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On the Jacobson radical of graded rings
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Abstract. All commutative semigroups S are described such that the Jacobson radical is
homogeneous in each ring graded by S.
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In the theory of rings, many structure results were obtained with the use of
radicals; and the Jacobson radical seems to be the most efficient. The concept of
a radical ̺ enables one to reduce various problems concerning an arbitrary ring R
to the corresponding questions on the rings ̺(R) and R/̺(R) which are radical and
semisimple, respectively. For the applications of a well-known radical ̺ to the study
of graded rings, it is essential to know when it is homogeneous, because in that case
both ̺(R) and R/̺(R) are graded as well. In [1] abelian groups G were described
such that the Jacobson radical is homogeneous in every G-graded ring. The aim
of the present paper is to describe those commutative semigroups S such that the
Jacobson radical is S-homogeneous.
The radicals of semigroup-graded rings have been investigated by a number of

authors for several classes of semigroups. A few results of a graded nature have
already contributed to the solutions of some problems on semigroup rings. For
instance, the theorems of [1] and [15] play important roles in the description of the
Jacobson radical J(R[S]) for a commutative S, see [9]; the results of [3] and [4] were
applied to the study of semigroup rings satisfying polynomial identities in [12]. The
homogeneity of radicals in a semigroup-graded ring was considered in [1], [5], [7],
[8], [10], [14].
Let S be a semigroup. An associative ring R is called an S-graded ring if there

exist additive subgroups Rs of R indexed by the elements s ∈ S such that R =⊕
s∈S Rs is a direct sum and RsRt ⊆ Rst for all s, t. The Jacobson radical J is

said to be S-homogeneous if J(R) =
⊕

s∈S(J(R) ∩ Rs) for each R =
⊕

s∈S Rs.

Theorem. Let S be a commutative semigroup. The Jacobson radical is S-homo-
geneous if and only if S is embeddable in a torsion-free abelian group.

Proof: The ‘if’ part is an immediate consequence of the results of [1]. Indeed,
assume that S is contained in a torsion-free abelian group G. Take any ring R =⊕

s∈S Rs. Setting Sg = 0 for g ∈ G \ S, we get R =
⊕

g∈G Rg. It was shown

in [1] (see also [14]) that the Jacobson radical is G-homogeneous. Therefore J(R) =⊕
g∈G(J(R) ∩ Rg) =

⊕
s∈S(J(R) ∩ Rs). Thus J is S-homogeneous.
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For the proof of necessity we need the following definitions. A commutative
semigroup S is said to be separative if s, t ∈ S, s2 = st = t2 imply s = t. The least
separative congruence ξ on S is the least congruence such that S/ξ is separative.
Explicitly (cf. [2, § 4.3])

ξ = {(s, t) | snt = sn+1, tns = tn+1 for a natural n}.

A semigroup S is p-separative for a prime p, if s, t ∈ S, sp = tp imply s = t. The
least p-separative congruence on S is denoted by ξp. It is known (cf. [11]) that

ξp = {(s, t) | spn

= tp
n

for a natural n}.

If A is an ideal of R, η is a congruence on S, then the ideal of R[S] consisting
of all sums

∑n
i=1 ai(si − ti), where ai ∈ A, (si, ti) ∈ η, is denoted by I(A, S, η).

A commutative semigroup B is called a semilattice, if it consists of idempotents. S
is said to be a semilattice B of its semigroups Sb, b ∈ B, if S =

⋃
b∈B Sb, Sa∩Sb = ∅

whenever a 6= b, and Sa ⊆ Sb for any a, b ∈ B. Let ≤ denote the natural partial
order on B defined by the rule a ≤ b ⇔ ab = a.
Now let us prove the ‘only if’ part. Assume that J is S-homogeneous. If F is

a field of characteristic zero, then [11, Theorem 5.3] shows that J(F [S]) = I(F, S, ξ).
However, I(F, S, ξ) is homogeneous only if ξ coincides with the equality relation.
Therefore S is separative. Further, if F is a field of characteristic p > 0, then by
[11, Theorem 5.3] J(F [S]) = I(F, S, ξp). So S is p-separative for all p. It follows
from [2, Theorem 4.16] that S is a semilattice B of cancellative semigroups Sb.
Now we will prove that S is cancellative. (It does not mean that B is a singleton.)

Suppose the contrary: let there exist x, y, z ∈ S such that x 6= y and xz = yz. Then
x ∈ Se, y ∈ Sf , z ∈ Sg for some e, f, g ∈ B.
If at least one of the elements e, f coincides with ef , then we may assume that

f = ef , as the other case is analogous. If both e and f are not equal to ef , then
setting x′ = x2, y′ = yx, f ′ = ef we get x′ ∈ Se, y′ ∈ Sef , x′ 6= y′, x′z = y′z,

ef ′ = f ′ and therefore it is possible to substitute elements x′, y′, f ′ for x, y, f ,
respectively. Thus, without loss of generality we may assume that f = ef .
Further, we can replace z by z′ = zy, because xz′ = yz′. Since z′ ∈ Sfg and

e(fg) = f(fg) = fg, to simplify the notation we assume that eg = fg = g and
there is no need of changing z. Consider the following two cases.

Case 1. f 6= g.
Let I denote the ideal generated in S by z. Set T = Se ∪ Sf ∪ I. As in the

proof of the ‘if’ part, S-homogeneity implies that J is T -homogeneous. Besides, T
is separative but is not cancellative, since x, y, z ∈ T . Denote by M the ring of
2 × 2 matrices over a field F of characteristic zero. Let eij , where i, j ∈ {1, 2}, be
the standard matrix with the identity element in the intersection of the i-row and
j-column, all the others entries of which are zero. Put N = Fe1 2, U = Se ∪ Sf .
Clearly e ≥ f > g forces U ∩ I = ∅. Consider the subring R = N [U ] +M [I] of
the semigroup ring M [S]. Set Ru = Nu for u ∈ U , and Ri = Mi for i ∈ I. Then
R =

⊕
t∈T Rt.
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Consider the element w = e1 2(x − y) ∈ N [U ]. For any m ∈ M , i ∈ I, there is
s ∈ S1 such that i = sz, and so miw = me1 2s(zx− zy) = 0. Therefore M [I]w = 0.
Since N [U ]2 = 0, it follows that Rw = 0, whence w ∈ J(R). By T -homogeneity
e1 2x ∈ J(R) implying e1 2xz ∈ J(R). As M [I] is an ideal of R, e1 2xz ∈ J(M [I]).
However, [13, Theorem 4.6] shows that M [I] is semisimple, giving a contradiction.

Case 2. f = g.
Then xy, y2 ∈ Sg, xyz = y2z and therefore xy = y2. Let I denote the ideal

generated in S by y, and let U = Se, T = U ∪ I, R = N [U ]+M [I], w = e1 2(x− y).

Take any t ∈ T , r ∈ Rt. If t ∈ U , then r ∈ Nt and N2 = 0 implies rw = 0. If
t ∈ I, then r = mt for some m ∈ M . By the definition of I there is s ∈ S1 such
that t = sy. Hence Rw = 0 and so w ∈ J(R). Again J is T -homogeneous and
we have e1 2y ∈ J(M [I]). This contradicts the semisimplicity of M [I]. Thus S is
cancellative.
It is well known that each commutative cancellative semigroup S has a group

of quotients G (cf. [2, § 1.10]). If G was not torsion-free, then G would contain
an element w of period p for a prime p. This would give a contradiction with the
p-cancellativeness of S, because w = s−1t, s, t ∈ S imply sp = tp. Thus S is
embeddable in a torsion-free abelian group, as required. �

Note that a description of commutative semigroups S such that the Jacobson
radical is homogeneous in every semigroup ring R[S] follows from the results of [6].
For a con-commutative S, this problem still remains open.

Question. Let S be an arbitrary (not necessarily commutative) semigroup. Is it
true that the Jacobson radical is S-homogeneous if and only if S is embeddable in
a group G such that J is G-homogeneous?

References

[1] Bergman G.M., On Jacobson radicals of graded rings, preprint.

[2] Clifford A.H., Preston G.B., The Algebraic Theory of Semigroups, Vol. 1., Math. Surveys of
the Amer. Math. Soc. 7 (1961).

[3] Cohen M., Montgomery S., Group graded rings, smash products and group actions, Trans.
Amer. Math. Soc. 282 (1984), 237–258. Addendum: Trans. Amer. Math. Soc. 300 (1987),
810–811.

[4] Cohen M., Rowen L.H., Group graded rings, Commun. Algebra 11 (1983), 1253–1270.

[5] Jespers E., On radicals of graded rings, Commun. Algebra 13 (1985), 2457–2472.

[6] , When is the Jacobson radical of a semigroup ring of a commutative semigroup
homogeneous?, Commun. Algebra 109 (1987), 549–560.

[7] Jespers E., Krempa J., Puczylowski E.R., On radicals of graded rings, Commun. Algebra 10
(1982), 1849–1854.

[8] Jespers E., Puczylowski E.R., The Jacobson and Brown–McCoy radicals of rings graded by
free groups, Commun. Algebra 19 (1991), 551–558.

[9] Jespers E., Wauters P., A description of the Jacobson radical of semigroups rings of com-

mutative semigroup, Group and Semigroup Rings, Johannesburg, 1986, 43–89.

[10] Kelarev A.V., When is the radical of a band sum of rings homogeneous?, Commun. Algebra
18 (1990), 585–603.

[11] Munn W.D., On commutative semigroup algebras, Math. Proc. Camb. Phil. Soc. 93 (1983),
237–246.



24 A.V.Kelarev

[12] Okninski J., On the radical of semigroup algebras satisfying polynomial identities, Math.
Proc. Camb. Phil. Soc. 99 (1986), 45–50.

[13] Okninski J., Wauters P., Radicals of semigroup rings of commutative semigroups, Math. Proc.
Camb. Phil. Soc. 99 (1986), 435–445.

[14] Puczylowski E.R., Behaviour of radical properties of rings under some algebraic construc-
tions, Coll. Math. Soc. János Bolyai 38 (1982), 449–480.

[15] Teply M.L., Turman E.G., Quesada A., On semisimple semigroup rings, Proc. Amer. Math.
Soc. 79 (1980), 157–163.

Department of Mathematics and Mechanics, Ural State University, Lenina 51,

Ekaterinburg 620083, Russia

(Received October 11, 1991)


		webmaster@dml.cz
	2012-04-30T13:08:58+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




