(H) ={Feé(H); F ~E for eéch Ee&(H)} .

For every F e #(H), we denote by A" ,(F) the set of F’ € #(H) such that F' is a proper
subset of F and if F” e #(H) and F' = F” < F, then either F' = F” or F” = F.
Clearly, if F € #(H), then 4 4(F) # 0 if and only if |F| 2 2. Moreover, we denote
by #*(H) the set of all F € & (H) with the property that there exists a proper subset .#
of A 'y(F) such that l/[| > 2 and

U F'eé(H).
F'ett

Let F € #(H) such that #4(F) # 0, and let a € IT(H). There exists exactly one
sequence (Fy, ..., F,) € (4 z(F))* such that there exist sequences @y, ..., @,, B, and y
satisfying

(@) =Fy,...{@> =F,, and o= fo;...0..
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We denote the sequence (Fy, ..., F,) by Sy(F, a) and the set

{Fiu..0F;15i<jsSnj—-i<n-1}
by 24(F, a).
The following theorem shows that if H is a Z-projectoid, then &(H) can be derived
from #(H), #*(H), and one arbitrary a e IT(H).

Theorem 1. Let H be a Z-projectoid, and let a € II(H). Then
SH)— FH) = U 2u(F,d).
)

FeF*(H

Proof. If H, is a Z-projectoid and «, € IT(H,), then we denote
'Q(H09 aO) = U '@HO(FO’ 0(0) .
FoeF*(Ho)
We wish to prove that &(H) — #(H) = 2(H, «).

We proceed by induction on |V(H)|. The case when |V(H)| = 1 is obvious. Let
|V(H)| > 1. Assume that for every Z-projectoid H' such that |V(H’)| < |V(H)| and
every o’ € II(H'), it has been proved that &(H') — #(H') = 2(H', &').

We distinguish two cases:

Case 1. Assume that there exists no F e #(H) such that 1 < |F| < |V(H)|. If
F*(H) = 0, then &(H) — #(H) = 0 = 2(H, a). Let F*(H) # 0. Then F*(H) =
= {V(H)}. It is obvious that &(H) — F(H) < 2(H, «). We shall assume that
9(H,a) — (6(H) — #(H)) * 0. Consider such X € 2(H, o) — (6(H) — #(H)) that
for each X' € 2(H, «) — (6(H) — #(H)), |X’| £ |X|. Denote

= (vg,..., ).

There exist f, he{l,...,n} such that 1 £ f < h < n and that X = {v, ..., 0.}
Since X ¢ #(H), we have f < hand h —f<n — L.

Assume that 1 < fand h < n. As follows from the maximality of |X|, {v15 .05 0,
{v,...,v,} € &(H). Since H is a Z-projectoid, it follows from (3) that

(v, oy 0 {op, .00, 0.} €8(H),

which is a contradiction. This means that either f = 1 or h = n. Without loss of
generality we assume that f = 1.

According to (2), {v,} € &(H). We denote by g the maximum integer not exceeding
h such that {v,,...,v,} € &(H). Since F*(H) = {V(H)}, there exists E € §(H) such
that E ~ E’ for at least one E’ € &(H). By the assumption of Case 1, there exists
no F e #(H) such that 1 < |F| < |V(H)|. The fact that H is a Z-projectoid implies
that there exist E;, E, € §(H) such that E; ~ E, and E; U E, = V. Therelore,
either g = 2 or h + 1 £ n — 1. Moreover, We get {v,41, ..., Upyy} eg(H). Since
{Vgats oor Vns1} ¢ F(H), there exists Eoe &(H) such that Eq »~ {v,41, ..., U441}
Clearly, either (i) Eq » {vy, ..., 0444} or (ii) Eo S {vy, ..., Uys1} and v,, v,4, € E,.
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Therefore, there exists k, g + 1 < k < h — 1,suchthat {v,, ..., v} € &(H), which is
a contradiction. Thus, &(H) — #(H) = 2(H, a).

Case 2. Assume that there exists Fo € #(H) such that 1 < |Fo| < |V(H)|. Then
there exists F € #(H) such that 1 < |F| < |V(H)| and that for every F’ € #(H) the
inequality |F’| < |F| implies |F’| = 1. There exist sequences 8,7, and ¢ such that
« = foy and {p) = F.

We denote by H the hypergraph defined as follows:

V(Hp) = F and &(Hp) = {Eeé(H); E < F}.
It is easy to see that Hjp is a Z-projectoid, ¢ € ITI(Hy), #(Hy) = #(H) n &(H;),
F*(Hp) = F*(H) 0 6(Hg), and 2(Hp, ¢) = 2(H, a) n &(Hy). Since |F| < |V(H)|,
according to the induction hypothesis &(Hp) — #(Hy) = 2(Hp, ¢); thus
(4) (6(H) — F(H)) n 6(Hp) = 2(H, «) N &(Hp) .
Consider an element x such that x ¢ V(H). We denote by H” the hypergraph
defined as follows:

V(HT) = (V- F)u {x! and
(g(HF) ={E1; Eleg(H), E10F=(0}U

We can easily see that H is a Z-projectoid and f(x) y € IT(HF). Moreover, we can
see that

F(HF) ={F;;F,eZ#(H); F;nF =0}y
V{(F, = F)u{x}; F,e #(H), F < F,} and
F*HF)={F; Fie #*(H), F;n F = 0} u
U{(Fz - F)U{x}; F2 E f*(H), F E Fz, F ='= Fz} .
Since |V(HT)| < [V(H)|, it follows from the induction hypothesis that &(H) —
— #(HF) = 2(H", B(x) y). This implies
(5) (6(H) — #(H)) — &(Hy) = 2(H, @) — E(Hy).

Combining (4) and (5), we get &(H) — #(H) = 2(H, «), which completes the proof
of Theorem 1.

Corollary. Let H, and H, be Z-projectoids such that V(H,) = V(H,) and II(H,) 0
N II(H,) + 0. Then §(H,) = &(H,) if and only if #(H,) = #(H,) and F*(H,) =
= F*(H,). :

2. Let V be a finite nonempty set. If 4 < V#, then we denote by Stab (4) the set
of all X e Int (4) which possess the following property:
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(6) if ¢, &, and y, (for i = 1 and 2) are arbitrary sequences such that ¢,&,y,
928292 € Aand &) = X = (), then ¢,&Y; € A.

Lemma 1. Let V be a finite nonempty set, and let A = V*. Then (V, Stab (4))
is a Z-projectoid.

Proof. Denote H, = (V, Stab (4)). According to Theorem 0, H, is a projectoid.
It is obvious that Ve Stab(4) and that {v} € Stab (4) for each ve V. Let X, Ye
€ Stab (4),X ~ Y,andletZe {X U Y, X n Y, X — Y}. Consider arbitrary sequences

¢i, (i, and Y, for i = 1 and 2 such that (Y, 9,{2¥; € 4, and {{;) = Z = {{,).
We wish to show that ¢,{,/, € 4.

Since XU Y, XN Y, X —Y, Y- X elnt(A4), there exist sequences ¢;, B;, i, J;,
and o, for i = 1 and 2 such that

eBjvidjo; = @;{iy;, for j=1 and2,and
{<Bvds <ndid} = {X, Y}, for k=1 and2.

Without loss of generality we assume that X = {B,y,). Therefore, Y = {y,6,).
Let X = (y,6,). Then Y = {B,y,>. Since X € Stab (4), it follows from (6) that

02P2B1710,€ 4.

We have (B0 u () =(Y—=X)u(YnX)=7Y. Since B> =X-Y, B, is
a nonempty sequence. Thus

Y¢ Int (Qzﬁzﬂﬂ’l"'z) s

which is a contradiction. This means that X = {f,y,), and therefore, Y = {y,0,).
Recall that ¢;8,y:6,0,€ A for i = 1,2. Since {B;y;> = X for j = 1,2, it follows
from (6) that
028171620, € 4.

Analogously, since {y,8,> = Y for k = 1, 2, it follows from (6) that
02B271010,€ 4.

Since {B171> = {B,71), the fact that 0,8,7,6,0,, 0:8,7,6,0, € A implies
028171610, € 4. ' ‘

Since {y;0,) = {y.02), the fact that ¢,5,7,06,0,, 028,7:6,0, € A implies
02B2710,0,€ A

Finally, since {y,0,) = {y:0,), the fact that ¢,5,y,6,0,, 0,81716:0, € A implies
Qzﬂﬂ’z‘szfﬁ €A.

SinceZe{X U Y,X Y, X — Y}, we have ¢,{,y, € A. Hence, H, is a Z-projectoid,
which completes the proof of the lemma. ‘ }
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We shall say that a Z-projectoid H is active if A z(F)n F*(H) = 0 for each
F e #*(H).

The statement of the next theorem is analogous to that of Theorem 0. In the proof
Theorem 1 will be used.

Theorem 2. Let V be a finite nonempty set, and let H be a hypergraph such that
V(H) = V. Then H is an active X-projectoid if and only if there exists a nonempty
subset A of V*# such that §(H) = Stab (A).

Proof. (I) Assume that H is an active Z-projectoid. Consider an arbitrary o € IT(H).
For every F € #(H), we introduce a set A(F) as follows:

(i) Let A 4(F) = 0. Let x denote the only vertex of F. Then we put A(F) = {(x)}.

(i) Let A y(F) % 0. Let (Fy, ..., F,) denote Sy(F, ). If F € #*(H), we put

AF) ={¢y ... 0; @ € A(F,), ..., 0, € A(F,)} ;
if F ¢ #*(H), we put
A(F) = {@y ... ¢,; either ¢, € A(F,), ..., ¢, € A(F,) or
¢, € A(F,), ..., ¢, € A(Fy)} .

Moreover, we denote 4 = A(V) and H, = (V, Stab (4)). According to Lemma 1,
H, is a X-projectoid.

The definition of A easily yields that
(7) #(H) < &(H,), and

(8) if Fe #(H), /'y(F) + 0, and there exists Z € &(H,) such that Z is the union
of at least two but not all elements of A y(F), then F e F*(H), Z € 2y(F, o)
and Z,4(F, o) < &(H,).

We wish to show that §(H) = Stab (4). To the contrary, let 8(H) % Stab (A).
Combining Theorem 1 with (7) and (8), we get that %#(H) — #(H,) + 0. Hence,
there exist X € Stab (4) and F, € #(H) such that X ~ F,. Consider such F € #(H)
that X = F and for any F'e #(H), if X < F' = F, then F’ = F. Obviously,
A u(F) + 0. We denote Sy(F, @) by (Gy, ..., G,). Since X » F, there exist f and h,
1 £ f < h £ m, such that

GnX+0+G,nX,
G, < X for each g,f < g < h, and either G, ~ X or G, ~ X.

Without loss of generality, let G, ~ X. Obviously, #'(G,) + 0. We denote Sy(G, @)
by (Jy, ..., J,). Since X N G, * 0, there exists i, 1 < i > n, such that

JiﬁX#:@,
Jo = Xforeach k,i < k < n,and if i = 1, then J; ~ X.
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Ifi = 1, we put d = 2; if i = 2, we put d = i. According to (7), #(H) < Stab (4).
Since H,, is a Z-projectoid, it follows from (3) that

JaU...0J,U G U ..U G,e Stab (4).

It follows from (6) that F, G, e #*(H). This implies that H is not active, which is
a contradiction. Hence, &(H) = Stab (A).

(IT) Assume that there exists A = V* such that &(H) = Stab (4). According to
Lemma 1, H is a Z-projectoid. We wish to show that H is active. To the contrary,
we assume that there exist F, G e #*(H) such that G e A y4(F). According to the
definition, Stab (4) < Int (4). It follows from the definition of a projectoid that
A c II(H). Consider an arbitrary ae A. Denote Sy(F,«) = (Fy, ..., F,). Since
FeF *(H), m = 3. Without loss of generality we assume that there exists k, 1 <
< k £ m — 1, such that G = F,. Denote Sy(F,,®) = (Gy, ..., G,). Since F, Ge
€ F*(H), Theorem 1 implies

9) Su(F, ) = (Fys..., Fr) and Sg(F,, o) =
= (G ...,G,), foreach o'€A.
Since G,, F,4, € Stab (4), it follows from (6) and (9) that G, U F,, € Stab (4).

Since G ~ G, U F,,, G ¢ F(H), which is a contradiction. Thus, H is active, which
completes the proof.

Remark. The subject of the present paper has its origin in the author’s study of
combinatorial properties of linguistic notions.
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Souhrn

HYPERGRAFY A INTERVALY, III

LADISLAV NEBESKY

Podobn& jako v autorovych &lancich ,,Hypergraphs and intervals’’ a ,,Hypergraphs and
[intervals, II’’ se i v tomto &ldnku projektoidem mini usporddana dvojice (V, &), kde V je kone€na
neprazdnd mnozina, € je mnoZina néjakych neprazdnych podmnoZin mnoZiny V a kone¢n& kde V'
milZze byt uspofddand do posloupnosti (vy, ..., VIVI) takovym zpisobem, Ze pro kazidé E€ &
existuji i, /€ {1, ..., |V|}, Ze i < j a ptitom E = {v,, ..., v;}. V tomto &lanku se studuji zv14$tni
druhy projektoidi (Z-projektoidy a aktivni X-projektoidy).
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Pe3ome

I'MIMEPTPA®BI 1 UHTEPBAIJIBI, 111

LADISLAV NEBESKY

Kak u B cTatbsix aBTOpa,,[Mneprpadsr u uxatepsansl* v ,,uneprpadsl u uHTepBansl, 11, Tak
U B 3TOH paboTe NMPOEKTOMIOM Ha3blBaeTcs ynopsaoyenHas mapa (V, &), roe V — KoHeYHOe He-
IyCTOE MHOXECTBO, & — HEKOTOpAas CUCTEMa HEIYCTbIX IO IMHOXECTB MHOXECTBA V M 31IeMEHTHI
MHOXeCTBa V MOXKHO PacronoXub B IOCIENOBATENBHOCTE (Vy, ..., vlyl) TakuM o6pa3om, uTo Ans
xaxnoro E€ & cymzcteyior i,/ € {1,..., |V|} Takue,uto i < /jn E= {v, ..., v;}. B nacroswei
CTaTb€ M3YYaloTCs CIelHasbHble BUABI NMPOeKTONA0B (X — MPOSKTOMIbI MU aKTHBHBbIE X — NPOEK-
TOUIBY).
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