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REFLECTION AND THE NEUMANN PROBLEM ON DOUBLY
CONNECTED REGIONS
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Summary. This paper is a continuation of the paper ‘‘Reflection and the Dirichlet problem on
doubly connected regions’’. Analogously to that paper it is shown that using the reflection
function the system of two integral equations corresponding the Neumann problem can be reduced
to a single integral equation.
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The Dirichlet problem for doubly connected regions bounded by two Jordan curves
in the plane has been solved in [6]. The “exterior curve” was supposed to be analytic
and such that it has a “‘global reflection function”; for the existence and properties
of the reflection function see [16]. The “interior curve” was non-smooth in general
but of finite length and with bounded cyclic variation. It was shown that the use of
the reflection function makes it possible to reduce the system of two integral equations
in solving the Dirichlet problem to a single integral equation considered on the “in-
terior curve”. The original idea is due to J. M. Sloss [17], who considered only the
case of smooth boundary curves. In this sense, the results in [6] are a mere generaliza-
tion of the results in [17]. Only the Dirichlet problem was studied in [17]. The aim
of the present paper is to show that, in a similar way, the reflection function can be
used also in solving the Neumann problem. We shall show that, as in the case of the
Dirichlet problem, by using the reflection function the system of two integral equa-
tions corresponding to the Neumann problem can be reduced to a single integral
equation considered on the “interior curve’.

1. PRELIMINARY REMARKS AND NOTATION

In this part we state one simple assertion concerning the reflection function.
Further, we introduce the necessary notation and recall some assertions we shall need
in the sequel. We keep the notation used in [6] (the present paper is a continuation
of [6]), nevertheless we recall briefly some points.

Just as in [6] we shall deal with the real plane R? which we shall identify with the
complex plane C. '
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Throughout the paper Lstands for an analytic Jordan curve with a parametrization
(0) = ,(0) + i 9,(), 0 € €0, 2y, of the form

(1.1) ®,(0) = x(0) = Z:(ak cos kO + by sin k0),
1.2) ®,(0) = y(0) =k§0(ak cos kf + Py sin k6) ,

where n = m,
(21(0))* + (23(6))* + 0,
(am bn) * (0’ 0) +* (OC,,,, ﬂ'n) .

Moreover, if Lis not a circle then in the case m = n we suppose that either

o2 + B2+ a? + b}
or
,a, + B,b, *+ 0.
Denote further
R =1IntL.

It is shown in [16] that there are finitely many points ey, ..., ¢, € R? (the so called
critical points with respect to L) and a neighbourhood R, of L such that, if L; is
a Jordan arc lying in R and joining all the points ey, ..., e,, then there is a function g
with the following properties:

g is defined and analytic on (R — {ey, ..., &,}) U Rg;

g is single-valued on (R — L;) U Ry;

g'(z) £ 0 for ze(R — L) v Ry;

g(z) = z for ze L;

GgR-L)n(R-L)=0;

g can be uniquely extended onto

R,=(R—-L)ULUgGR - L)

to be holomorphic there;

§(3(z)) = z for zeR,

The function (mapping) g is called the reflection function (mapping) with respect
to L. It can be seen that g is one-to-one on Ry, §(R,) = R, §(R,nR) = R, " Ext L,
g(R,NnExtL) = R,n R.

For r = 1, 2 let s, stand for the (normalized) r-dimensional Hausdorff measure
on R,

We shall need the following auxiliary assertion (cf. [5], Lemma 1.1).

1.1. Lemma. Let M be an open set such that either M = R — L, or M c
< §(R — L,). Let (real) functions ¢, h be defined on G(M) and have continuous
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first partial derivatives there. Then the integral

J. grad (¢ * g) grad (h * §) do#,
M
exists if and only if the integral
J. grad ¢ grad h do#,
(M)

does. If these integrals exist then

(1.3) '[ grad (¢ » g) grad (h + §) do#, = '[ grad ¢ grad hdo#, .
M

a(M)
1.2. Remark. The assertion of Lemma 1.1 will be used in various forms. Let us
consider, for instance, the following situation. Let M = R — L; be open,
S =Mu g(M)

and let ¢, h be functions defined and continuously differentiable on S. Then Lemma

1.1 yields (the equalities are valid also in the sense of the existence of the integrals
considered)

f grad (¢ » g) grad (h * §) do#, = J grad ¢ grad h do#,
M )

and at the same time

J‘ grad ¢ grad hdo#, = J‘ grad (¢ * §) grad (h x g) do#, .
M

a(M)

Hence

(1.4 J' grad (¢ * g) grad (h  §) do#, = ‘[ grad ¢ grad h do#, .
S S

In a similar way we can obtain, for example, the equalities

(1.5) J' grad (¢ * §) grad‘h do#, = J‘ grad ¢ grad (h = §) do?, ,
S N

(1.6) J‘sgrad (p+g)grad (h + hxg)ds#, =

= J. grad ¢ grad (h + h » g) do#,
S

and so on.
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1.3. Remark. Let R, be an open neighbourhood of L, R, n L; = 0, and let h be
a harmonic function on

S* =RyNR

such that h and its first partial derivatives are continuously extendable from S* to
S* U L. Further, let ¢ be a continuously differentiable function with compact
support in R2,

spto = S*ULuUg(S")

(spt o stands for the support of ¢). As h is harmonic, we have
div [p grad h] = grad p grad h .

Let n, denote the exterior normal to S* on Land n; the exterior normal to g(S™*)
on L; of course, we have n; = —n,. Since

spt o N 0S* = spt o n 8(3(S*)) = L,

we obtain from the Gauss-Green theorem and Lemma 1.1

j. on,grad hd#; = J. grad ¢ grad hdo#, =
L 5+

= j grad (¢ * g) grad (h * §) do#, = '[ (¢ % g) n,grad (h = g) dot, .
g(st) L
However, for z € L we have (¢ * §) (z) = ¢(z) and thus
f on,grad h d#, = J‘ on, grad (h * g) d#, .
L L

Since the last equality is valid for each continuously differentiable function ¢ with

compact support in S* U Lu g(S*) (which is a neighbourhood of L), we see now
that

w7 oh_ofheg)_ _ohe)
on on; _0n,

e

on L(cf. [6], Lemma 1.2).

1.4. Remark. Let h be a harmonic function on a “symmetric” neighbourhood U
of L, that is, on such a neighbourhood U that g(z) e U for any z € U. Suppose that
h(g(z)) = h(z) for z € U and let n be a normal to L. Then for { € Lthe identity

oh

— =0

on ©
holds since by (1.7) we have

0 oh
“(hx3d) = — =
6n( *g) on
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on Land at the same time (by the assumption h * § = h)
0
— h *xJ) = —
5+ 9)

1.5. Further notation. Let {a, b) be a compact interval in R, y: {a, b) - R?
a simple closed path of finite length; we write
K = y(<a, b)) .
For zeR? let 9, = 97 be a single-valued continuous branch of arg [y — z] on
{a,b) — y~(2). For0 < r £ + oo let y, , be the family of all components of the set
{tela,by; 0 < |Y(t) — z| < 1},

and for « € R" let n?(x, z) be the number of points in
{tea,by; Y(t) — z = |[Y(t) — z] €, 0 < |Y(t) — z| < 7}

(finite or + o0). It is known (see for example [11]) that n¥(«, z) as a function of the
variable « € R! is Lebesgue measurable, and if we put

27
(1.8) W(z) = J. n¥(, z) do
0
then

(z) = Y var[9,1].

Ieyz,r
For r = + 00 we write 1% ,(z) = v¥(z) and this term is called the cyclic variation
of the curve K (or of the path y/) at the point z.
If M < R? is compact, then, as usual, ¥(M) stands for the space of all (real) con-
tinuous functions on M endowed with the supremum norm. ¢’'(M) will denote the

space of all signed (ﬁnite) Borel measures on R? with support contained in M. For
p € ¢'(M) we put

[l = 1ul (M),

where 4| is the total variation of u. ’(M) endowed with this norm is the dual space
of ¢(M).

Let z € R? be such that v¥(z) < co. Then for fe %(K) the value of the double
layer potential Wy(z, f) is defined by
(19) wen) =1 5 [0 e0.
Teyz,wJ I

Under the assumption var [¥; <a, b)] < oo we have v¥(z) < oo foreach z € R? — K
and '
Wi(z, f) = J‘ f(C) dC
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Put further ¢ = ¢ = 1 if ¥ is positively oriented and ¢ = 1x = —1 in the opposite
case. It is known (see [13], [11], [12]) that if

(1.10) sup v¥(z) <

zeK

then for each f € 4(K), { € K there exist finite limits

(1.11) W(C, f) = lim Wiz, f),
zezI:tCK

(1.12) We(C, f) = lim Wi(z, f)
ze;.:t;K

and

We(l:f) = e f(0) = WR(C, ) + () -
If (1.10) is fulfilled then for f e %(K), { € K put

(1.13) Wi £(0) = Wi, f) = e f(0) = WR(L.f) + ¢+ £(0) .

Then Wyfe é(K) for each fe %(K) and Wy (Wx: f+> Wxf) is a bounded linear
operator acting on %(K).

Let & stand for the set of all compact (linear) operators acting on 4(K). Given
a linear continuous operator A: €(K) —» %(K) denote

wA = inf “A -D|.
Dex’

The reciprocal value of wA is called the Fredholm radius of 4. It is known that

(see [13], [12])

(1.14) oWy = ! im sup v/({).
Tr->0+ [eK
Further, let 2 denote the space of all infinitely differentiable (real) functions with
compact supports in R% Given a Borel set M < R? the perimeter P(M) of M is
defined by

P(M) = supf divwds#, ,

M

where w = (wy, w,) ranges over all vector-valued functions with components
Wi, Wy € D such that w} + w? < 1. It is known that if either M = IntK or M =
= Ext K then

P(M) = var [{; <a, bY] = #,(K) .

Suppose M is open, and for z € R? let n™(z) denote the exterior normal in Federer’s
sense of M at z. We shall need the following form of the divergence theorem (the
Gauss-Green theorem):
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Suppose that P(M) < o and let w,, w, € 2, w = (wy, w,). Then
_[ w(l) n™(0) do#4(0) = J div w(z) do#,(z) .
M M
For z € R? define a function h, on R? such that h,(z) = + oo and

1
h()) = ~ln ——
n ¢ -z
for { € R?* — {z}. Recall another expression for the double layer potential (cf. [6],
(2.39)). Suppose that var [/; {a, b)] < co. Then for z € R*> — K, f € 4(K) such that
f = ¢’|x, where ¢’ € D, z ¢ spt ¢/ we have

(1.15) Wi(z, f) = —L'[ grad ¢/ grad h, do#, =

_— f £(©) n5(2) grad k(1) d#,(2)

if n® denotes the exterior normal in Federer’s sense of Int K.
Let M = R? be open and let h be a harmonic function on M such that for any
bounded open set G = R?

(1.16) J‘ |grad h| do#, < 0.
MnG

Then the (generalized or weak) normal derivative Nyh of h with respect to M is
defined as a functional (a distribution) on 2 (see for example [13] or [9]) by

(1.17) {@, Nyh) = J‘ gradgpgrad hdo#,, ¢ec9.
M
It is known that the support of N,k is contained in M (the boundary of M).
If 4 is a signed (ﬁnite) Borel measure with compact support in R? then the loga-
rithmic potential U, is defined by

(L15) U - Lzhz(a 4,0

for all such z e R? for which the integral on the right-hand side exists. U, is defined
at least on R? — spt u and is harmonic there.

Let either M = IntK or M = ExtK. It is known that for any pe %'(K) the
potential h = U, satisfies the condition (1.16) and thus the weak normal derivative
NyU, of U, is defined by )1.17). The support of N, U, is contained in K. Then also
the following assertion is valid (see [13] or [9]):

Let either M = Int K or M = Ext K. Then the distribution NyU can be repre-
sented by a charge v, € ¢'(K) for each pe ¢'(K) in the sense that
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(o, NyU,» =f ¢ dv,
K

for each ¢ € 9 if and only if

(1.19) sup v¥({) < o .
1454

If (1.19) is fulfilled then for each pe®'(K) the charge v, e 4'(K) is uniquely
determined and

1
(120 Il = (2 + 7 sup @) Il
T {eK
If the condition (1.19) is fulfilled then we identify the functional Ny U, with the
charge v,. N, U is then a bounded linear operator acting on ¢'(K):
NyU:ip—NyU, =v,, NyU:%'(K)- ¢'(K).

The following assertion also holds (see [13] or [9], [12]):

Suppose that (1.19) is fulfilled. Then the operator NyU is adjoint to (I — W)
(I denotes the identity operator on ¥(K)) in the case M = IntK and adjoint to
(I + «W) in the case M = Ext K.

2. OPERATOR Ny AND THE NEUMANN PROBLEM
Throughout this part we suppose that Lis an analytic Jordan curve having a global
reflection function and K a Jordan curve such that
K cIntL.

We shall always suppose that K, L are related as follows. Let ey, ..., e, be all the
critical points with respect to Llying in Int L. If

G =IntK
(we keep this notation in the sequel) we suppose that
{es, ...} = G.
Further, let L; be an arc which joins all the points e, ..., e,,
LG,

and g the corresponding reflection function with respect to L. Then g is defined and
one-to-one on

R,=(IntL— L)u Lu g(Int L — L)

and g is holomorphic there. If We denote

(2.1) R = §(K)
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then K is also a Jordan curve and it follows from the properties of the reflection
function g (and the above assumptions) that

KuLcIntR.
Further, denote

(2.2) S* =IntLNnExtK, S~ =g(s*), S=S*uLus™.
Then we have
S =ExtLnIntK, S=ExtKnIntk,

0S* =KulL, S =LuR, 8=KuKk.
We will often denote
E = ExtK.

Let  be a parametrization of the curve K defined on an interval {a, b}, ¥ a para-
metrization of K defined on the same interval {a, b). Throughout this part we sup-
pose that K with the parametrization y is negatively oriented while K wih the para-
metrization ¥ is positively oriented (the orientation plays a role in the definition of
the double layer potential).

Since g is holomorphic it is easy to see that if

(2.3) var [{; <a, b)] <
then also
(2.4) var [§/; <a, bY] < o .

Note that there is a connection even between the cyclic variations v¥ and v” of K
and K, respectively (see [5]).

We shall solve the Neumann problem on the region S*. The solution will be found
in the form

U,+U,+*g,

where u is a suitable measure supported by 6S* = K U L.

First we shall investigate the normal derivative of (U, + U, * §) with respect
to S*, where either pe%'(K) or pe%'(L). If pe%'(K) then |grad U,| is locally
integrable on R? and the function U, * g is harmonic on R, — K and thus its partial
derivatives are bounded on S*. Now it is seen that the weak normal derivative of
(U, + U, * g) with respect to S* can be defined as a functional Ng.(U, + U, * g)
on 2 by (cf. (1.17))

(2.5) {p, Ns+(U,, + U, *g)) = J grad ¢ grad (U, + U, * g) do#,,

s+ .
@ € 2. In accordance with the preliminary remarks, the support of N, s+(U,, + U, *3)
is contained in 8S* = K U L. Let us notice that if u € ¢’(K) then even the support
of Ng+(U, + U, * g) is contained in K. Indeed, let ¢ € 2 be such that spt g " K = 0
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and let n* stand for the exterior normal with respect to S* on L, n~ for the interior
normal with respect to S* on L(clearly n™ = —n* and n™ is at the same time the
exterior normal with respect to S~ on L). In virtue of the fact that U, is harmonic
on R? — K and the assumption spt ¢ N K = 0 the divergence theorem yields

j grad ¢ grad U, do#, =J on* grad U, do#, .
s+ L

Since (¢ * ) () = ¢(¢) for { € L, we obtain from Lemma 1.1 (again using the
divergence theorem)

J grad ¢ grad (U, » §) d#, =J‘
s+

N

grad (¢ * g) grad U, d#,

= f @*gn~ gradU,d#, = —j on* grad U, do#, .
L L
Now we obtain immediately from (2.5) that <@, Ns+(U, + U, * §)> = 0, which
means that the support of Ng.(U, + U, * §) is contained in K.
Note that in fact, we have just proved that normal the derivative of (U, + U,  g)
vanishes on L. But this is clear with regard to Remark 1.4, the fact that h = (U, +
+ U, * g) is harmonic on S, and h* § = h.

2.1. Lemma. Suppose the condition (2.3) is fulfilled. Then the functional
Ns+(U, + U, * g) can be represented by a charge v, € ¢'(K) for each re¥¢'(K),
in the sense that

9 N (U, + U2 = [ o,
Jk
for any ¢ € 2 if and only if
(27 sup v¥({) < .
leK

If (2.7) is fulfilled then the operator N,
Ngipv,, Ng:¥'(K)- ¢'(K),
is a bounded linear operator.

Proof. Denote
(2.8) 2, ={0eP; spto c R, sptonL=0}.

Since spt Ns.(U, + U, * §) = K for pe %'(K), we can restrict our considerations
to functions ¢ € ;. Let p € ¥'(K), ¢ € 2,. Then (assuming (2.3) only)

(@, Ns:+(Up*9)) = J grad ¢ grad (U, * §) do#, =
\ s+

= J‘ grad ((p * J) grad U,d#, =I ¢ * gn® grad U,d#,,
s- R
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where n¥ denotes the exterior normal in Federer’s sense with respect to S~ on K.

As dist (K, K) > 0, it is easily seen that there is a constant ¢ € R' such that (for
each pe %'(K))

suplgrad U,(0)] = cfu] .
If ¢ € 2, then certainly @] = [|¢ * g|. Now we see that

Ko, Nss(Uy )] = o] llul #,(R).

which means that N.(U, * §) can be always (only under the assumption (2.3))
represented by a charge v:‘ € ’ef’(K) in the sense that

(2.9) {p,Ng:+(U, % g)> = [ o dv,
L K

for each ¢ € 2,; moreover we have

(2.10) vl < € 24(R) ]

(Note that if G"‘ = n® grad qufllk then, in the sense of the notation used in [6],
vh ~ 9,.) Further, it follows from (2.10) that the operator Ny,

(2.11) Nepvl, Re®'(K) - %(K),

is a bounded (Iinear) operator (we shall keep this notation in the sequel).
Now it suffices to note that

(o, Ns+(Uy, + U, *g)> = <9, N5 Uy + <9, Ns:(U, % §)> ,

S+

{@,Ns:U,> =j grad ¢ grad U, d#, =

= J grad o grad U, d#, = (@, N;U,)
E

for € 2, (E = ExtK), and (cf. preliminary remarks) N,U, can be represented
by a charge from ¢'(K) for each e %'(K) if and only if (2.7) is fulfilled. Further,
if (2.7) is supposed, the operator N U,

NU:p v,
where v: € ¢'(K) is such that

<¢9NEUu>=jwdvf, (PG@,
K

is a bounded linear operator mapping ¢’'(K) into itself.

In what follows we shall always suppose that the condition (2.7) is fulfilled (with
the exception of Lemma 2.4 below) and Ny will stand for the operator defined in
Lemma 2.1. We shall investigate the equation

(2.12) Nep=v,
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where ve %'(K) is a given charge, u € %’(K) unknown. Note that if ue ¢'(K) is
a solution of (2.12) then, in accordance with the above, the function (U, + U, * §)
can be regarded as a (generalized) solution of the Neumann problem on S* with the
boundary condition v prescribed on K and with the zero boundary condition on L.

2.2. Lemma. Suppose that

(2.13) I fim sup v/({) < 1
Tr->0+ leK

and let p e 6'(K) be such that

(2.14) New=0.

Then the function (U, + U, x g) is constant on S = S* U LU S7; in particular,
U, is constant on L.

Proof. It suffices to show that (U, + U, * g) is constant on S* since this function
is harmonic on S. If (U, + U, * ) = c on S then (in view of §({) = ) U,(¢) = 4c
for { € L, that is, U, is constant on L.

Let p € ¥'(K) be a charge for which (2.14) holds. The function U, * g is harmonic
on R, — K. There is a Jordan curve L, of the class ¢* such that L, < IntK and if

Sf, = ExtL nIntL
then ¢l (Sf,) = R, (and cl(S{,) = R, — K, of course), that is, U, * § is harmonic
on a neighbourhood of ¢l (S7,). Since Lis analytic, L, of the class %2, it follows from
the classical theory concerning the solution of the Neumann problem by means of

integral equations that there are u;, € ¢'(L,), 1, € %'(L)(and py,, 1 are even absolute-
ly continuous with respect to J#,) such that

Uur,(2) + Up(2) = (Usx9) (9)

for z € S/,. By a classical result on the balayage of measures (see [14], pp. 258, 260,
Theorem 4.2, Corollary 2) there is a uy e %'(K) such that U, (z) = U, (z) for
z € Ext K. In particular, if ze S* then

Uu(2) + Up(2) = (U, % §) (2) -
Put

Mo = [ + P + pp .
Then p, € ¢'(B), where B = 9S* = K U L, and for z€ S* we have
U(z) = U2) + U, (2) + U, (2) = U2) + (U, *3) (2) .
Thus (as (2.14) is fulfilled)
(9, N5:U,> = <@, Ns:(U, + U, % §)y = 0
for ¢ € 2, that is Ng+U,, = 0. Since Lis analytic and the condition (2.13) is fulfilled
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for K it follows from [9], Lemma 5.8 that U, and thus (U, + U, * g) is constant
on S*.

2.3. Lemma. Suppose the condition (2.13) is fulfilled. Then in €'(K) there is at
most one linearly independent charge p such that U, is constant on L.

Proof. Let us distinguish two cases: either there is a non-trivial charge u € ¢'(K)
such that U, vanishes on L, or no such charge exists.

a) Suppose that there is no pe ¢'(K), 1 + 0, such that U,|, = 0. Let p, € ¢'(K)
be such that U, |, = 1 and suppose that there is pe %’(K) such that U,|, = c,
where c € R isa constant. Putting pt; = p — cuowehave U, |, = U,|. — cU,|. =0
and by the assumption p; = 0, that is 4 = cy,. Note that in this case we did not
use the assumption (2.13).

b) Suppose that there is a o € €'(K), po *+ 0, such that U, |, = 0.

First let us show that if u € ¢(K) is such that U,|, = 0 and p(K) = 0 then neces-
sarily p = 0. If p is a charge with a compact support in R? such that u(R?) = 0,
then
(2.15) lim U,(z)=0.

|z]=>+ o
Since spt u = K, U, is harmonic on R? — K > Ext L and continuous on Ext L. If
U,,[L = 0 and (2.15) holds then by the maximum principle U, vanishes on Ext L
and thus (as U, is harmonic pn Ext K) also vanishes on Ext K, Now we see that U,
is a solution of the Neumann problem on Ext K with the zero boundary condition.
Since the condition (2.13) is fulfilled it follows from [13], Theorem 14.7 that p = 0.

Thus we see that po(K) # 0 and we can suppose that yo(K) = 1.

Now let u € %’(K) be such that U,,IL = 0. Let us show that then u is a multiple
of po. If we put py = pu — cpo, where ¢ = p(K), then p4(K) =0 and U,,|, = 0.
By the preceding case py = 0, that is u = cu,.

Finally, we shall show that in this case there is no p € ¢'(K) such that U,|, = ¢,
where ¢ € R\ {0} is a constant. Suppose that U,|, = ¢ + 0 and put p, = p — kp,,
where k = p(K). Then p,(K) = 0 and thus

lim U,(z)=0.
|z]>+ o
Further, we have
Ul = Upe = kU, [e = c + 0.

Thus U, is a bounded harmonic function on Ext Lsuch that

IimU,(z) =c
z—y
zeExtL

for all y € L. By the maximum principle for harmonic functions in the plane (see [ 1 3],
Theorem 14.2) we have U, (z) = ¢ for z € Ext L — a contradiction.
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Now we shall look for the form of the operator adjoint to Ny. We have seen in
the proof of Lemma 2.1 that if the condition (2.7) is fulfilled then the operator Ny
can be written in the form (E = Ext K)

(2.16) NK=NEU+NK‘

The operator adjoint to NgU is equal to (I — W) (cf. 1.5; recall that K is supposed
to be negatively oriented). It suffices to find the operator adjoint to Npg.

For ¢ € @ we denote We(z, p) = Wi(z, ¢|g). Recall that K is positively oriented
and that for ze R — K, ¢ € 9, z ¢ spt ¢ we have (cf. (1.15))

(2.17) We(z, @) = — J grad ¢ grad h, do#, .
IntR

For f € 4(K) put f = f * g and write f ~ f. Then, of course, f € 4(K) and the given
relation is an isometric isomorphism of the spaces %(K), ¢(K). Define the operator W
on %(K) by putting

(2.18) Wf = We(*, /)lk

for f € 4(K). If var [y; <a, b)] < oo, then (as we have noted) var [{; {a, b)] < o
and certainly Wf € 4(K) for any f e %(K). This means that W can be considered as
an operator on 4(K),

W:f>Wf, W:4(K)- %(K).
Note that Wis linear.

2.4. Lemma. Suppose the condition (2.3) is fulfilled. Then the operator W is
compact and the operators W, — N are adjoint to each other

Proof. The fact that Wis compact can be proved in the same way as Lemma 2.2
in [6]; we omit the details.

Let us show that W, — N are adjoint to each other.

Let ¢ € 2, and suppose, in addition, that

sptoNnExtL=0.
The function ¢ = ¢ * g is defined on R, and spt ¢ < R,. If we define ¢ on R? such

that @ vanishes outside R,, then, of course, ¢ € 2, and, in addition,
sptoNnIntL=10.
By the definition of Ny and by (2.17) we now obtain for u € ¢'(K)
{@s Nxi) = {9, Ns+(U, %)) =

= J‘ grad ¢ grad (U, * g) do#, =f grad ¢ grad U, ds#; =
s+ -

N
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- J enad <a(c>j grad, I(2) du(z) d#5(0) =
- J. j Rgrad #(0) grad, h,(2) d#,(0) du(z) =

= — J We(z, ¢) du(z) = (=W (o|x), 1> .

Thus we see that for each p e %'(K) and each fe ¢(K) such that f = ¢|g, where
¢ €Dy, spt ¢ n Ext L= 0, the equality
(2.19) ' Sy =Ny = <Wf,

is valid. Now let fe %(K) be arbitrary. Since K < Int Ln R,, there are functions
0, € 9,, spt ¢, n Ext L= 0 such that f, = (p,,|,< — f uniformly on K. Since Nyue
€ ¢'(K), then

<meK#> - <fs NK#> .

Since W is compact (and thus also continuous), we have Wf, — Wf uniformly on K
and hence

Wy 11y = W, 1)

Now we see that (2.19) is valid for any f € 4(K) and any u € ’(K), which means that
the operators — Ny, W are adjoint to each other as required.

As Wis compact and the Fredholm radius of Wy is known (see (1.14)), the following
assertion is valid (w4 for 4: 4(K) — %(K) has the same meaning as in 1.5):

2.5. Lemma. Suppose that the condition (2.7) is fulfilled. Then the operators
(I = (Wx + W)) and N are adjoint to each other and

(2.20) o(We + W) = L fim sup v¥(0) .

TTr—0+ leK

2.6. Remark. Recall that for f € ¥(K), { € K we have (K is negatively oriented)
(I =W f(Q) = =Wl(&.) = - lim Wi(z, )

zeG

(G = Int K). Since for f € ¢(K), { € K we have (by the definition)

Wf({) = WK(C’ i) s

where f = f+ g e 4(K) and Wg(:, f) is continuous on R* — K = K, we can write
for fe4(K), (eK
(2.21) (I - (W +W)fQ) =~ lifz(Wx(z,f) + We(z,1)) .

zeG
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2.7. Lemma. Suppose that the condition (2.13) is fulfilled. Then the space of all
solutions of the homogeneous equation

(2.22) New =0

(considered on %”’(K)) and also the space of all solutions of the homogeneous
equation

(2.23) (I-We+W)f=0

(considered on on %(K)) are of dimension one. The solutions of (2.23) are then
just all the constant functions on K.

Proof. Let fe ‘g(K) be constant, f = ¢. Then, since K is negatively oriented, we
have for ze G

WK(z,f):%J‘ cdy, = —2c.
{a,b>

Since K is positively oriented and, of course, f = f* g = ¢ on K, we analogously
obtain that Wi(z, f) = 2c for z € Int K. For z € G we thus have

Weler 1) + Wale, ) = 0
and (2.21) yields
(I = (Wx+W)f=0.

Hence, the constant functions on K are solutions of (2.23) and we see that the space
of all solutions of (2.23) has dimension at least one.

On the other hand, it follows immediately from Lemmas 2.2, 2.3 that under the
condition (2.13) the dimension of the space of all solutions of (2.22) is at most one.
However, under the condition (2.13) (according to Lemma 2.5) the Fredholm alter-
natives are valid for the operators Ny, (I — (W + W)) and the spaces if all solutions
of (2.22), (2.23) have the same dimension, whence the assertion follows.

2.8. Remark. If the condition (2.13) is fulfilled then by Lemma 2.7 there is
a po € 6'(K), o * 0 such that Nguo = 0. Then, according to Lemma 2.2, (U,, +
+ U,, *g) is constant on S = S* U Lu §7, in particular, U, is constant on L.
Let 1 € 6'(K) be such that U, is constant on L. Then yu is a multiple of x, by Lemma
2.3 and thus Ngp = 0 and, consequently, (U,, + U, * g) is constant on S. Thus we
see that, under the assumption (2.13), u € ¢'(K) is a solution of the homogeneous
equation Ngu = 0 if and only if U, is constant on L. In particular:

Let (2.13) be fulfilled, ue %'(K). If U, is constant on L then (U, + U, * g) is
constant on S.

Note that one could now easily prove the following assertion (we omit the proof):

Let h be a harmonic function on a connected neighbourhood of L, let /1 be constant
on Land let the normal derivative of /& vanish on L. Then h is a constant function.

Further, let us consider the special case where Lis a circle of the form
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L={zeR?* |z — zo| = r}

(r > 0). Then the reflection function g is of the form

r2

§(z) = 2o + ——
Z—Zo

and the unique critical point with respect to Lis z,. Note that h,  is constant on L.
Let K be a Jordan curve such that K < Int L, z, € Int K. Since

h,, = U,

Zo €z0

where ¢, is the Dirac measure concentrated at z,, there is a u € ¢’(K) such that

hzo(z) = Uu(z)

- for z € Ext K ([14], Theorem 4.2, Corollary 2). In particular, U, is constant on L.
We see that in this case the solution of Ngu = 0 are just multiples of the balayaged
Dirac measure ¢,, on K (on R? — G). Moreover, the answer to the question whether
there is a non-trivial charge pe ¢'(K) such that U,|, = O does not in this case
depend at all on the curve K, but on the radius r. Namely, if r = 1, then h,ol =0
and if r # 1 then hzOIL is a non-zero constant,.

Also in the general case, when Lis not a circle, one can easily show that the con-
dition whether there is a non-trivial charge u e %’(K) with U,,lL = 0 is the property
of the curve L only, not of K. It is not clear at first sight if in the general case the
solutions of Nyu = 0 can be described analogously to the case of the circle.

2.9. Lemma. Suppose that the condition (2.13) is fulfilled and let ve ¢'(K).
Then the equation

(2.24) Nepp=v
admits a solution pe €' (K) if and only if W(K) = 0. If W(K) = 0, poe €' (K) is
a non-trivial solution of the homogeneous equation (2.22) and p € ¢'(K) is a solution

of (2.24), then all solutions of (2.24) can be written in the form p + cuy, where
ceR'.

Proof. It suffices to notice that under the condition (2.13), for (2.24) and for the
equation

(I - (WK + W))f= g
the Fredholm alternatives are valid. The assertion follows from Lemma 2.7.
Now let ue%'(L). We shall investigate the normal derivative of the function

(U, + U, = g) with respect to S*. This derivative is defined, of course, in the same
way as above, that is, for ¢ € 2 we put

{p,Ns+(U, + U, *3)> ='J. grad ¢ grad (U, + U, = §) d#, .
s+ :
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This definition is correct since grad U, is locally integrable in R?, and by Lemma 1.1
J grad ¢ grad (U, * §) d#, =J. grad (¢ * g) grad U, do#, ,
s+ s-

where the equality is valid also in the sense of the existence of the given integrals;
the integral on the right-hand side converges, of course.
We also know that the support of the distribution Ns+(U, + U, * §)is contained in

B=0dS*=KuUL.

Now let ¢ € 2 be such that spt ¢ 1 K = 0; we can suppose, in addition, that spt ¢ n 0.
Further let us suppose, for a while, that ¢ * § = ¢ on R, and spt ¢ n ExtK = @
(by the above we have spt ¢ N R = 0). Then (if p e €'(L))

<(P, NS"(UM + U,‘ * g)> =

=J‘ grad ¢ grad U, do#, + ‘.
S+

JSt

grad ¢ grad (U, + 7) 4ot

= J‘ grad ¢ grad U, do#, + j grad (¢ * g) grad U, d#,
s+ s-

= I grad ¢ grad U, do#’, + J‘ grad ¢ grad U, do#, =
IntL ExtL

= 2'[ ¢ dp = 2{o, wy
L

(see for example [13], Theorem 13.34). If ¢ € 2 then for the function ¢ = (¢ +
+ ¢ * ) we have @, = ¢|, and @ * g = @ on R,. Now it is seen that the equality
(still we have u e ¢'(L))

(225) <(P, NS*’(UM + U“ * -g-)> = 2(% #)
is valid for any ¢ € 2 with spt p " K = 0.

Suppose further that var [¢; <a, b)] < oo and let n®denote the exterior normal
in Federer’s sense with respect to S* on K. Let ¢ € 9, spt ¢ n L= 0. Then (u € ¢'(L))
{9, Ns:+(U, + U, *g)> = J‘ grad ¢ grad (U, + U, * g) d#, =

S+

=:J‘¢nxgrad(Uu + Uu*g)dfl .
K

Denoting

(2.26) vE = n"grad (U, + U, * §) #4x
we can write

(2'27) {o, NS"(Un + Uu * g)> = <o, Vf
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for any ¢ € @ with spt ¢ n L= 0. Since each ¢ € 2 can be written in the form
@ = @, + ¢,, where ¢, 0, €92, spto, nK =0, spt o, n L= 0, it follows from
(2.25), (2.27) that for any u e ’(L) the distribution Ns.(U, + U, * §) can be repre-

sented by a charge from %’(B) (here we suppose only that var [y; {a, b)] < o).

Denoting this charge also by Ng+(U, + U, * §). we have in addition

(2.28) Ng+(U, + U, % g)| = 21,

(2.29) Ns+(U, + U, x g)|x = V&,

where v,'f is defined by (2.26). If ¢ € @ is such that ¢ = 1 on S, then, of course,
<(P, NS*(Uu + Uu * g)) = 0 *

This together with (2.28) implies

(2.30) Ns+(U, + U, *3) (K) = —2u(L).

In what follows let v e %'(K), v, € ¢’(L). We shall look for a solution of the
Neumann problem on S* with the boundary condition vy on K and the boundary
condition v on L, that is, for such a function h on S* for which

<(p’ NS+h> = <(P, vK> + <¢’ vL>

for any ¢ € Z. We shall find the solution in the form
(231) ) h = (Ulllc + Ultx * g) + (UML + UI‘L * g) 4
where pix € €'(K), i1, € ¢'(L) are suitable charges. Since for any px € 4’(K) the normal
derivative of (U, + U, * ) vanishes on L, then by (2.28) the function h of the
form (2.31) satisfies the Neumann condition v, on Lif and only if g, = %v,. Thus
we shall find the solution in the form
(2.32) h= U, +U,*x3)+ 33U, +U,,*x3).
The function h of the form (2.32) satisfies the Neumann condition v¢ on K if and
only if
(2.33) NK”K = Vg — %NS"(UVL + Uv,_ * g)lK .
By Lemma 2.9 the equation (2,33) has a solution g€ %’'(K) if and only if ((2.13)
is supposed)

vg(K) — 3Ns+(U,, + U,, 3)(K) = 0.

According to (2.30) this condition can be written in the form
(2.34) ve(K) + v, (L) = 0.

If (2.34) is fulfilled then all solutions of (2.33) are of the form pg = p; + cpo,
where p, is a fixed solution of (2.33), g, a non-trivial solution of the equation
Ngu = 0. The function (U,, + U, * g) is constant on S* (constant even on S)

166



by Lemma 2.2. The solution of the form (2.32) (of the Neumann problem) is thus
determined uniquely up to an additive constant. If there is a non-trivial charge
ve %'(K) such that U,|, = 0 then (U,, + U, *3) = 0 on S* for any p, € %'(K)
such that Nxpo = O (see the proof of Lemma 2.3). Hence in this case the solution
of the form (2.32) is even uniquely determined (apart from the fact that uy is not
unique).

We have just proved the following assertion.

2.10. Theorem. Suppose the condition (2.13) is fulfilled and let vy € ¢'(K),
vy € €'(L). Then the Neumann problem on S* with the boundary conditions vg
on K and v;, on L has a solution of the form (2.32) if and only if (2.34) is valid.
If the condition (2.34) is fulfilled then pg € ¢'(K) in (2.32) is determined by the
equation (2.33) and the solution of the form (2.32) is determined uniquely up to
an additive constant. If, in addition, there isa v e %'(K), v =% 0 such that leL =0,
then the solution of the form (2.32) is determined uniquely.
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Souhrn

REFLEXE A NEUMANNOVA ULOHA
NA DVOJNASOBNE SOUVISLYCH OBLASTECH

Eva DonTOVA
Tento &lanek je pokraovdnim ¢&linku ,,Reflexe a Dirichletova uloha na dvojnisobné sou-
vislych oblastech. Podobné& jako v pfedchozim ¢ldnku se zde ukazuje, Ze uzitim reflexni funkce lze

soustavu dvou integrdlnich rovnic odpovidajicich Neumannové uloze redukovat na jedinou
integrdlni rovnici.

Pesome

PE®JIEKCUSA U 3A0AYA HEVIMAHA ISl JBYCBSA3HBIX OBJIACTEN

EvaA DonNTOVA

Cratbsi ABNSETCA DPONOJDKEHWEM CTaThH ,,Pednexcmst m 3amava Jlupmxyie Ins OBYCBS3HBIX
obnacre#t“. AHalOTMYHO MIpeAbIAYIIEH CTaThe MNOKA3bIBAECTCHA, YTO NpPHM NOMOIM pediekcHOR
¢yHKIMM cooTBeTCTBYIOmas 3azavye Heiimana cucTeMa ABYX MHTErpasbHBIX YpaBHEHMil LpeBpa-
INaeTca B OJHO MHTErPajIbHOE yPaBHEHHE.
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