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TWO-SIDED SOLUTIONS OF LINEAR INTEGRODIFFERENTIAL 
EQUATIONS OF VOLTERRA TYPE WITH DELAY 

MILAN MEDVED, Bratislava 

(Received September 8, 1988) 

Summary. For the system x = A(t) x + e JL ^ R(t — s) x(s) ds + £ J{_ T P(t — s) x(s) ds, 
0 < T < co, where A(t) is either a constant or a periodic matrix, the existence of two-sided 
solutions with x(0) = ;t0 is studied in connection with the behaviour of the solutions of the 
unperturbed system for E = 0. A Floquet type theorem for the periodic case is also proved. 

Keywords: Integrodifferential equation, two-sided solution. 
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Consider the integrodifferential equation 

(!) MO = A XQ + £ T R(f _ s) x(s) ds + f p(r _ s) x (s) ds ? 
d* J - c o J r - r 

here x e R"9 e > 0 is a parameter, _4 is a constant n x n matrix, 0 < T < oo, and 
the matrix functions R, P satisfy the conditions 
(1) R(t) is continuous and 

(2) lR(t)l = f-ie-* for t > 0 , 

where a. y are positive constants, 0 < a < 1 and [|_?[| is the euclidean norm of 
a matrix J3; 

(II) P(f) is continuous on the interval [0, T] . 

Definition. A solution xE(t) of the equation (l) is called two-sided if 
1. xe is defined on the interval ( - c o , oo), 
2. lim ||xe — x[|L = 0f0r any L> 0, where [|x£ — x||L = max ||xe(f) — x(r)|| and 

£-•0 l -L^t^L 

x is a solution of the equation 

(3) «l = Ax. 
v y dt 

Remark. The above definition includes also the case of a matrix solution of (1) 
i.e. either xc(t), x(t) e R" or xe(t), x(t) e M(n), where M(n) is the set of all n x n 
matrices. 
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We study the problem of existence of two-sided solutions of the equation (l). 
We also study the case when the matrix A is nonconstant and periodic. Yu. A. 
Ryabov [2] proved a sufficient condition for the existence of a two-sided matrix 
solution of the equation (l) without the second integral term, i.e. when P = 0, and 
has formulated a sufficient condition for the existence and uniqueness of a two-sided 
solution of this equation. 

Theorem 1. Let the conditions (I), (II) be satisfied and let the eigenvalues Ai9 2.2,... 
..., Xn of the matrix A satisfy the condition 

(4) min Re X} > — y. 

Then there exists an e* > 0 such that the following assertions are valid: 
(a) For any E G (0, e*] there exists a two-sided matrix solution of the equation (l) 

of the form 

(5) XE(t) = eDt, 

where D = D(s) is a matrix independent of t and lim D(e) = A, i.e. 
Urn \\D(e) - A\ = 0. £~*° 
£->o 

(b) For any e e (0, e*] and x0 e Rn there exists a unique solution xE(t) of the equation 
(1), satisfying the condition x£(0) = x0 and xEeUd = {zeC°((— oo, co), R"): 
z(t) eSt < oo for all t e (— oo, 0]}, where S is a constant and 0 < 5 < y. 

The assertion (a) of this theorem concerning the case P = 0 has been proved 
by Ryabov in [2], where the existence of the matrix D is proved by the method of 
matrix series. The proof of the assertion (b) is not given in [2]. We prove both 
assertions of Theorem 1 using the Banach fixed point theorem. 

We need the following lemma. 

Lemma 1. Let 0 < t < oo, u e C°([0, ?], R) be a nonnegative function, a _ 0S 

b = 0, k = 0, p > 0 constants and 

(6) u(t) = a + k f V T ) dT ds + b f !\s -rf-1 u(x) dz ds , 
J oJ o J o j o 

t e [0 , {]. Then 

(7) u(t) <L a e x p j ^ |- + - ^ - ^ <"+1J , te [0, F] . 

Proof. From the Fubini theorem it follows that the inequality (6) is equivalent to 

u(t) ̂ a+(' h(t - T) + - (f - T/1 «(T) dT 

and applying [1, Theorem 1.4X] we obtain the inequality (7). 
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Proof of Theorem 1. Let D be a constant n x n matrix. The matrix function 
Xe(t) = eDt is a matrix solution of the equation (l) if and only if 

DeDt = AeDt + e\ R(t - s) eDs ds + e [ P(t - s) eDs ds . í R(t - s) eDs às + e í P(t - s) , 
J - o o J t-T 

Let us look for the matrix solution of this equation in the form D = A + Q, where Q 
is an unknown matrix. Putting t = 0 in this equation we obtain the following equa
tion for Q: 

/•oo 

(8) Q = s\ R(0)e-íA + Q)0d0 + e P( ) e-(л+Q) d 

Using the substitution s = t — O in the integrals on the right-hand side of (8) one 
can show that if Q is a matrix solution of (8) and D = A + Q then eDt is a matrix 
solution of the equation (1). Therefore it suffices to solve the matrix equation (8). 

The condition (4) implies that there exists //, —y < // < min Re kj and a constant 
k > 1 such that J 

(9)ff | |e-^ | | _ he"110 , S = 0 . 

Let Vx = {QeM(n): | |g[| < x)> where M(n) is the set of all n x n matrices and 
0 < x < y + j.i. Define the mapping 

&C:VX-+M(n), J*.(ß) = б 

+ e ľP( ) e-<л+в) d . 

R( )e-<A+Q) d + 
o 

Lemma 2. There exists an e* > 0 such that the mapping J% is contractive for 
€e(0 ,e*] . 

Proof. If Qi9 Q2 e Vx then using the inequalities (2), (9) we obtain 

(10) Ujrt(G.) - FC(Q2)\ < s(k fV--e-CT+rt«»| |e--.« _ e -<^ | j d 0 + 

+ fe f r
e -^ f lP (o ) | | fle-2'e - e- e j 8f l d©) . 

The mean value theorem implies that 

||6-fli* _ ,-Q-0|| <g s u p p a ] | Q l e _ Q 2 0 | <g e ^ J Q l _ Q 2 | | 
QeV* 

for any 0 . Using this inequality and (10) we have 

l^XQi) - -*.(G-)|| ^ efc ( fY^o ' d© + 

+ [W*-^p(o)i doW - e2|| 
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where £ = y + /i — x. If we put s = £0 in the first integral then the above inequality 
takes the form 

| |*.(Qi) - ^ ( 6 2 ) ! ^ <*[C—* r(a + 1) + C], 

where C = J0 6>e(*-^||P(<9)[] d<9 < 00. Since 0 < a + 1 < 2 we have 0 < 
< F(a + 1) < 00. Therefore if 

(11) 0 < e < fil := v k - 1 ^ 1 F(a + 1) + C]"1 , 

where 0 < v < 1, then 

1^.(60 - ^lQi)\ =" vffii - Q2\\, 
i.e. the mapping 3F'e is contractive. 

Lemma 2 implies that if e e (0, fil), where fil is defined by (11), then the mapping <FZ 

has a unique fixed point Q e Vx. This matrix is a unique solution of (8) belonging to 
the set Vx. From (8) we have that lim Q(e) = 0 and so lim D(e) = A, i.e. 

£-*0 £->0 

lim [1.0(e) — A|j = 0, where D(e) = A + Q(e). It remains to prove the assertion (b) 
£ - 0 

of Theorem 1. We shall prove that for any x0 e Rn there exists a unique solution x(t) 
of the equation (1) satisfying the conditions x(0) = x0 and sup \\x(t)\\ eSt < 00, 

- o o < f ^ 0 

where 

(12) 0 < S <y , fi + 5 > 0 

and /a is the number from (9). Since \i + y > 0 there exists a number S satisfying 
(12). Define the subspace 

B5 = {x e C ° ( ( - 00, 0], IT): sup ||x(f)|| e5' < 00} . 
-00<»g0 

The set Bg with the norm \\x\\s = sup ||x(t)|[ edl is a Banach space. Define the 
mapping -c°<rso 

G.:B,-*C°((--oo,()],.R"), 

(G.x) (0 = e Г Г И<—> ŕ Г Д(s - т) x(т) dт 

+ P(s - т) x(т) dт J ds , -

+ 

•00 < t S 0 . 

We shall prove that Ge(Bd) c B& and Gt is contractive for e > 0 sufficiently small. 
If x e Bb and — 00 < t g 0 then 

lGe(OI g e f c [ f e " " ( s " ° (J s e _ K s _ t ) ( s - *rxWA ^ + 

+ T J|P(s - T)| ||X(T)|| dt) dsj ^ efc(/-(0 + /2(0) \\xl, 
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where 

Ii(t) = [ e-" ( s-"[ f e-**'-*e-*t(s - T)""1 d ^ ds , 

I2(t) = [ e-M*~"( f \\p(s - t) | | e-« dx\ ds . 

The function /.(t) can be written in the form 

/.(<•) = «" [V<"+ i S , s l' T e-(T-«K«-.)(s - - ) • - • dT) ds , 

and using the substitution u = (y — 5) (s — T) we obtain 

/.(f) = e>" [ e-O+nf [°°(7 - S)-"e-au'-1 du\ ds = 

= T(a) (y - 5)-" e*' [ e~^+d)s ds = 

= r(«)(y - 5)-(AI + 5)-1 e<"(e-^+s>' - 1) . 

The function I2(t) can be written in the form 

I2(t) = [%-*'-»>/' [T | |P(0)| e9& do) «-«•) ds = 

= e*( [V( 0 ) l l ese d&\ (pi + <5YJ (e-C+")' - 1). 

Therefore we have the inequality 

||G. x(01 e5' _ cfc(«i + K2) ^+*)t(c-(M+*)r _ 1) |x | |a f 

where Kx = F(a) (y - <5)"a (^ + S)'1 > 0, K2 = (JJ ||p(©)|| ^ d0) (fi + (5)-1 > 
> 0. Since /z + S > 0 we obtain 

sup ||G£ x(t)\\ ebt
 = sk(Kt + K2) ||x||5 < oo , i.e. GEx e B5 

- o o < r g o 

and therefore GeB5 c B^. Since G£ is linear we have 

||G£*i - G£x2||a = flGE(x. - X2)||, = Ek(K, + K2) flx. - x2fl, 

for any xi9x2eB5 and thus the map G£ is contractive for any ee(0, e), where 
e = fc"1^! + K2)

-1. From now on we assume ee(0, e). Then the map Ge has 
a unique fixed point <p0 e Bg. Since this map is linear and 0 e Bs we conclude that 
cp0 = 0. 

Let <pi9 <p2 be two solutions of the equation (l) satisfying the condition <plv0) = 
= <Pi(fy = *o> sup ||<p.(OII edt < oo, f = 1, 2 and let cp(t) = yjj) - <p2(t). Then 

-oo<í^O 

268 



sup \\(p(t)\\ edt < oo. The mapping <P e C°((-co, 0], Rn), <P(t) = (p(t), - c o < 
~ 0 0 < f ^ 0 

< t ^ 0, is a fixed point of the map Ge and therefore <P(t) = 0. Thus if there is 
a two-sided solution of (l) belonging to Bd then it is uniquely defined on the interval 
( - c o , 0]. We prove that such a two-sided solution does exist and it is also uniquely 
defined on the interval [0, oo). 

The function W(t) = eD(£)rx0 is a two-sided solution of the equation (1) satisfying 
the initial condition !P(0) = x0. If e > 0 is sufficiently small then the condition (4) 
and the equality lim D(e) = A imply that the eigenvalues Vj, v2 , . . . , v„ of the matrix 

E-+0 

D(s) satisfy the condition min Re v,- > —y. Therefore there exists a constant fi, 
J 

— y<fi< min Re Vj and a constant k > I such that 
j 

||e-D(£)0|| ^ fa-no ? 0 = o or []eD(£)'[| = kefit, t = 0. 

Since /i + 3 > 0, where \i is the number from (9), we have fi + 6 > 0 for e suf
ficiently small. Therefore for such e > 0 we obtain 

sup I ^ ' x o l l e» < sup ( k ^ + a , , | x 0 | | ) = % 0 | | < oo . 
- o o < f ^ 0 -oo<f<.0 

This means that the two-sided solution ^(t) = eD{E)tx0 belongs to the set B6> It 
suffices to prove the uniqueness of two-sided solutions of the equation (1) belonging 
to the set B5 on the interval [0, oo). 

Let (Pi(t), (p2(t) be two-sided solutions of the equation (1) belonging to the set Bb 

and satisfying the condition (pi(0) = (p2(0) = x0. Let (p = <pt — (p2. Since we have 
proved that (p^t) = <p2(t) for all t e (-- oo, 0], by (2) we obtain for t = 0: 

IKOH = £ II (V ( ' "S ) ( \SR(S - T) <p(T) dT + 
IIJ o \ Jo 

+ P(5~ T)<?(T)dTJds 

= s Tc f ^ " s > ( Ce^-^s - T )"" 1 | |9(T)I dT + K !S\\<P(T)\\ d t ' j d s l 

where v > max Re Xj9 c > 0 (\\eAt\\ = cext for all t = 0) and K = max ||P(f)[|. 
j O^t^T 

It suffices to show that for any 0 < t < oo, <p(t) = 0 for all t e [0, {]. From the 
above inequality we obtain 

1<K01 < t\cM r f(s - T ) - 1 ||^(T)|| dT ds + cK j * J V W I dT dsl. 

Applying Lemma 1 to this inequality we obtain <p(t) = 0 for all t e [0, f\. 
We have shown that for e > 0 sufficiently small and any x0 e Rn there exists 

a unique solution xE of the equation (l) satisfying the condition xE(0) = x0 and 
defined on the interval (— oo, oo). This solution has the form xE(t) = eD(c)rx0, where 
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D(e) = A + g(e)* lim Q(e) = 0. It remains to show that xE has the second property 
£-o 

of a two-sided solution, i.e. lim \\xE - x||L = 0 for any L> 0, where x(t) = eMx0. 
£-->0 

If XE(t) = eD(£)' and X(t) = eAr then 

\\XE(t) - X(0« = y i e ^ - L]|| __ |K<|] ||e«'>' - £|| . 

The mean value theorem implies that for any L > 0 

max fle6™ - _|| _ max (||Q(e) e^'\\) \t\ _ LC(L)| Q(e)|j , 
-LgtgL -L_if_.L 

where C(L) = max ||eQ(£)f||. Therefore we have 
-L_;f_;L 

lim Jx, - x|L = lim max ||x.(.) - x(.)| _ LC(L) ||x0|| lim |Q(e)|| = 0 
E-*0 £-0 -L^t^L E-»0 

and the proof of Theorem 1 is complete. 
Let us consider the integrodifferential equation 

(13) 
dx(t) 

= A(t) x(t) + є R(t - s) x(s) ds + є P(t - s) x(s) ds : 

J -00 J f - T 

where R, P, T are as above and A(t) is a continuous i-periodic matrix function on 
(-co, oo), x > 0. 

If X(t) is the normed fundamental matrix of the linear system 

(14) ^ = A(t) x 

then by the Floquet theorem 

(15) X(t) = <P(t)eA\ 

where A is a constant matrix and &(t) is a continuous i-periodic matrix function. 
Introducing a new variable y = $~l(t) x the equation (13) becomes 

(16) _*>!__ = A ̂ (t) + _ *-!(*) P R(t _ s ) <*>(s) y ( s ) ds + 
d* J -oo 

+ e 0 - 1 ( 0 [ p ( * - S ) ^(«) y(S) d 5 • 
J f-T 

Let us look for the matrix solution eDt of the equation (16), where D = A + Q-> 
Q is an unknown matrix. This is a solution of (16) if and only if 

(17) DeDt = AeDt + s <P~l(t) P R(t - s) &(s) eDs ds 
J — 00 

+ e <P~ '(l) J P(t - s) 4>(s) eDs ds . 
J t-T 

+ 
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s. eDt + 

Putting t = 0 in this equation we obtain the equation for Q: 
po ro 

Q = £ R(-s) (P(s) e<-A+Q)s As + £ P(-s) <*>(s) e ( /1+e)s ds . 
J - oo J —T 

Introducing the substitution — 5 = c this equation becomes 
A*00 /»T 

(18) Q = £ R ^ ^ - ^ e - ^ + ̂ d a + f i P(<7)<2>(-<7)e-(/,+e)'d<7. 
Jo Jo 

Let Q be a solution of (18). Then 

DeDt = AeD( + £ PR(ff) <*>(-<r) e~D* d<7 . eDt + 

+ e f P(<7)$(-t7)e-'Dffd<7.eD', 

where D = A + Q.li a = t — s then the above equation becomes 

(19) DeDt = AeD' + s P R(< - s) <Z>(s - t) e-D ( ' " s ) d 
J —00 

+ e P(t - s) <Z>(s - r) g - ^ " s ) ds . eDt. 
J r-T 

If the conditions 

(20) <?>(t) R(t - s) 4>(s - t) = R(t - s) <P(s) for all t, s e R , 

(21) <2>(t) P(^ - s) <P(s - t) = P(t - s) 0(s) for all /, 5 e R 

are satisfied then the equation (19) is equivalent to the equation (17). If A(t) = A 
is a constant matrix then these conditions are trivially satisfied. 

Since the matrix functions ^~x(t), <P(t) are continuous and periodic they must be 
bounded. Therefore using the same procedure as in the proof of Theorem 1 we are 
able to solve the equation (18) and to prove the following theorem. 

Theorem 2. Let A(t) be a continuous, x-periodic matrix function on the interval 
(—00, 00) and let the matrix functions R, P satisfy the assumptions of Theorem 1. 
Let <P(t), A be the matrices defined by (15), let the eigenvalues xl9 x2, -.,xn of A 
satisfy the condition 

min Xj > —y 
j 

and let the conditions (20), (21) be satisfied. Then there exists an e* > 0 such that 
for any e e (0, e*] the following assertions are valid: 
(a) There exists a two-sided matrix solution of the equation (16) of the form 

Yc(t) = eDt, 

where D = D(s) is a matrix independent of t and lim D(e) = A. 
£-*0 
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(b) For any y0 e Rn there exists a unique two-sided solution yE(t) of the equation 
(16) satisfying* the initial condition yE(0) = y0 and yEeUd = {z e C°((— oo, oo), 
Rn): \\z(t)\\ ebt < oo for all f e ( - o o , 0 ] } , where S is a constant and 0 < 3 < y. 

(c) There exists a two-sided matrix solution XE of the equation (13) satisfying the 
condition XE(0) = E, where E is the unit matrix. This matrix solution has the 
form XE(t) = <p(t) eD{E)t, where <P(t) and D(e) are as above. 

(d) For any x0 e Rn there exists a unique two-sided solution xE of the equation (13) 
satisfying the initial condition xE(0) = x0, xEeUn = {z e C°((—co, oo), K"): 
|jz(t)|| ent < oo for all t e ( — oo, 0]}, where n is a constant, 0 < n < y 
and xE(t) = <P(t) eD(E)'x0, <P(t), D(e) being as above. 

The assertion (c) is a generalization of the Floquet theorem. 
The author would like to thank Professor V. Seda for his careful reading of the 

manuscript and kind remarks on this matter. 
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Súhrn 

OBOJSTRANNÉ RIEŠENIA LINEÁRNYCH INTEGRODIFERENCIÁLNYCH 
ROVNÍC VOLTERROVHO TYPU S ONESKORENÍM 

MlLAN MEDVĚD 

Pre systém x = A(t) x + £ JL «, R(t — s) x(s) ds + £ J{_ T P(t — s) *(s) ds, 0 < T< oo 
kde A(t) je bud konŠtantná, alebo periodická matica, je Študovaná existencia obojstranných 
riešení pre malé hodnoty parametra s > 0. V případe, ked je matica A(t) periodická, je dokázaná 
veta Floquetovho typu. 

Pe3K>Me 

flByCTOPOHHHE PEIIIEHHiT JIMHEÍÍHblX HHTErPO-flHOOEPEHLl.HAJIbHI>IX 
yPABHEHHH THnA BOJITEPA C 3AnA3flbIBAHHEM 

MlLAN MEDVEĎ 

Hccjiê yeTCH cyniXTBOBaHHe flBycTOpOHHHX peuieHHH c ycjioBHeM *(0) = x0 AJIK CHCTCMBI 
x(t) = A(t) x(t) + e JL ooR(t — s) x(s) ds 1+ £ Jf-rFÍ-1 ~* J) •*(•*) ds B CBH3H c noBê eHHeM penie-
HHií HeB03MymeHH0H CHCTeMbi fliw £ = 0, rfle 0 < T < oo H A(t) — nocToamiafl HJIH nepHOflH-
necKan MaTpHija. npHBefleHO TaK»ce ,zjOKa3aTejn>CTBo TeopeMbi Tnna OJIOKC fljm nepHOflHHecKoro 
cjiynaH. 
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