Casopis pro péstovani matematiky

Peter Svana

Oscillation criteria for forced nonlinear elliptic equations of arbitrary order

Casopis pro péstovdni matematiky, Vol. 113 (1988), No. 2, 169--178

Persistent URL: http://dml.cz/dmlcz/118340

Terms of use:

© Institute of Mathematics AS CR, 1988

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/118340
http://project.dml.cz

113 (1988) CASOPIS PRO PESTOVANI MATEMATIKY No. 2, 169—178

OSCILLATION CRITERIA FOR FORCED NONLINEAR ELLIPTIC
EQUATIONS OF ARBITRARY ORDER
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Summary. In the paper sufficient conditions are derived for the oscillation of solutions of the
equation
A"u+ c(x,u)=f(x), x€E,,
where A™ denotes the m-th iteration of the Laplace operator
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and E,  is an exterior domain in an n-dimensional Euclidean space R".
Keywords: Forced elliptic equation, ordinary differential inequality, oscillation.

AMS Classification: Primary 35J30, Secondary 34Cl10.

We consider the forced elliptic differential equation of the form
(1) A™u + c(x,u) = f(x), x€E,,

where 4™ = (6%[ox] + ... + 0%[ox?)" is the m-metaharmonic operator in an
n-dimensional Euclidean space R”,

Ero = {(xl’ cooy x”)GR", le > ro} s ro > 0
|x| = (¥ x?)"%, ce C(E,, x R,R) and feC(E,, R).
i1

Let D(E,,) denote the set of all functions u € C>"(E,,, R) such that u % 0 in any
domain E,, r 2 r,, defined analogously as E,,. Equation (1) will be said to be oscil-
latory in E,, if every solution u € D(E,,) of (1) has arbitrarily large zeros, i.e. the set
{x € E,;: u(x) = 0} is unbounded.

The purpose of this paper is to generalize and improve recent results of Kusano
and Naito [6] for the second order case of (1). We note that the unforced case of (1)
(f(x) = 0) has been studied by Kitamura and Kusano in [4]. Other related results
on the oscillation of solutions of the unforced partial differential equations and ine-
qualities can be found in the papers of Kitamura and Kusano [3] and Kulenovi¢ [5].

Using the method of spherical means introduced by Noussair and Swanson [8]
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we reduce the problem of oscillation of the partial differential equation (1) to the
problem of oscillation of a certain ordinary differential inequality.
Denote

5, {(sy R[] = 1.

Lemma 1. (Kitamura and Kusano [4].) If u € C*™(E,, R) for some r = ro, then the
spherical mean of u over S,, i.e. the function

u(r) = - rt_l Jsru(x) as.,

n

where o, is the area of the unit sphere S,, satisfies

o (i) o=

dr dr o,r" !

'[ A™u(x)dS, r=r,.

Sr

Theorem 1. Suppose that the following condition is satisfied:
(i) if u =& 0, then

u[e(x. u) — ax)) o(u)] = 0

for all x € E,, where q is continuous and positive on [ry, ©), ¢ € C(R, R) is
convex on [0, ), concave on (— oo, 0) and such that u ¢(u) > 0 for u =+ 0.
Moreover, let F(r) be the spherical mean of f(x) over S,, i.e.

1_1‘ J‘ f(x) dS o
a,r" s,
Then the equation (1) is oscillatory in E,  if the ordinary differential inequality
1-n d n—1 d " -
(3) yl{r' "=t =) y+q(r)e(y)— F(r)| <0
dr dr

is oscillatory at r = oo in the sense that every nontrivial solution of (3) has arbitra-
rily large zeros in [ry, ).

F(r) =

Proof. Suppose that the equation (1) is nonoscillatory, i.e. there exists a non-
oscillatory solution u € D(E,,) of (1).

Let u(x) be positive in Eg for some R = r,. By Lemma 1, the spherical mean U(r)
of u(x) over S,, » = R, satisfies (2) and, therefore, from (1) we have

(,l—» d s i)"' u(r) = — Jlsrc(x, u(x)) dS + F(r)

dr dr
for r = R. Using (i), we get

(rt—ndirrn-l %)m U(r) < — f%fs’(u(x)) dS + F(r).

o r" 1t
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Since the function ¢ is convex on [0, c0), we can use Jensen’s inequality (see for
example [9]) and conclude that

(7o &0 8V ) 2 a0 00 + 7O

But this means that the positive function U(r), r = R, satisfies the inequality (3),
which contradicts the fact that (3) is oscillatory at r = oo.

Similarly we can prove that the equation (1) cannot have a solution which is
negative in Ep for some R = r,.

In the light of Theorem 1 it will be necessary to examine the oscillation properties
of the ordinary differential inequality (3). We shall consider a more general inequality

of the form
1 d 1 d d 1 dyr
@ [ — .. Bl
sz(") dr sz—l(") dr d" Pl(") d" Po(r)
including our inequality (3) as a special case.

We assume that the following conditions hold:
(a) the functions p,(r) (0 < i < 2m) are continuous and positive on [ry, ) and

+ h(r,y) — F(r)] <0

in(r)dr=w l=gig2am-1);

(b) h:[re, ©) x R — R is continuous and there exist continuous functions h,
and h, defined on [ro, 00) and such that for every r = r,,

h(r,y) = hy(r) for y >0
and
h(r, y) < hz(r) for y<0;

(¢) F:[re, ©) — R is continuous.
We employ the notation

oy 20 _
Doy = U, D) -

Py(r, 5) = po(r)

r 'S1 S{-1
Pi(", s) = Po(")J,Pl(ﬁ)J Pz(sz)---J‘ pi(si) ds;ds;_y...ds;, 15i<2m—1.

d

—Diy(r), 0<j<2m-1;
pJH(r) dr

The inequality (4) can be rewritten as

o[D™ + h(r,y) = (] S 0.
Theorem 2. Let the conditions (a)—(c) be satisfied and let for every R > r,,
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(%) liﬂinfmJ;PZM_l(r, $) Pam(s) [F(s) — hy(s)] ds = — 0

and

(6) lim sup mj;PZM_I(r, $) Pam(s) [F(s) — hy(s)]ds = o0

r-+o
Then every nontrivial solution of (4) is oscillatory.

Proof. Suppose that there exists a nonoscillatory solution y(r) of (4) on [r,, ).
Then there is ry- = r, such that y(r) & 0 for r = r,. Assume first that y(r) is positive
on [ry, o). Then it follows from (4) and (b) that

D™ y(r) + hy(r) — F(r) £ 0
for r = r,. Integrating the above inequality 2m-times from r, to r, we obtain

O 05 E plr) + [ Pawelr ) O TS - O] 6,

i= r

where ¢; (0 < i < 2m — 1) are constants. Since

im Pt _ 0, i=0,1,..,2m—2
r-*o sz_l(r, rl)

(which can be easily proved with the help of L’Hospital’s rule and the ‘condition (a)),
dividing (7) by P,,,-(r, r,) and passing to the lower limit as r - oo, we get

)  _

lim inf = —
r— o sz_l(r, rl)
which contradicts the positivity of y(r) on [ry, o).
Similarly we get a contradiction
lim sup —ﬂ— = o0

r-+o sz_l(r, rl)
in the case y(r) < O for r = r,.
In the proof of the next theorem we use the following lemma which is a particular
case of Lemma 2 in [10].

Lemma 2. Let the condition (a) be satisfied and let

¥(r) D*™ y(r) < 0 (y(r) D*™ y(r) > 0)

on [ro, ). Then there exist an odd (even) integer k (0 < k < 2m) and r; 2 1,
such that either '

(8) y(r)Diy(r)>o, vi=0’1"“’2"” rer
(the case k = 2m), or
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) y(r)D'y(r)>0, i=0,1,...k, r=r,

and

(10) (—I)Hi}’(") D! y(r) >0, i=k+1,...,2m, r=r,,
(the case k < 2m).

Theorem 3. Suppose that in addition to (a) and (c) the following conditions hold:
(d) h:[re, ©) x R = R is continuous, nondecreasing in the second variable for
every r = ro and such that yh(r, y) > 0 for y % 0 and every r = r,,
and either

(e) there exists a continuous oscillatory function g:[ry, ©) — R such that
D*" o(r) = F(r) and lim D° o(r) = 0,
or roe
(¢') there exista continuous function n: [r,, ) — R, constants gy, q, and sequences
{ri}ezy and {ri}i=, such that
D*"n(r) = F(r),
limr, = limry = 0o, D°n(ry) = day, D°n(ri) =gz, g1 £ D°n(r) < q, for

koo koo -
r=rg.

Let the unforced inequality

(11) y[D*"y + h(r,y)] £ 0

be oscillatory. Then the inequality (4) is oscillatory, too.

Proof. Let the inequality (4) have a nonoscillatory solution y(r) defined on
[0, ). Suppose first that this solution is positive for r 2 r; = ryand that the con-
dition (e) is satisfied. Put z(r) = y(r) — (). Then
(12) D*z(r) £ —h(r, ¥(r)) <0

for r = r,. Obviously, D' z(r), i = 2m — 1,2m — 2, ..., 0, are monotonous and
have to be of constant sign for sufficiently large r. If z(r) <0 for r = r, 2 ry,
then y(r) < ¢(r) for r = r,, which contradicts the fact that g(r) is oscillatory.
Consequently, z(r) must be positive for r > r,, where r, is large enough. Now we
can use Lemma 2 and conclude, in particular, that D! z(r) >0forr=zry=r,,
ie. D°z(r) is increasing on [r;, ). Moreover, since lim D° o(r) = 0, there exist
constants r, = ry and &€ > 0 such that ree
(13) D°z(r) + D°¢(r) > D°z(r) — e >0
for r 2 r,. Multiplying (13) by p,(r) we have

z(r) + o(r) > z(r) — po(r)e > 0

for r 2 r,. Put w(r) = z(r) — & po(r). Since the function h(r, y) is nondecreasing
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in the second variable and D' w(r) = D' z(r) for i = 1,2, ..., 2m, we get
D*™ w(r) + h(r,w(r)) £ D* w(r) + h(r, z(r) + o(r)) £ 0.
So w(r) is a positive solution of
D*™w(r) + h(r,w(r)) <0, r=r,,

which contradicts the fact that the unforced inequality (11) is oscillatory.
Similarly for y(r) < 0, r = r,, we get the inequality

D*™w(r) + h(r,w(r)) 2 0,

where w(r) = z(r) + € po(r) < 0 for r = r,. This is again a contradiction to the
oscillatoricity of (11).

Now, let the condition (¢') hold. Put z(r) = y(r) — n(r). As in the first part of the
proof we conclude for z(r) eventually positive that D*" z(r) < 0 on [r,, o).

If D° y(r) is unbounded, then D° z(r) is unbounded as well and it follows that
lim D° z(r) = co. Thus there exists ry = r, such that

r—+ o

\
o

D°z(r) + D°n(r) = D° z(r) + q,
for r = rs, i.e.

z(r) +n(r) =2 z2(r) + g, po(r) >0, r=rs.
Therefore, the function w(r) = z(r) + q, po(r) is a positive solution of
D™ w(r) + h(r,w(r)) <0, r=r,,

which contradicts the assumption that (1 1) is oscillatory.

If D° y(r) is bounded then D° z(r) is also bounded and, by Lemma 2, there exists
r, = r; such that (=1)'D'z(r) <0 for r=r,, i=1,...,2m. In particular,
D' z(r) > 0 for r 2 r,, i.e. the function D° z(r) is increasing on [r,, c0). We claim
that D°z(r) + g, > O for sufficiently large r. In fact, there exists rg e {ry /i,
rx = r,, such that

D®z(r) + q; = D° y(r) = D°n(r) + q, 2
2 D° y(rk) — D°n(rk) + g1 = D° y(rg) > 0
for r = rx. Thus we again obtain a contradiction to the oscillation of all nontrivial
solutions of (11), because the function w(r) = z(r) + g, po(r)is an eventually positive
solution of (11).
The proof in the case that eventually y(r) < 0 is similar.

On the basis of Theorems 1, 2 and 3 we can now establish oscillation criteria
for the original partial differential equation (1).

Theorem 4. Equation (1) is oscillatory in an exterior domain E,, in R" if
(ii) there exist real-valued continuous functions ¢, and c, defined on [ry, o)
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and such that for every x€ E,,

c(x,u) 2 ¢4(|x|) for u>0
and
c(x,u) £ cp(|x]) for u <0,

(iii) the conditions (5) and (6) are satisfied, where F(s) is the spherical mean of f(x)
over S;, s = ro, hy(s) = ¢,(s), ha(s) = c,(s), and the coefficients in P(r, s) are
the following ones:

(1) if n =2, then po(r) =1,
: Pl(r) = Pa(r) = ... = sz—l(r) =r
pa(r) = pa(r) = ... = pon(r) = 1,

(T1) if n > 2, then po(r) = r*~", pyn(r) =r and

pi(r) = pam-i(r) =71 for i=1,2,..,v—1,
PAr) = Pam—i(r) = PV for iy iy + 1, .,m,
where v = min {(m,n — 1)/2]} ([N] denotes the largest integer not exceeding N).

Proof. Suppose that the equation (1) is not oscillatory in E, in R", i.e. there
exists a nonoscillatory solution u(x) of (1) defined on E,,. As in the proof of Theorem
1 we first show that the spherical mean U(r) of u(x) over S, satisfies the ordinary
differential inequality

(19 (QaF e LCERCERC
r
if u(x) is eventually positive, or the inequality

(15) (i i) UG + ex(r) 2 F(0)
dr dr
if u(x) is eventually negative.

Consider first the case (I). Then the functions p/(r) (1 £ i £ 2m — 1) satisfy the
condition (a) and we can use Theorem 2 directly. However, in the case (II), i..
n > 2, we cannot apply Theorem 2 directly, because p,;—4(r) (1 £ i £ m) do not
satisfy the condition (a). But on the basis of Trench’s theory of canonical forms of
disconjugate differential operators [12] the differential operator

rl—n _(_1 rn-l _d_)m
dr dr

L 4 1 4 a1
pz,n(r) dr pom-1(r) dr  dr p,(r) dr po(r)

in such a way that the functions p(r) (0 < i < 2m) satisfy condition (a). Kitamura
and Kusano in [4] evaluated these new coefficients p,(r) explicitly. This evaluation

can be rewritten as
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is given in the case (II) of condition (iii). Therefore we can use Theorem 2 again and
conclude that the inequality (14) ((15)) cannot have an eventually positive (negative) .
solution U(r). Consequently, the solution u(x) of (1) cannot be nonoscillatory in E,
and the proof is complete.

Applying Theorem 3 to the equation (1) we get the following result.

Theorem 5. Suppose that the condition (i) of Theorem 1 with ¢ nondecreasing
on (— oo, o) is satisfied and either
(iv) there exists a continuous oscillatory function g: [ro, ) = R such that
D™ o(r) = F(r), lim D° o(r) = O, where F(r) denotes the spherical mean
r—+o

of f(x) over S, and the coefficients in D*™ are given as in the case (I) or (II)
of Theorem 4,

or

(v) there exist a continuous function n: [0, ) = R, constants qy, q, and sequences
{rdizy and {r} 2 such that D*™ n(r) = F(r), hm re = hm ry = 00, D n(ry) =

=gy, D°n(r)) = g2, q; < D°n(r) £ q, for r > To, where F(r) and p(r)
(0 < i < 2m) are as in (iv).

Then the equation (1) is oscillatory in E,, if the ordinary differential inequality

ro>

(t6) y[D*"y + q(r) ¢(»)] = 0
is oscillatory in [ro, ®).

Examples 1. Consider the equation

(17) du + ﬁe" = |x] sin (In |x])
x
in E; = {xeR* |x| 2 1}. In this case F(r) = rsin(Inr), r = 1, and it is not dif-
ficult to verify that the conditions (5) and (6) with po(r) = r™2, p,(r) = 1, pa(r) = 1
and h,(r) = hy(r) = 2[r, that is
1 r .
liminf ———— | [1 — (s/r)*] s?sin(Ins)ds = — 0
rro 1 — (R/r)z _[R[ ( / ) ] ( )

and

1 " .
lim sup ——— | [1 — 2] s?sin(Ins)ds = o0,
imsup [ = ()i

hold. Therefore, by Theorem 4, all solutions of the above equation are oscillatory
in E,. We note that the unforced equation

(18) dut =0

[+

has a nonoscillatory solution u(x) = —In |xl
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Example 2. Consider the equation

20 10 .
(19) A*u + |_x_|_‘~‘ u= l—)—c—l—; sin (In |x|)

in E; = {xe R |x| = 1}. The corresponding ordinary differential inequality
20
y [r“(ry)"” +3 y] <0

is oscillatory and F(r) = 10/r® sin (In r) satisfies condition (v) of Theorem 5 with
po(r) = r7%, py(r) = po(r) = p3(r) = 1, pa(r) = r and 5(r) = —sin(In r)/r. Con-
sequently, the equation (19) is oscillatory in E,. One oscillatory solution is u(x) =
= sin (In |x|)/|x|. The homogeneous equation

(20) Au+ Zu=0

is oscillatory in E, (see Miiler-Pfeiffer [7]).
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Sthrn

KRITERIA OSCILACIE PRE NELINEARNE ELIPTICKE ROVNICE
LUBOVOLNEHO RADU S NUTIACIM CLENOM

PETER SVANA

V préci si odvodené postaujuce podmienky oscildcie rieSeni rovnice
4™u 4 e(x,u) = f(x), x€E,,

kde 4™ ozna&uje m-t1 iteraciu Laplaceovho operatora
.92 o2
A==+ ..+
ox? ox?2

a E,  je vonkajsia oblast v n-rozmernom euklidovskom priestore R".

Pe3rome

ITPU3SHAKU KOJIEBJIEMOCTU U1 HEJIMHENHBIX
SJUTUIITUYECKUX YPABHEHU JIFOBOI'O ITOPS/IKA
C BBIHYXXJAKOIUM YJIEHOM

PETER SVANA

B paGoTe npuBeAeHbI JOCTATOYHbIE YCIOBUS KONEOIEMOCTY PELIEHMA YPaBHEHUA
A™u 4 c(x, u) = f(x),
rae 4™ 0603HaYaeT M-TyI0 UTEPALMIO JlaIlTacMaHa
2 a2
4 = a? + ...+ 3_x_2 s

n

BHE HEKOTOPO# OrpaHM4YeHHON 007aCTH B H-MEPHOM €BKJIMIOBOM INpcCcTpaHcTBe R”.
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