Commentationes Mathematicae Universitatis Carolinae

Hüseyin Bor
On absolute summability factors for $\left|\bar{N}, p_{n}\right|_{k}$ summability

Commentationes Mathematicae Universitatis Carolinae, Vol. 32 (1991), No. 3, 435--439

Persistent URL: http://dml.cz/dmlcz/118424

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1991

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

On absolute summability factors for $\left|\bar{N}, p_{n}\right|_{k}$ summability

HÜSEYin Bor

Abstract. In this paper a theorem on $\left|\bar{N}, p_{n}\right|_{k}$ summability factors, which generalizes a theorem of Mishra and Srivastava $[\mathrm{MS}]$ on $[C, 1]_{k}$ summability factors, has been proved.

Keywords: absolute summability, summability factors, infinite series
Classification: 40D15, 40G99

1. Introduction.

Let $\sum_{0}^{\infty} a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$. By u_{n}^{δ} we denote the n-th Cesàro mean of order $\delta\left(\delta>-1\right.$ and δ is real) of the sequence $\left(s_{n}\right)$. The series $\sum a_{n}$ is said to be summable $|C, \delta|_{k}, k \geq 1$, if (see $[\mathrm{F}]$)

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|u_{n}^{\delta}-u_{n-1}^{\delta}\right|^{k}<\infty \tag{1.1}
\end{equation*}
$$

Let $\left(p_{n}\right)$ be a sequence of positive real constants such that

$$
\begin{equation*}
P_{n}=\sum_{u=0}^{n} p_{u} \rightarrow \infty \text { as } n \rightarrow \infty \tag{1.2}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
t_{n}=\frac{1}{P_{n}} \sum_{u=0}^{n} p_{u} s_{u} \tag{1.3}
\end{equation*}
$$

defines the sequence $\left(t_{n}\right)$ of the $\left(\bar{N}, p_{n}\right)$ means of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$ (see $[\mathrm{H}, \mathrm{p} .57]$). The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, if (see [B])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(P_{n} / p_{n}\right)^{k-1}\left|t_{n}-t_{n-1}\right|^{k}<\infty \tag{1.4}
\end{equation*}
$$

In the special case when $p_{n}=1$ for all values of $n,\left|\bar{N}, p_{n}\right|_{k}$ summability is the same as $|C, 1|_{k}$ summability.

Let K be a positive constant. If $g>0$, then $f=O(g)$ means $|f|<K \cdot g$ and $f=o(g)$ means $f / g \rightarrow 0$ (see [H, p. XVI]).
2. Mishra and Srivastava [MS] proved the following theorem for $|C, 1|_{k}$ summability.

Theorem A. Let $\left(X_{n}\right)$ be a positive non-decreasing sequence and be there sequences $\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ such that

$$
\begin{align*}
& \left|\Delta \lambda_{n}\right| \leq \beta_{n} \tag{2.1}\\
& \beta_{n} \rightarrow 0 \text { as } n \rightarrow \infty \tag{2.2}\\
& \left|\lambda_{n}\right| X_{n}=O(1) \text { as } n \rightarrow \infty \tag{2.3}\\
& \sum_{n=1}^{\infty} n X_{n}\left|\Delta \beta_{n}\right|<\infty \tag{2.4}
\end{align*}
$$

If

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{1}{n}\left|s_{n}\right|^{k}=O\left(X_{n}\right) \text { as } \quad m \rightarrow \infty \tag{2.5}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $|C, 1|_{k}, k \geq 1$.
3. The aim of this paper is to generalize Theorem A for $\left|\bar{N}, p_{n}\right|_{k}$ summability. Now, we shall prove the following theorem.

Theorem. Let $\left(X_{n}\right)$ be a positive non-decreasing sequence and the sequences (λ_{n}) and $\left(\beta_{n}\right)$ are such that conditions (2.1)-(2.3) of Theorem A are satisfied. Furthermore, if

$$
\begin{align*}
& \sum_{n=1}^{\infty} P_{n} X_{n}\left|\Delta \beta_{n}\right|<\infty \tag{3.1}\\
& \sum_{n=1}^{m} \frac{p_{n}}{P_{n}}\left|s_{n}\right|^{k}=O\left(X_{m}\right) \text { as } m \rightarrow \infty \tag{3.2}
\end{align*}
$$

and

$$
\begin{equation*}
1=O\left(p_{n}\right) \text { as } n \rightarrow \infty \tag{3.3}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.
Remark. It should be noted that if we take $p_{n}=1$ for all values of n, then the conditions (3.1) and (3.2) will be reduced to the conditions (2.4) and (2.5), respectively. Also notice that in this case condition (3.3) is obvious.
4. We need the following lemma for the proof of our theorem.

Lemma. Under the conditions of the theorem, we have

$$
\begin{align*}
& P_{n} X_{n} \beta_{n}=o(1) \text { as } n \rightarrow \infty \tag{4.1}\\
& \sum_{n=1}^{\infty} p_{n} X_{n} \beta_{n}<\infty \tag{4.2}\\
& \sum_{n=1}^{\infty} \beta_{n} X_{n}<\infty \tag{4.3}
\end{align*}
$$

Proof: Since $\beta_{n} \rightarrow 0$ as $n \rightarrow \infty$, by (2.2), we have that

$$
\begin{equation*}
\beta_{n}=\sum_{u=n}^{\infty} \Delta \beta_{u} \tag{4.4}
\end{equation*}
$$

Since $\left(X_{n} P_{n}\right)$ is increasing, we have

$$
P_{n} X_{n} \beta_{n} \leq \sum_{u=n}^{\infty} P_{u}\left|\Delta \beta_{u}\right| X_{u}<\infty
$$

by (3.1). Hence

$$
P_{n} X_{n} \beta_{n}=o(1) \text { as } n \rightarrow \infty
$$

Since $\left(X_{n}\right)$ is increasing, using (4.4), we have that

$$
\begin{aligned}
\sum_{n=1}^{\infty} p_{n} X_{n} \beta_{n} \leq \sum_{n=1}^{\infty} p_{n} X_{n} \sum_{u=n}^{\infty} \mid & \Delta \beta_{u}\left|=\sum_{u=1}^{\infty}\right| \Delta \beta_{u} \mid \sum_{n=1}^{u} p_{n} X_{n} \\
\leq & \sum_{u=1}^{\infty} X_{u}\left|\Delta \beta_{u}\right| \sum_{n=1}^{u} p_{n}=\sum_{u=1}^{\infty} P_{u} X_{u}\left|\Delta \beta_{u}\right|<\infty
\end{aligned}
$$

by (3.1).
Finally, we have that

$$
\sum_{n=1}^{\infty} X_{n} \beta_{n}=O(1) \sum_{n=1}^{\infty} p_{n} X_{n} \beta_{n}<\infty
$$

by (3.3) and (4.2). This completes the proof of the lemma.

5. Proof of the theorem.

Let $\left(T_{n}\right)$ be the $\left(\bar{N}, p_{n}\right)$ means of the series $\sum a_{n} \lambda_{n}$. Then, by definition, we have

$$
T_{n}=\frac{1}{P_{n}} \sum_{u=0}^{n} p_{u} \sum_{r=0}^{u} a_{r} \lambda_{r}=\frac{1}{P_{n}} \sum_{u=0}^{n}\left(P_{n}-P_{u-1}\right) a_{u} \lambda_{u} .
$$

Further, for $n \geq 1$, we have

$$
T_{n}-T_{n-1}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{u=1}^{n} P_{n-1} a_{u} \lambda_{u}
$$

Using Abel's transformation, we get that

$$
\begin{aligned}
T_{n}-T_{n-1}=\frac{p_{n}}{P_{n} P_{n-1}} & \sum_{u=1}^{n-1} \Delta\left(P_{u-1} \lambda_{u}\right) s_{u}+\frac{p_{n} s_{n} \lambda_{n}}{P_{n}}=-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{u=1}^{n-1} p_{u} s_{u} \lambda_{u} \\
& +\frac{p_{n}}{P_{n} P_{n-1}} \sum_{u=1}^{n-1} P_{u} s_{u} \Delta \lambda_{u}+\frac{p_{n} s_{n} \lambda_{n}}{P_{n}}=T_{n, 1}+T_{n, 2}+T_{n, 3}
\end{aligned}
$$

say. To complete the proof of the theorem, by Minkowski's inequality for $k \geq 1$, it is sufficient to show that

$$
\sum_{n=1}^{\infty}\left(P_{n} / p_{n}\right)^{k-1}\left|T_{n, r}\right|^{k}<\infty, \text { for } r=1,2,3
$$

Now, applying Hölder's inequality with the indices k and k^{\prime}, where $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, we have that

$$
\begin{aligned}
& \sum_{n=2}^{m+1}\left(P_{n} / p_{n}\right)^{k-1}\left|T_{n, 1}\right|^{k} \leq \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}^{k}}\left\{\sum_{u=1}^{n-1} p_{u}\left|s_{u}\right|\left|\lambda_{u}\right|\right\}^{k} \\
& \leq \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}}\left\{\sum_{u=1}^{n-1} p_{u}\left|s_{u}\right|^{k}\left|\lambda_{u}\right|^{k}\right\} \times\left\{\frac{1}{P_{n-1}} \sum_{u=1}^{n-1} p_{u}\right\}^{k-1} \\
& =O(1) \sum_{u=1}^{m} p_{u}\left|s_{u}\right|^{k}\left|\lambda_{u}\right|^{k} \sum_{n=u+1} m+1 \frac{p_{n}}{P_{n} P_{n-1}}=O(1) \sum_{u=1}^{m} \frac{p_{u}}{P_{u}}\left|s_{u}\right|^{k}\left|\lambda_{u}\right|^{k}
\end{aligned}
$$

Since $\left|\lambda_{n}\right|=O\left(1 / X_{n}\right)=O(1)$, by (2.3), we have that

$$
\begin{aligned}
& \sum_{n=2}^{m+1}\left(P_{n} / p_{n}\right)^{k-1}\left|T_{n, 1}\right|^{k}=O(1) \sum_{u=1}^{m} \frac{p_{u}}{P_{u}}\left|s_{u}\right|^{k}\left|\lambda_{u}\right|\left|\lambda_{u}\right|^{k-1} \\
& =O(1) \sum_{u=1}^{m} \frac{p_{u}}{P_{u}}\left|s_{u}\right|^{k}\left|\lambda_{u}\right|=O(1) \sum_{u=1}^{m-1} \Delta\left|\lambda_{u}\right| \sum_{r=1}^{u} \frac{p_{r}}{P_{r}}\left|s_{r}\right|^{k}+O(1)\left|\lambda_{m}\right| \sum_{u=1}^{m} \frac{p_{u}}{P_{u}}\left|s_{u}\right|^{k} \\
& =O(1) \sum_{u=1}^{m-1}\left|\Delta \lambda_{u}\right| X_{u}+O(1)\left|\lambda_{m}\right| X_{m}=O(1) \sum_{u=1}^{m-1} \beta_{u} X_{u}+O(1)\left|\lambda_{m}\right| X_{m}=O(1)
\end{aligned}
$$

as $m \rightarrow \infty$, by virtue of (2.1), (2.3), (3.2) and (4.3).
Using the conditions (2.1), (3.3) and applying Hölder's inequality as in $T_{n, 1}$, we have that

$$
\begin{aligned}
& \sum_{n=2}^{m+1}\left(P_{n} / p_{n}\right)^{k-1}\left|T_{n, 2}\right|^{k} \leq \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}^{k}}\left\{\sum_{u=1}^{n-1} P_{u}\left|\Delta \lambda_{u}\right|\left|s_{u}\right|\right\}^{k} \\
& \leq \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}^{k}}\left\{\sum_{u=1}^{n-1} P_{u} \beta_{u}\left|s_{u}\right|\right\}^{k}=O(1) \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}^{k}}\left\{\sum_{u=1}^{n-1} p_{u} P_{u} \beta_{u}\left|s_{u}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}}\left\{\sum_{u=1}^{n-1}\left(P_{u} \beta_{u}\right)^{k} p_{u}\left|s_{u}\right|^{k}\right\} \times\left\{\frac{1}{P_{n-1}} \sum_{u=1}^{n-1} p_{u}\right\}^{k-1} \\
& =O(1) \sum_{u=1}^{m}\left(P_{u} \beta_{u}\right)^{k} p_{u}\left|s_{u}\right|^{k} \sum_{n=u+1}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}}=O(1) \sum_{u=1}^{m}\left(P_{u} \beta_{u}\right)^{k} \frac{p_{u}}{P_{u}}\left|s_{u}\right|^{k}
\end{aligned}
$$

Since $P_{n} \beta_{n}=O\left(1 / X_{n}\right)=O(1)$, by (4.1), we have

$$
\begin{aligned}
& \sum_{n=2}^{m+1}\left(P_{n} / p_{n}\right)^{k-1}\left|T_{n, 2}\right|^{k}=O(1) \sum_{u=1}^{m}\left(P_{u} \beta_{u}\right)^{k-1} P_{u} \beta_{u} \frac{p_{u}}{P_{u}}\left|s_{u}\right|^{k} \\
& =O(1) \sum_{u=1}^{m} P_{u} \beta_{u} \frac{p_{u}}{P_{u}}\left|s_{u}\right|^{k}=O(1) \sum_{u=1}^{m-1} \Delta\left(P_{u} \beta_{u}\right) \sum_{r=1}^{u} \frac{p_{r}}{P_{r}}\left|s_{r}\right|^{k} \\
& +O(1) P_{m} \beta_{m} \sum_{u=1}^{m} \frac{p_{u}}{P_{u}}\left|s_{u}\right|^{k} \\
& =O(1) \sum_{u=1}^{m-1}\left|\Delta\left(P_{u} \beta_{u}\right)\right| X_{u}+O(1) P_{m} \beta_{m} X_{m}=O(1) \sum_{u=1}^{m-1} P_{u}\left|\Delta \beta_{u}\right| X_{u} \\
& +O(1) \sum_{u=1}^{m-1} p_{u+1} \beta_{u+1} X_{u}+O(1) P_{m} \beta_{m} X_{m}=O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

by virtue of $(3.1),(3.2),(4.1)$ and (4.2). Finally, as in $T_{n, 1}$, we get that

$$
\sum_{n=1}^{m}\left(P_{n} / p_{n}\right)^{k-1}\left|T_{n, 3}\right|^{k}=\sum_{n=1}^{m} \frac{p_{n}}{P_{n}}\left|\lambda_{n}\right|^{k}\left|s_{n}\right|^{k}=O(1) \text { as } m \rightarrow \infty
$$

Therefore, we get that

$$
\sum_{n=1}^{m}\left(P_{n} / p_{n}\right)^{k-1}\left|T_{n, r}\right|^{k}=O(1) \text { as } m \rightarrow \infty, \text { for } r=1,2,3
$$

This completes the proof of the theorem.

References

[B] Bor H., On $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series, Tamkang Jour. Math. 16 (1), (1985), 13-20.
[F] Flett T.M., On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. 7 (1957), 113-141.
[H] Hardy G.H., Divergent Series, Oxford, 1949.
[MS] Mishra K.N., Srivastava R.S.L., On absolute Cesàro summability factors of infinite series, Portugaliae Math. 42 (1), (1983-1984), 53-61.

Department of Mathematics, Erciyes University, Kayseri 38039, Turkey
mailing address: P.K. 213, Kayseri 38002, Turkey

