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On absolute summability factors for |N, pn|k summability

Hüseyin Bor

Abstract. In this paper a theorem on |N, pn|k summability factors, which generalizes a the-
orem of Mishra and Srivastava [MS] on [C, 1]k summability factors, has been proved.
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1. Introduction.

Let
∑∞
0 an be a given infinite series with partial sums (sn). By uδ

n we denote
the n-th Cesàro mean of order δ (δ > −1 and δ is real) of the sequence (sn). The
series

∑

an is said to be summable |C, δ|k , k ≥ 1, if (see [F])

(1.1)

∞
∑

n=1

nk−1|uδ
n − uδ

n−1|
k < ∞.

Let (pn) be a sequence of positive real constants such that

(1.2) Pn =

n
∑

u=0

pu → ∞ as n → ∞.

The sequence-to-sequence transformation

(1.3) tn =
1

Pn

n
∑

u=0

pusu

defines the sequence (tn) of the (N, pn) means of the sequence (sn), generated by
the sequence of coefficients (pn) (see [H, p. 57]). The series

∑

an is said to be

summable |N, pn|k, k ≥ 1, if (see [B])

(1.4)

∞
∑

n=1

(Pn/pn)
k−1|tn − tn−1|

k < ∞.

In the special case when pn = 1 for all values of n, |N, pn|k summability is the same
as |C, 1|k summability.
Let K be a positive constant. If g > 0, then f = O(g) means |f | < K · g and

f = o(g) means f/g → 0 (see [H, p. XVI]).

2. Mishra and Srivastava [MS] proved the following theorem for |C, 1|k summabil-
ity.
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Theorem A. Let (Xn) be a positive non-decreasing sequence and be there se-
quences (βn) and (λn) such that

|∆λn| ≤ βn,(2.1)

βn → 0 as n → ∞,(2.2)

|λn|Xn = O(1) as n → ∞,(2.3)
∞
∑

n=1

nXn|∆βn| < ∞.(2.4)

If

(2.5)

m
∑

n=1

1

n
|sn|

k = O(Xn) as m → ∞,

then the series
∑

anλn is summable |C, 1|k, k ≥ 1.

3. The aim of this paper is to generalize Theorem A for |N, pn|k summability.
Now, we shall prove the following theorem.

Theorem. Let (Xn) be a positive non-decreasing sequence and the sequences (λn)
and (βn) are such that conditions (2.1)–(2.3) of Theorem A are satisfied. Further-
more, if

∞
∑

n=1

PnXn|∆βn| < ∞,(3.1)

m
∑

n=1

pn

Pn
|sn|

k = O(Xm) as m → ∞,(3.2)

and

1 = O(pn) as n → ∞(3.3)

then the series
∑

anλn is summable |N, pn|k, k ≥ 1.

Remark. It should be noted that if we take pn = 1 for all values of n, then
the conditions (3.1) and (3.2) will be reduced to the conditions (2.4) and (2.5),
respectively. Also notice that in this case condition (3.3) is obvious.

4. We need the following lemma for the proof of our theorem.

Lemma. Under the conditions of the theorem, we have

PnXnβn = o(1) as n → ∞,(4.1)
∞
∑

n=1

pnXnβn < ∞,(4.2)

∞
∑

n=1

βnXn < ∞.(4.3)
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Proof: Since βn → 0 as n → ∞, by (2.2), we have that

(4.4) βn =
∞
∑

u=n

∆βu .

Since (XnPn) is increasing, we have

PnXnβn ≤

∞
∑

u=n

Pu|∆βu|Xu < ∞,

by (3.1). Hence
PnXnβn = o(1) as n → ∞.

Since (Xn) is increasing, using (4.4), we have that

∞
∑

n=1

pnXnβn ≤

∞
∑

n=1

pnXn

∞
∑

u=n

|∆βu| =

∞
∑

u=1

|∆βu|

u
∑

n=1

pnXn

≤

∞
∑

u=1

Xu|∆βu|

u
∑

n=1

pn =

∞
∑

u=1

PuXu|∆βu| < ∞,

by (3.1).
Finally, we have that

∞
∑

n=1

Xnβn = O(1)

∞
∑

n=1

pnXnβn < ∞,

by (3.3) and (4.2). This completes the proof of the lemma. �

5. Proof of the theorem.

Let (Tn) be the (N, pn) means of the series
∑

anλn. Then, by definition, we
have

Tn =
1

Pn

n
∑

u=0

pu

u
∑

r=0

arλr =
1

Pn

n
∑

u=0

(Pn − Pu−1)auλu .

Further, for n ≥ 1, we have

Tn − Tn−1 =
pn

PnPn−1

n
∑

u=1

Pn−1auλu .

Using Abel’s transformation, we get that

Tn − Tn−1 =
pn

PnPn−1

n−1
∑

u=1

∆(Pu−1λu)su +
pnsnλn

Pn
= −

pn

PnPn−1

n−1
∑

u=1

pusuλu

+
pn

PnPn−1

n−1
∑

u=1

Pusu∆λu +
pnsnλn

Pn
= Tn,1 + Tn,2 + Tn,3,
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say. To complete the proof of the theorem, by Minkowski’s inequality for k ≥ 1, it
is sufficient to show that

∞
∑

n=1

(Pn/pn)
k−1|Tn,r|

k < ∞, for r = 1, 2, 3.

Now, applying Hölder’s inequality with the indices k and k′, where 1
k
+ 1

k′ = 1, we
have that

m+1
∑

n=2

(Pn/pn)
k−1|Tn,1|

k ≤

m+1
∑

n=2

pn

PnP k
n−1

{

n−1
∑

u=1

pu|su| |λu|

}k

≤

m+1
∑

n=2

pn

PnPn−1

{

n−1
∑

u=1

pu|su|
k|λu|

k

}

×

{

1

Pn−1

n−1
∑

u=1

pu

}k−1

= O(1)

m
∑

u=1

pu|su|
k|λu|

k
∑

n=u+1

m+ 1
pn

PnPn−1
= O(1)

m
∑

u=1

pu

Pu
|su|

k|λu|
k .

Since |λn| = O(1/Xn) = O(1), by (2.3), we have that

m+1
∑

n=2

(Pn/pn)
k−1|Tn,1|

k = O(1)
m

∑

u=1

pu

Pu
|su|

k|λu| |λu|
k−1

= O(1)

m
∑

u=1

pu

Pu
|su|

k|λu| = O(1)

m−1
∑

u=1

∆|λu|

u
∑

r=1

pr

Pr
|sr|

k +O(1)|λm|

m
∑

u=1

pu

Pu
|su|

k

= O(1)

m−1
∑

u=1

|∆λu|Xu +O(1)|λm|Xm = O(1)

m−1
∑

u=1

βuXu +O(1)|λm|Xm = O(1)

as m → ∞, by virtue of (2.1), (2.3), (3.2) and (4.3).
Using the conditions (2.1), (3.3) and applying Hölder’s inequality as in Tn,1, we

have that

m+1
∑

n=2

(Pn/pn)
k−1|Tn,2|

k ≤

m+1
∑

n=2

pn

PnP k
n−1

{

n−1
∑

u=1

Pu|∆λu| |su|

}k

≤

m+1
∑

n=2

pn

PnP k
n−1

{

n−1
∑

u=1

Puβu|su|

}k

= O(1)

m+1
∑

n=2

pn

PnP k
n−1

{

n−1
∑

u=1

puPuβu|su|

}k

= O(1)

m+1
∑

n=2

pn

PnPn−1

{

n−1
∑

u=1

(Puβu)
kpu|su|

k

}

×

{

1

Pn−1

n−1
∑

u=1

pu

}k−1

= O(1)
m

∑

u=1

(Puβu)
kpu|su|

k
m+1
∑

n=u+1

pn

PnPn−1
= O(1)

m
∑

u=1

(Puβu)
k pu

Pu
|su|

k .
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Since Pnβn = O(1/Xn) = O(1), by (4.1), we have

m+1
∑

n=2

(Pn/pn)
k−1|Tn,2|

k = O(1)

m
∑

u=1

(Puβu)
k−1Puβu

pu

Pu
|su|

k

= O(1)
m

∑

u=1

Puβu
pu

Pu
|su|

k = O(1)
m−1
∑

u=1

∆(Puβu)
u

∑

r=1

pr

Pr
|sr|

k

+O(1)Pmβm

m
∑

u=1

pu

Pu
|su|

k

= O(1)

m−1
∑

u=1

|∆(Puβu)|Xu +O(1)PmβmXm = O(1)

m−1
∑

u=1

Pu|∆βu|Xu

+O(1)
m−1
∑

u=1

pu+1βu+1Xu +O(1)PmβmXm = O(1) as m → ∞,

by virtue of (3.1), (3.2), (4.1) and (4.2). Finally, as in Tn,1, we get that

m
∑

n=1

(Pn/pn)
k−1|Tn,3|

k =

m
∑

n=1

pn

Pn
|λn|

k|sn|
k = O(1) as m → ∞.

Therefore, we get that

m
∑

n=1

(Pn/pn)
k−1|Tn,r|

k = O(1) as m → ∞, for r = 1, 2, 3.

This completes the proof of the theorem. �
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