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On the regularity of the minimizer of

a functional with exponential growth

Gary M. Lieberman

Abstract. Minimizers of a functional with exponential growth are shown to be smooth.
The techniques developed for power growth are not applicable to the exponential case.
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In this note we prove that minimizers of the functional

I(u) =

∫

Ω
exp(|Du|2) dx

over the class of all functions making I(u) finite are smooth by showing that they
are classical solutions of the corresponding Euler–Lagrange equation. If the expo-
nential function is replaced by a power function, such a result is standard (see [3,
Chapter 5]), but the techniques used do not extend to the present case.
Specifically we suppose that v ∈ W 1,1(Ω), for some open set Ω ∈ R

n, satisfies
the inequality

(1)

∫

Ω
exp(|Dv|2) dx ≤

∫

Ω
exp(|Dw|2) dx

for all w ∈ W 1,1(Ω) with w − v ∈ W
1,1
0 (Ω). (Obviously it suffices to consider

only those w’s making the right hand side of (1) finite.) Our main result is that
v is a classical solution of the Euler–Lagrange equation corresponding to the func-
tional I.

Theorem. If v ∈ W 1,1(Ω) satisfies (1) for all w ∈ W 1,1 with w − v ∈ W
1,1
0 then

v is a classical solution of the equation

(2) {δij + 2DivDjv}Dijv = 0 in Ω.

Since v is a classical solution of (2), it follows that v ∈ C2(Ω) and then the usual
linear theory shows that v is locally analytic.
The question of the smoothness of v was posed to the author by Prof. Mariano

Giaquinta at the Banach Center for Mathematics. The author is grateful to Prof. Gi-
aquinta for posing the question and to the Center for providing the opportunity to
meet Prof. Giaquinta.
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In fact, a slightly different question was posed, one originally asked by J. Eells,
who wanted to know if v is a weak solution of the Euler–Lagrange equation

(2)′ div(exp(|Dv|2)Dv) = 0 in Ω.

Because classical solutions are weak solutions, our theorem gives an affirmative
answer to Eells’s question. Further details on this question, including alternative
methods for showing that v is a weak solution, can be found in [1].

1. Proof of the Theorem.

To prove our theorem, we show that, for all balls B = B(x0, R) ⊂ Ω, v agrees
with the classical solution of

(3) {δij + 2DiuDju}Diju = 0 in B, u = v on ∂B.

The existence of u can be inferred from the remarks in [2, Section 15.6] and [2,
Theorem 15.14]; its existence is also an easy consequence of our approximate scheme.
To begin, we set ε0 = dist(B, ∂Ω), and we fix a nonnegative C

∞ function ϕ
supported in the unit ball of R

n with
∫

ϕ(z) dz = 1. For ε ∈ (0, ε0), we define vε
by

vε(x) =

∫

Rn

v(x+ εz)ϕ(z) dz.

(Note that 0 < ε < ε0 guarantees that x + εz ∈ Ω for z ∈ suppϕ.) Then for any
convex nonnegative, increasing function G we have

∫

B

G(|Dvε|) dx ≤

∫

Rn

∫

B

G(|Dv(x + εz)|) dxϕ(z) dz

≤ sup
|z|<1

∫

B

G(|Dv(x + εz)|) dx

≤

∫

B(x0,R+ε)
G(|Dv|) dx

by using Jensen’s inequality and Tonelli’s theorem.
Now, let uε be the C

2(B) solution of

(4) {δij +DiuεDjuε}Dijuε = 0 in B, uε = vε on ∂B

given by [2, Theorem 11.5]. Because supB |vε| ≤ supΩ |v|, the maximum principle
gives a bound on uε which is independent of ε. It then follows from [7] (see [4,
pp. 62–63] for details) or from Example 2 on p. 585 of [6] that for any compact
subset K of B there is a uniform bound on supK |Duε| independent of ε. Classical
elliptic theory then gives uniform local bounds on all higher derivatives of uε. Now
we use the weak form of (4), namely

(4)′
∫

exp(|Duε|
2)Duε ·Dψ dx = 0
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for all ψ ∈ C10 (Ω).
The convexity of exp(t) implies that

exp(|Duε|
2) ≤ exp(|Dvε|

2) + 2 exp(|Duε|
2)Duε ·D(uε − vε);

integrating this inequality over B and using (4)′ with ψ = uε − vε yields

∫

B

exp(|Duε|
2) dx ≤

∫

B

exp(|Dvε|
2) dx ≤

∫

B(x0,R+ε)
exp(|Dvε|

2) dx.

Therefore
∫

B
|Duε|

n+1 dx is uniformly bounded, so the Sobolev–Morrey imbedding
theorem and the Arzela–Ascoli theorem give a sequence (ε(m)) with ε(m)→ 0 and
a function u ∈ C0(B) such that uε(m) → u uniformly in B. The uniform local

bounds on derivatives of the uε’s imply that (D
2uε(m)) converges uniformly on

compact subsets of B, and hence u ∈ C2(B) and u solves (3). Fatou’s lemma gives

∫

B

exp(|Du|2) dx ≤

∫

B

exp(|Dv|2) dx

and the uniform convexity of the map E, defined by E(p) = exp(|p|2), implies that
Du = Dv a.e. Since u and v are continuous with u = v on ∂B, it follows that u ≡ v,
which proves the theorem.

2. A generalization.

In fact, the special form of the functional I is not important to the underlying
argument. This form is only used to obtain appropriate uniform estimates. Let us
suppose that I is given by

I(u) =

∫

Ω
f(x, u,Du) dx

and that F satisfies the following conditions

(F1) F (x, z, p) is convex in (z, p) and strictly convex in p,
(F2) F (x, z, p) ≥ 0, F ∈ C3(Ω× R × R

n)

for all (x, z, p) ∈ Ω × R × R
n. Also write Q for the Euler–Lagrange operator

associated with I : Qu = divFp(x, u,Du)− Fz(x, u,Du) and suppose that

(Q1) The Dirichlet problem Qu = 0 in B(R), u = w on ∂B(R) is solvable in

C3
(

B(R)
)

for any w ∈ C3(∂B(R)),

(note that u is unique because of (F1) and the maximum principle),

(Q2) the C2(K) norm of u can be estimated in terms of |w|L∞ for any compact
subset K of B(R),

(Q3) a modulus of continuity for u can be estimated in terms of the modulus of
continuity of w.
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Structure conditions on F which guarantee (Q1), (Q2), (Q3) can be found in [2],
[3], [5], [6]. Suppose also that there is a sequence (wm) in C

3(B), which converges
uniformly to v, such that I(wm)→ I(v). If um is the C

3(B) solution of Qum = 0
in B, um = wm on ∂B, convexity gives

(5)

∫

B

F (x, um, Dum) dx ≤

∫

B

F (x,wm, Dwm) dx.

The uniform estimates in (Q2) and (Q3) allow us to extract a convergent subse-
quence which converges to a classical solution of Qu = 0 in B, u = v on ∂B. Finally
(5), and Fatou’s lemma imply that

∫

B

F (x, u,Du) dx ≤

∫

B

F (x, v,Dv) dx,

so strict convexity again gives u ≡ v.
The considerations of this section apply also to minimization problems on man-

ifolds, in particular the problem dealt with in [1]. In a coordinate neighborhood,
the functional F can be written as

F (x, z, p) = exp
(

n
∑

i,j=1

gij(x)pipj

)

g(x)

for smooth functions gij and g such that (gij) is a positive definite matrix and g is
a positive scalar, and x ∈ Ω, some open subset of R

n. If B is a ball whose closure
lies in Ω, the conditions (F1) and (F2) are clear. Moreover the only nonstandard
element in (Q1), (Q2), (Q3) is the gradient estimate, which is proved by rewriting
the Euler-Lagrange equation as

n
∑

i,j=1

Di

(

exp
(

n
∑

k,m=1

gkm(x)DkuDmu
)

gij(x)Dju
)

+

1

g(x)

n
∑

i,j=1

gij(x)DiuDjg(x)
(

exp
(

n
∑

k,m=1

gkm(x)DkuDmu
))

= 0

and applying the results of [5].
Only a small effort is needed to construct the sequence (wm). For each integerm,

choose ε(m) > 0 so that B(R + ε(m)) ⊂ Ω,

(6)

|g(x)− g(y)| ≤
1

m
g(x),

max
i,j

|gij(x)− gij(y)| ≤
1

m4
min
ξ=1

n
∑

i,j=1

gij(x)ξiξj

for all x, y in B(R+ε(m)) such that |x−y| < ε(m). (The positivity and smoothness

of (gij) and g guarantee such an ε(m).) Choosing wm = (1 −
1
m)vε(m), we infer
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from the vector version of Jensen’s inequality, along with Tonelli’s theorem and (6),
that

∫

B

F (x,wm, Dwm) dx ≤

(

1 +
1

m

)
∫

B(R+ε(m))
F (x, v,Dv) dx.

The general properties of mollification imply that wm ∈ C3(B) and that the mod-
ulus of continuity of wm can be estimated uniformly in m.
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