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OSCILLATION CRITERIA FOR FORCED NONLINEAR ELLIPTIC 
EQUATIONS OF ARBITRARY ORDER 

PETER SVA^A, Bratislava 

(Received October 18, 1985) 

Summary. In the paper sufficient conditions are derived for the oscillation of solutions of the 
equation 

Amu+c(x,u)=Ax)9 xeEro9 

where Am denotes the m-th iteration of the Laplace operator 

a2 d2 . 

and ErQ is an exterior domain in an n-dimensional Euclidean space Rn. 

Keywords: Forced elliptic equation, ordinary differential inequality, oscillation. 

AMS Classification: Primary 35J30, Secondary 34C10. 

We consider the forced elliptic differential equation of the form 

(1) Amu + c(x9 u) = f(x) , xeEro9 

where Am = (d2ldxl + ... + d2jdx2)m is the m-metaharmonic operator in an 
n-dimensional Euclidean space Rn

9 

Era = {(*!> •••> *n) ^ R\ \*\ > rQ) , ^ > 0 

W = ( t x2Y/2> c e C(£ro x R> R) and fe C(EfQ9 R) . 

Let D(Ero) denote the set of all functions u e C2m(Ero9 R) such that u =j= 0 in any 
domain Er9 r ^ r0, defined analogously as ErQ. Equation (1) will be said to be oscil
latory in ErQ if every solution u e D(Ero) of (1) has arbitrarily large zeros, i.e. the set 
{x G Ero: u(x) = 0} is unbounded. 

The purpose of this paper is to generalize and improve recent results of Kusano 
and Naito [6] for the second order case of (1). We note that the unforced case of (l) 
(f(x) = 0) has been studied by Kitamura and Kusano in [4]. Other related results 
on the oscillation of solutions of the unforced partial differential equations and ine
qualities can be found in the papers of Kitamura and Kusano [3] and Kulenovi<5 [5]. 

Using the method of spherical means introduced by Noussair and Swanson [8] 
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we reduce the problem of oscillation of the partial differential equation (1) to the 
problem of oscillation of a certain ordinary differential inequality. 

Denote 

Sr = {(xu...,xn)eRn:\x\ = r} . 

Lemma 1. (Kitamura and Kusano [4].) If u e C2m(Er, R)for some r _ r0, then the 
spherical mean of u over Sr, i.e. the function 

U(r) = - 4 r u(x) dS, 
Sr 

where an is the area of the unit sphere St, satisfies 

(2) (rl~n — r""1 — V U(r) = —^— f Amu(x) dS , r > r0 . 
V dr drj W a y ) S r 

Theorem 1. Suppose that the following condition is satisfied: 
(i) if u 4= 0, then 

u[c(x, u) - q(\x\) <p(u)] ^ 0 

for all x e Ero where q is continuous and positive on [r0, co), (p e C(R, R) is 
convex on [0, oo), concave on (— oo, 0) and such that u <p(u) > 0 for u 4= 0. 
Moreover, let F(r) be the spherical mean of f(x) over Sr, i.e. 

n r ) = ^ [ / ( x ) d s -
Gnr J Sr 

Then the equation (l) is oscillatory in Ero if the ordinary differential inequality 

(3) У U- 1 Г--1 І . Y У + ą(r)<p(y) - F(r)\ <; 0 
Л ď* °r/ J 

is oscillatory at r — oo in the sense that every nontrivial solution of (3) has arbitra
rily large zeros in [r0, oo). 

Proof. Suppose that the equation (1) is nonoscillatory, i.e. there exists a non-
oscillatory solution u G D(Ero) of (l). 

Let u(x) be positive in ER for some R _ r0. By Lemma 1, the spherical mean U(r) 
of u(x) over Sr9 r _ R, satisfies (2) and, therefore, from (l) we have 

( V - A rn~i d\" ^ = _ _J__ C ^ ^ u ( x ) ) ^ + ^ 
V dr drj <Vn ^ J ^ 

for r ^ R. Using (i), we get 

Li-. A -»-i I V U(r) < - ——• [ (u(x)) dS + F(r) . 
\ dr drj W - trj*-1}^ 
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Since the function <p is convex on [0, oo), we can use Jensen's inequality (see for 
example [9]) and conclude that 

r i -„ _ ì r„-i _d \ " u(r) й ~q(r) (p(U(r)) + F(r) . 
Лr Лr! 

и l - п 

dr árj 

But this means that the positive function U(r), r ^ R, satisfies the inequality (3), 
which contradicts the fact that (3) is oscillatory at r = oo. 

Similarly we can prove that the equation (l) cannot have a solution which is 
negative in ER for some R ^ r0. 

In the light of Theorem I it will be necessary to examine the oscillation properties 
of the ordinary differential inequality (3). We shall consider a more general inequality 
of the form 

fA\ r 1 d 1 d d 1 d y(r) f , , . J\ ^ 
( 4 ) y\—T\-A M 7 - 7 T T J Y \ + Kr*y)-F(r) ^ ° 

lP2m(r) dr p2m- x(r) dr dr Pl(r) dr p0(r) J 
including our inequality (3) as a special case. 

We assume that the following conditions hold: 
(a) the functions pt(r) (0 ^ i ^ 2m) are continuous and positive on [r0, oo) and 

J n 

PІ(Г) dr = oo (1 = i й 2m - 1) ; 

(b) h: [ r 0 , oo) x R -> R is continuous and there exist continuous functions ht 

and h2 defined on [r 0 , oo) and such that for every r ^ r 0, 

h(r,y)^hl(r) for y>0 

and 

h(r, y) ^ h2(r) for y < 0 ; 

(c) F: [r 0 , oo) -> R is continuous. 
We employ the notation 

D°y(r) = M DJ+iy(r) = -J—±DSy(r), 0 <; j ^ 2m - 1; 
M r ) .P./+i(r)dr 

IVt"' s) = poW . 

^.(r, s) = p0(r) p!(s.) p 2(s 2) ... p,(s,) dSj ds, , . ... ds. , 1 g i = 2m - 1. 

The inequality (4) can be rewritten as 

y[D2my + h(r, y) - F(r)] = 0 . 

Theorem 2. Let the conditions (a)—(c) be satisfied and let for every R ;> r0, 
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(5) l i m l n f 7 - ^ [ P2m- l(r, S) p2m(S) [F(S) - hx(s)] ds = - CO 

and 

(6) lim sup — — P2m.1(r, s) p2m(s) [F(s) - h2(s)] ds = 00 . 
' - • P2m-l(>%K)J.R 

The.*! every nontrivial solution of (4) is oscillatory. 

Proof. Suppose that there exists a nonoscillatory solution y(r) of (4) on [r0, 00). 
Then there is rr ^ r0 such that y(r) =f= 0 for r ^ rx. Assume first that y(r) is positive 
on [rl9 00). Then it follows from (4) and (b) that 

D2m y(r) + ht(r) - F(r) ^ 0 

for r _ r j . Integrating the above inequality 2m-times from r t to r, we obtain 

(7) j<r) ^ m£ cf£r9 rx) + f P2m.1{r, s) p2m(s) [F(s) - *,(*)] ds , 

w h e r e c,- (0 ^ i ^ 2m — 1) are constants . Since 

l im - P * ( r ? r *) = 0 , i = 0 , 1 , . . . , 2 m - 2 
'->°° -^2m-l( rj rl) 

(which can be eas i ly p r o v e d w i th the he lp o f L 'Hosp i ta l 's rule and the cond i t ion (a)), 
d iv id ing (7 ) by P2m-i(r> ri) anc* pass ing to the lower limit as r -> 00, we get 

y(r) 
liminf :LL-L = — 00 

•—» ^ 2 m - l ( r
5 r l ) 

which contrad icts the pos i t ivity o f y(r) on [rl9 co). 
Similarly we get a contrad ic t ion 

r y(r) 
lim sup -y- = 00 

•—w -?2m-l(r> ^ J 

in the case y(r) < 0 for r = rx. 
In the proof of the next theorem we use the following lemma which is a particular 

case of Lemma 2 in [10], 

Lemma 2. Let the condition (a) be satisfied and let 

y(r) D2m y(r) < 0 (y(r) D2m y(r) > 0) 

on [r0, 00). Then there exist an odd (even) integer k (0 ^ k ^ 2m) and r± _ r0 

swcft fhaf dffter 

(8) y(r)Dly(r)>09 i = 0, l , . . . , 2 m , r = r, 

(fhe case fc = 2m), or 
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(9) y(r) D> y(r) > 0 , i = 0,l,...,k, r £ r, , 

and 

(10) (-l)k+iy(r)D!y(r)>0, i = k + 1, . . . , 2m , r £ r t , 

(lhe case fc < 2m). 

Theorem 3. Suppose that in addition to (a) and (c) the following conditions hold: 
(d) h: [r0, oo) x R -^ R is continuous, nondecreasing in the second variable for 

every r ^ r0 and such that yh(r, y) > 0 for y =j= 0 and every r >̂ r0, 
and either 
(e) there exists a continuous oscillatory function Q: [r0, oo) —• R such that 

D2m
 Q(r) = F(r) and lim D° o(r) = 0, 

or 
(e') there exist a continuous function n: [r0, oo) -> R, constants ql9 q2 and sequences 

{r'k}?-! and {r'l}?=l such that 

D2m n(r) = F(r) , 

lim ri = lim r* = oo, D° n(r'k) = ql9 D° n(r$ = q2, qt _ D° n(r) _ g2 for 
fc-+co fc-*oo 

r _ r0-

Let the unforced inequality 

(11) y[i)2my + h(r, y)] _ 0 

be oscillatory. Then the inequality (4) is oscillatory, too. 

Proof. Let the inequality (4) have a nonoscillatory solution y(r) defined on 
[r0, oo). Suppose first that this solution is positive for r *i rt }± r0 and that the con
dition (e) is satisfied. Put z(r) = y(r) — o(r). Then 

(12) D2m z(r) _ -h ( r , y(r)) < 0 

for r _ r t . Obviously, Dl z(r), i = 2m — 1, 2m — 2, ...,0, are monotonous and 
have to be of constant sign for sufficiently large r. If z(r) < 0 for r ^ r2 ^ ru 

then y(r) < g(r) for r ^ r2, which contradicts the fact that Q(r) is oscillatory. 
Consequently, z(r) must be positive for r ^ r2, where r2 is large enough. Now we 
can use Lemma 2 and conclude, in particular, that D1 z(r) > 0 for r ^ r3 ^ r2, 
i.e. D° z(r) is increasing on [r3, oo). Moreover, since lim D° Q(r) = 0, there exist 
constants r4 ^ r3 and £ > 0 such that r~+0° 

(13) D° z(r) + D° Q(r) > D° z(r) - £ > 0 

for r ^ r4. Multiplying (13) by p0(r) we have 

2( r) + d(r) > z(r) - Po(r) £ > 0 

for r ^ r4. Put w(r) = z(r) — £ P0(r). Since the function h(r, y) is nondecreasing 
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in the second variable and Dl w(r) = Dl z(r) for i = 1,2,..., 2m, we get 

D2m w(r) + h(r, w(r)) ^ D2m w(r) + h(r9 z(r) + g(r)) _ 0 , 

So w(r) is a positive solution of 

D2m w(r) + h(r, w(r)) _ 0 , r _ r4 , 

which contradicts the fact that the unforced inequality (11) is oscillatory. 
Similarly for y(r) < 0, r ;_ rl9 we get the inequality 

D2m w(r) + h(r, w(r)) = 0 , 

where \v(r) = z(r) + e Po(r) < 0 for r _ r4. This is again a contradiction to the 
oscillatoricity of (11). 

Now, let the condition (e') hold. Put z(r) = y(r) — rj(r). As in the first part of the 
proof we conclude for z(r) eventually positive that D2m z(r) < 0 on [rl9 oo). 

If D° y(r) is unbounded, then D° z(r) is unbounded as well and it follows that 
lim D° z(r) = oo. Thus there exists r3 _ r2 such that 
r-*oo 

D° z(r) + D° w(r) = D° z(r) + q{ > 0 

for r = r3, i.e. 

-(>') + ?(r) _ z(r) + _ x p0(r) > 0 , r^r3. 

Therefore, the function w(r) = z(r) + ^x p0(r) is a positive solution of 

D2m >v(r) + h(r, w(rj) = 0 , r ^ r3 9 

which contradicts the assumption that (11) is oscillatory. 
If D° v(r) is bounded then D° z(r) is also bounded and, by Lemma 2, there exists 

r2 = r t such that (-1)1" Dlz(r) < 0 for r ^ r2, i = 1, . . . ,2m. In particular, 
Dl z(r) > 0 for r ^ r2, i.e. the function D° z(r) is increasing on [r2, oo). We claim 
that D° z(r) + gi > 0 for sufficiently large r. In fact, there exists rKe{r'k ',°°=1, 
r^ ^ r2, such that 

D° z(r) + q, = £>° j;(r) - Z>° ^(r) + tj. ^ 

^ D° Xr i ) - D° r,(r'K) + cj. = D° j ^ ) > 0 

for r ^ r̂ -. Thus we again obtain a contradiction to the oscillation of all nontrivial 
solutions of (11), because the function w(r) = z(r) + ax p0(r) is an eventually positive 
solution of (11). 

The proof in the case that eventually y(r) < 0 is similar. 
On the basis of Theorems 1, 2 and 3 we can now establish oscillation criteria 

for the original partial differential equation (l). 

Theorem 4. Equation (1) is oscillatory in an exterior domain ErQ in Rn if 
(ii) there exist real-valued continuous functions ct and c2 defined on [r0, oo) 
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and such that for every x e Ero, 

c(x, u) = Ci(|*|) for u > 0 

and 

c(x, u) ^ c2(|x|) for u < 0 , 

(iii) the conditions (5) and (6) are satisfied, where F(s) is the spherical mean of f(x) 
over Ss, s ^ r0, hi(s) = cx(s), h2(s) = c2(s), and the coefficients in Pt(r, s) are 
the following ones: 

(I) if n = 2, then P0(
r) = U 

Pi(r) = Ps(r) = ... = Pim-i(r) = r"1 , 
P2(f) = P*(r) = ... = P2mW = r, 

(II) if n > 2, rhen P0(
r) = J*2-", P2m(r) = r and 

Pi(r) = P2m-iW = r for i = 1, 2 , . . . , v - 1, 
Pi(r) = P2„.-.(r) = r ( -D^C-^i ) for . = ^ v + ^ _$ m ? 

where v = min {(m, n — l)/2]} ([N] denotes the largest integer not exceeding N). 

Proof. Suppose that the equation (1) is not oscillatory in Fro in Rn, i.e. there 
exists a nonoscillatory solution u(x) of (l) defined on Fro. As in the proof of Theorem 
1 we first show that the spherical mean U(r) of M(X) over Sr satisfies the ordinary 
differential inequality 

(14) (ri-»±r»-i£\m
U(r) + Cl{r)^F(r) 

if u(x) is eventually positive, or the inequality 

(15) ( / - A r""1 ±)"u(r) + c2(r) ^ F(r) 
\ dr dry 

if u(x) is eventually negative. 
Consider first the case (I). Then the functions pt(r) (1 = i g 2m — 1) satisfy the 

condition (a) and we can use Theorem 2 directly. However, in the case (II), i.e. 
n > 2, we cannot apply Theorem 2 directly, because P2i-i(r) (1 = i =* m) do not 
satisfy the condition (a). But on the basis of Trench's theory of canonical forms of 
disconjugate differential operators [12] the differential operator 

^-Ir.-ilV 
V dr d r / 

can be rewritten as 

1 d 1 d d 1 d • 
PiJS) dr p2m. t(r) dr dr p^r) dr p0(r) 

in such a way that the functions pt(r) (0 ^ i g 2m) satisfy condition (a). Kitamura 
and Kusano in [4] evaluated these new coefficients pt(r) explicitly. This evaluation 
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is given in the case (II) of condition (iii). Therefore we can use Theorem 2 again and 
conclude that the inequality (14) ((15)) cannot have an eventually positive (negative) 
solution U(r). Consequently, the solution u(x) of (1) cannot be nonoscillatory in Ero 

and the proof is complete. 
Applying Theorem 3 to the equation (1) we get the following result. 

Theorem 5. Suppose that the condition (i) 0f Theorem 1 with <p nondecreasing 
on ( - c o , oo) is satisfied and either 
(iv) there exists a continuous oscillatory function Q: [r0, oo) -> R such that 

D2m o(r) = F(r), lim D° 0(r) = 0, where F(r) denotes the spherical mean 
r-*oo 

of f(x) over Sr and the coefficients in D2m are given as in the case (I) or (II) 
of Theorem 4, 

or 
(v) there exist a continuous function n: [r0, oo) —> R, constants qu q2 and sequences 

{^k°=i and {K}k=i such that D2m n(r) = F(r\ lim r'k = lim r"k = oo, D° n(r'k) = 
fc-+oo fc-+oo 

= qu D°n(r'k) = q2, qx = D° r\(r) = q2 for r = r0, where F(r) and p{r) 
(0 = i ^ 2m) are as in (iv). 

Then the equation (1) is oscillatory in Ero, if the ordinary differential inequality 

(16) y[D2my + q(r) <Ky)] = 0 

is oscillatory in [r0, oo). 

Examples 1. Consider the equation 

(17) Au + ^-eu = |x| sin (In |x|) 
|x| 

in Et = {x e K4: |x| _ 1}. In this case F(r) = r sin (In r), r = 1, and it is not dif
ficult to verify that the conditions (5) and (6) with p0(r) = r"~2, px(r) = r, p2(r) = r 
and ht(r) = h2(r) = 2/r, that is 

lim inf Tl - (s/r)2l s2 sin (in s) ds = - c o 

and 

lim sup [1 - (s/r)2] s2 sin (In s) ds = oo , 
r-oo 1 - (Rlr)2JR 

hold. Therefore, by Theorem 4, all solutions of the above equation are oscillatory 
in Et. We note that the unforced equation 

(18) Au + 2L e« = 0 

1*1 
has a nonoscillatory solution u(x) = —In |x|. 
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Example 2. Consider the equation 

(19) A + - ^ M = -^s in ( ln | * | ) 
\x\ \x\ 

in Ex = {xeR3: \x\ ̂  1}. The corresponding ordinary differential inequality 

is oscillatory and F(r) = 10/r5 sin (in r) satisfies condition (v) of Theorem 5 with 
Po(r) = r~\ Pi(r) = p2(r) = p3(r) = 1, />4(r) = r and rj(r) = -sin (In r)jr. Con
sequently, the equation (19) is oscillatory in Ev One oscillatory solution is u(x) = 
= sin (In |x|)/|x|. The homogeneous equation 

(20) A2u + ^ u = 0 

is oscillatory in Et (see Miiler-Pfeiffer [7]). 
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Súhrn 

KRITÉRIA OSCILÁCIE PRE NELINEÁRNE ELIPTICKÉ ROVNICE 
ĽUBOVOĽNÉHO RÁDU S NŰTIACIM ČLENOM 

PETER ŠVAŇA 

V pгáci sú odvodené postačujúce podmienky oscilácie riešení rovnice 

Amu+c(x,u)=f(x), xeEГQ, 

kde Am označuje m-tú iteráciu Laplaceovho operátora 

д2 д2 

и = s s г + - + i5 
a EГo je vonkajšia oblasť v n-rozтernoт euklidovskom priestore Rn. 

Резюме 

ПРИЗНАКИ КОЛЕБЛЕМОСТИ ДЛЯ НЕЛИНЕЙНЫХ 
ЭЛЛИПТИЧЕСКИХ УРАВНЕНИЙ ЛЮБОГО ПОРЯДКА 

С ВЫНУЖДАЮЩИМ ЧЛЕНОМ 

РЕТЕК. ЗУАЙА 

В работе приведены достаточные условия колеблемости решений уравнения 

Ати+с(х,и)=/(х), 

где Ат
 обозначает тя-тую итерацию лапласиана 

Є2 

J = eTl+- ÕxГ 

вне некоторой ограниченной области в л-мерном евклидовом пространстве Кп. 

Ашког'х аМгез$: Ка1еёга та{ета11с^ апа1у7у МЕР ^ К , Мгупзка аЫта, 842 15 Вга(1$1ауав 
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