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Uniqueness of a martingale–coboundary

decomposition of stationary processes

Pavel Samek, Dalibor Volný

Abstract. In the limit theory for strictly stationary processes f ◦ T i, i ∈ Z, the decompo-
sition f = m+ g − g ◦ T proved to be very useful; here T is a bimeasurable and measure
preserving transformation an (m ◦ T i) is a martingale difference sequence. We shall study
the uniqueness of the decomposition when the filtration of (m ◦ T i) is fixed. The case
when the filtration varies is solved in [13]. The necessary and sufficient condition of the
existence of the decomposition were given in [12] (for earlier and weaker versions of the
results see [7]).

Keywords: strictly stationary process, approximating martingale, coboundary

Classification: 60G10, 28D05

1. Introduction and results.

Let (Ω, A, P ) be a probability space and T an automorphism on Ω, i.e. T is
a bijective, bimeasurable and measure preserving mapping of Ω onto itself. Let

(1) f = m+ g − g ◦ T

where (m ◦ T i) is a martingale difference sequence, g is a measurable function.
Throughout this paper, up to exactly specified cases, the equalities are to be under-
stood to hold almost surely w.r. to P . The martingale generated by the sequence
of m ◦ T i is sometimes called the approximating martingale, see [7]. We have
∑n−1

i=0 (g − g ◦ T ) ◦ T i = g − g ◦ T n, hence the limit behavior of the partial sums

of the process (f ◦ T i) can be well approximated by those of the martingale differ-
ence sequence (m ◦ T i). This fact made decomposition (1) highly useful in proving
limit theorems for stationary processes (see e.g. [6], [7], [9]). For f integrable or
square integrable, necessary and sufficient conditions for the existence of the de-
composition are given in [12]. Here we shall be concerned with the question of the
uniqueness of the decomposition (1). In this paper we shall suppose that the fil-
tration with respect to which (m ◦ T i) is a martingale difference sequence, is fixed.
The other problem, i.e. the uniqueness of (1) when the filtration can be changed, is
solved in [13]. Recall that a filtration of a strictly stationary martingale difference
sequence (m ◦ T i) is given by an invariant σ-algebra M where M ⊂ T−1M and
m = E(m|T−1M)− E(m|M) (see [7]).
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Theorem 1. Let f be a measurable function andM ⊂ A an invariant σ−algebra,
i.e. M ⊂ T−1M. Suppose there exist functions m1, m2 ∈ L1 and measurable
functions g1, g2 such that

(2) f = m1 + g1 − g1 ◦ T = m2 + g2 − g2 ◦ T

and (m1 ◦ T i), (m2 ◦ T i) are two sequences of martingale differences, each with
the filtration T−iM. Then m1 = m2 and g1 − g2 is an invariant function (i.e.
g1 − g2 = (g1 − g2) ◦ T ).

As we can easily see, (2) is equivalent to

m1 − m2 = g2 − g1 − (g2 − g1) ◦ T.

By the assumptions ((m1−m2)◦T i) is a martingale difference sequence. Theorem 1
can thus be expressed in the following way:

There does not exist a nontrivial martingale difference sequence (m ◦ T i) with

(3) m = g − g ◦ T

for some measurable function g.

When considering a martingale difference sequence we have assumed that it is
integrable. Without the integrability of m the decomposition need not be unique:

Theorem 2. There is a (nonintegrable) stationary and ergodic Markov chain
(Xi)i∈Z which satisfies

E(Xn+1|Xk, k ≤ n) = Xn, n ∈ Z,

i.e. for
Yn = Xn−1 − Xn

(3) is fulfilled (notice that (Yn) is a non integrable martingale difference sequence).

We assume that the conditional expectation of nonintegrable random variables
is defined as in [10].

2. Proofs.

For −∞ < a < b < ∞, Hn(a, b;Y1, . . . , Yn) denotes the number of upcrossings
of the interval (a, b) by a finite sequence of random variables Y1, . . . , Yn. We will
need the following lemma which estimates the number of upcrossings of the sums
∑n−1

i=0 (g − g ◦ T ) ◦ T i.

Lemma. Let the measure P be ergodic. Let g be a measurable function and F
the distribution function of g, i.e. F (x) = P (g < x), x ∈ R. If there exists an x ∈ R

such that

(4) F (x+ a)− F (x) > 0 and F (x − a − b) > 0
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for some real numbers 0 < a < b < ∞, then for Hn = Hn(a, b; g − g ◦ T, g − g ◦
T 2, . . . , g − g ◦ T n)

lim sup
n→∞

1

n
EHn > 0.

Proof: Let us denote

A = {x ≤ g < x+ a}, B = {g < x − a − b}.

By (4), P (A) > 0 and P (B) > 0. From Birkhoff’s ergodic theorem we get

1

n

n
∑

i=1

χ{B} ◦ T i −−−−→
n→∞

P (B) a. s.,

where

χ{B}(ω) =

{

1, ω ∈ B,

0, ω /∈ B.

By the theorem of Jegorov, the convergence is uniform on a set the measure of
which is arbitrarily close to 1. We can thus take C ∈ A and N ∈ N such that

(5)

P (C) > 1− P (A)/2,

N
∑

i=1

χ{B} ◦ T i ≥ 1 on C.

Therefore,

C ⊂ {∃i, 1 ≤ i ≤ N : g ◦ T i < x − a − b},

A ∩ C ⊂ {x ≤ g < x+ a, ∃i, 1 ≤ i ≤ N : g ◦ T i < x − a − b}

⊂ {x ≤ g < x+ a, ∃i, 1 ≤ i ≤ N : g − g ◦ T i > a+ b}

and consequently for n ≥ 1

A∩T−nN (A ∩ C) ⊂

⊂ {x ≤ g < x+ a, x ≤g ◦ T nN < x+ a,

∃i, 1 ≤ i ≤ N : g ◦ T nN − g ◦ T nN+i > a+ b}

⊂ {−a < g − g ◦ T nN < a, ∃i, 1 ≤ i ≤ N : g ◦ T nN − g ◦ T nN+i > a+ b}

⊂ {g − g ◦ T nN < a, ∃i, 1 ≤ i ≤ N : g − g ◦ T nN+i > b}.

The last event implies that the sequence g−g◦T nN , g−g◦T nN+1, . . . , g−g◦T nN+N

upcrosses the interval (a, b) at least once. Therefore

A ∩ T−nN (A ∩ C) ⊂ {HnN+N ≥ HnN + 1}, n ≥ 1,
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which together with

n
∑

j=1

χ{H(j+1)N ≥ HjN + 1} ≤ H(n+1)N

gives

1

n

n
∑

j=1

χ{A ∩ T−jN (A ∩ C)} ≤
1

n
H(n+1)N .

By integration we get

(6)
1

n

n
∑

j=1

P (A ∩ T−jN (A ∩ C)) ≤
1

n
EH(n+1)N , n ≥ 1.

It is a corollary of Birkhoff’s ergodic theorem that the left-hand side of (6) converges

to E(χ{A}E(χ{A ∩ C}|IN )) as n → ∞ where IN = {A′ ∈ A;T−NA′ = A′}
(see [2]). From (5) we get P (A ∩ C) > 0, hence

E(χ{A}E(χ{A ∩ C}|IN )) > 0.

From this and from (6) we get

lim sup
n→∞

1

n
EHn ≥

1

N
lim sup
n→∞

1

n
EH(n+1)N > 0.

�

Proof of Theorem 1: For a function h and n ≥ 1 we denote

Sn(h) =

n−1
∑

i=0

h ◦ T i.

Let
m = m1 − m2, g = g2 − g1.

Then m ∈ L1,
m = g − g ◦ T

and (m ◦ T i) is a stationary sequence of martingale differences with the filtration
T−iM. We are to prove m = 0.

Sn(m) is a martingale, therefore by the Doob’s upcrossing inequality (see [1])

EHn(a, b; S1(m), . . . , Sn(m)) ≤
E(Sn(m)− a)+

b − a
≤

E|Sn(m)|

b − a
+

|a|

b − a

for all n ≥ 1, −∞ < a < b < ∞.
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First, let us suppose that the measure P is ergodic. By the (L1) ergodic theorem

1

n
E|Sn(m)| → 0, n → ∞.

We have Sn(m) = g − g ◦ T n, hence by the Lemma

F (x+ a)− F (x) = 0 or F (x − a − b) = 0

for all x ∈ R, a, b ∈ R, 0 < a < b. This, however, is possible if and only if g is
constant (and hence m = 0).
The nonergodic case can be easily derived using the ergodic one. Let us suppose

that the family (Pω;ω ∈ Ω) of regular conditional probabilities w.r. to P and the σ-
algebra I of invariant sets from A exists (otherwise we can translate the problem to
a suitable factor, see [11]). Following [11], [4], almost every (P ) of the measures Pω

is ergodic and (m◦T i) is an integrable martingale difference sequence in (Ω,A, Pω).
Therefore m = 0 a.s. (Pω) for almost all (P ) Pω, hence m = 0 a.s. (P ). �

Proof of Theorem 2: Let A = {0,±20,±21, . . . }, Ω = AZ and Xn : Ω → A be
the n-th coordinate projection, n ∈ Z. We define functions1 µ, p on A, A × A :

µ[0] =
1

3
, µ[j] =

1

6|j|
for j ∈ A, j 6= 0

p(0, 0) = 0, p(0,±1) =
1

2

p(i, 0) = p(i, 2i) =
1

2
for i ∈ A, i 6= 0,

p(i, j) = 0 for other (i, j) ∈ A × A.

Following [3], µ and p generate a stationary Markov measure P if and only if

∑

i∈A

µ[i] = 1,(i)

∑

j∈A

p(i, j) = 1 for all i ∈ A,(ii)

∑

i∈A

µ[i]p(i, j) = µ[j] for all j ∈ A.(iii)

By [8], 9.11., Theorem 1, Lemma 2 this Markov measure P is ergodic if and only
if any bounded sequence ν[j], j ∈ A , satisfying

∑

j∈A

ν[j]p(i, j) = ν[i], i ∈ A ,(iv)

1The construction is inspired by [5], Example 1.
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is constant.
(i), (ii) and (iii) follow immediately from the definition.
Let for some bounded sequence (ν[i])i∈A (iv) hold, i.e.

1

2
(ν[1] + ν[−1]) = ν[0]

and
1

2
(ν[0] + ν[2i]) = ν[i], i ∈ A, i 6= 0.

Suppose first ν[0] = 0. Then

ν[2i] = 2ν[i], i ∈ A, i 6= 0,

which means ν[i] = 0, i ∈ A, since (ν[i]) is bounded. In the general case we write

(7) ν[i] = (ν[i]− ν[0]) + ν[0] = λ[i] + ν[0].

Sequence (λ[i]) is bounded, λ[0] = 0 and this solves (iv). Indeed, the constant
sequences solve (iv) and the solutions of (iv) form linear space. Thus from the
situation considered above we deduce λ[i] = 0, i ∈ A , and hence ν[i] = ν[0], i ∈ A ,
by (7).
The distribution of (Xn, n ∈ Z) is P and therefore (Xn) is a stationary ergodic

Markov chain. It follows from the Markov property that

(8) E(Xn+1|Xk, k ≤ n) = E(Xn+1|Xn).

By the definition of p we have

E(Xn+1|Xn = i) =
∑

j∈A

jp(i, j) = i

for all i ∈ A. Hence E(Xn+1|Xn) = Xn, which together with (8) proves the
Theorem. �
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