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Semigroup formulation of Rothe’s method:

application to parabolic problems

Marián Slodička

Abstract. A semilinear parabolic equation in a Banach space is considered. The purpose
of this paper is to show the dependence of an error estimate for Rothe’s method on the
regularity of initial data. The proofs are done using a semigroup theory and Taylor spectral
representation.

Keywords: error estimates, parabolic equation, backward Euler method

Classification: 65M15, 35K22, 65M20

1. Introduction.

The Rothe method (also called method of lines or backward Euler method) is well
known as an efficient theoretical tool for solving a wide range of evolution problems.
Moreover it has a strong numerical aspect. The aim of this paper is to investigate
the Rothe method from the point of view of the semigroup theory.
Let X be a Banach space with the norm ‖ ‖. The operator A is assumed to be

sectorial in X (cf. [3, D. 1.3.1]) with the domain D(A), where Re σ(A) > δ0 > 0.
We denote Xα = D(Aα) for α ∈ R. The norm in Xα is defined by ‖v‖α = ‖Aαv‖.
The problem we are considering is the abstract semilinear evolution equation (t ∈
〈0, T 〉, 0 ≤ α < 1, β ≥ α)

(1.1)
∂tu(t) +Au(t) = f(t, u(t))

u(0) = v ∈ Xβ .

The right-hand side f : R × Xα → X satisfies

(1.2)1 ‖f(t, x)− f(s, y)‖ ≤ C
(

|t − s| (1 + ‖x‖α + ‖y‖α) + ‖x − y‖α
)

.

Further

(1.2)2 ‖f(t, z)‖α ≤ C
(

1 + ‖z‖2α
)

for any t, s ∈ 〈0, T 〉, x, y ∈ Xα and z ∈ X2α.
It is easy to find that A generates an analytic semigroup in X and there exists

a global solution of (1.1) which can be described as follows:

u(t) =T (t)v +

∫ t

0
T (t− s)f(s, u(s)) ds(1.3)
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where

T (t) = e−At = (2π i)−1
∫

Γ
eλt(λ+A)−1 dλ

and Γ is a curve in ̺(−A) running from ∞ e− iφ to ∞ eiφ for any φ ∈ (π/2, π).
Without loss of generality we can put

(1.4) λ ∈ Γ⇔ λ = −δ − s cosϕ ± i s sinϕ

for s ∈ 〈0,∞), ϕ ∈ (0, π/2), δ = δ(δ0) > 0.
The backward Euler method is applied to the discretization in time

(1.5)
(ui − ui−1)τ

−1 +Aui = f(ti, ui−1)

u0 = v

for i ∈ N, τ is a time step, ti = iτ .
There exists a great number of papers devoted to the study of error estimates

for the method of lines applied to (1.1) e.g. [4]–[6], [11], [13], [14], etc. The proof
technique demonstrated there needs certain regularity assumptions of initial data
(practically v ∈ X1) in order to derive some error estimates. For a global Lipschitz
continuous right-hand side f and v ∈ X1 one can prove

‖u(ti)− ui‖ ≤ C τ.

On the other hand, there exist many papers concerned with nonsmooth data
error estimates e.g. [1], [2], [7]–[10], [12], [15], [16], [18], [19], etc. If β = α = 0 it is
known that

‖u(ti)− ui‖γ ≤ C
(

(i − γ)−1 + τ1−γ ln τ−1
)

, 0 ≤ γ < 1.

We have to point out the fact that any of the articles mentioned above cannot
say anything about the error estimate (independent of t) for the backward Euler
method applied to (1.1) in the case when β > α > 0 and β is sufficiently small, i.e.
if we consider the initial data of low regularity and f depends on spatial derivatives
of u.
The aim of this paper is to demonstrate the influence of the parameters α, β, γ

on the rate of convergence. Section 2 is devoted to the study of linear homoge-
neous problem. However some of our results demonstrated there can be derived by
a shorter argumentation; we have chosen this way in order to prepare the basic facts
for nonhomogeneous case. The main result is formulated in Theorem 1. Section 3
deals with the nonlinear case when the right-hand side f depends on u. There are
given the most important results from the practical point of view (cf. Theorem 4).
In fact, considering a concrete problem and applying the Sobolev imbedding theo-
rem one can arrive at the error estimate in suitable function space like Lp, W

k
p , C

(cf. Appendix).
Our proof-technique is very compact and enables us to deal with the initial

data of various regularity (from nonsmooth to smooth) and establish the rate of

convergence practically τmin(1,β−γ) uniformly with respect to t.
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Sometimes in the literature the Lipschitz condition of f is assumed only locally
in X which generalizes the semilinear parabolic equations covered. But in that case
if f = f(u), the solution u = u(x, t) must be uniformly bounded in Ω × 〈0, T 〉.

Thus v ∈ L∞(Ω), whereas we can deal with initial data e.g. v ∈ H2β(Ω) ∩ H̊β(Ω),
v /∈ L∞(Ω) and β is a suitable small positive number.

From practical reasons it is important to discuss spatial discretization, too. This
will be the subject of a future investigation.

Remark 1. C denotes a generic positive constant independent of τ .

2. Homogeneous problem.

Throughout this section we suppose f = 0. Thus according to (1.5) one can
deduce

(2.1) ui = (I + τA)−iv.

Using operational calculus (cf. [17, § 5.6]) we can prolong our approximate solution
ui from time steps into the whole interval 〈0, T 〉 as follows:

(2.2) Tτ (t)v = (I + τA)−t/τ v = (2π i)−1
∫

Γ
(1− τλ)−t/τ (λ+A)−1v dλ

where Γ is taken from (1.4).

Let us note that the integral in (2.2) is absolutely convergent for every posi-
tive t, τ . In spite of this we suppose without loss of generality τ < τ0 < 1. T (t) is
an analytic semigroup, and the following estimates hold:

‖T (t)‖ ≤ C, t ≥ 0,(2.3)

‖AδT (t)‖ ≤ Cδt
−δ, δ ≥ 0, t > 0,(2.4)

‖(T (t)− I)x‖ ≤ δ−1C1−δt
δ ‖Aδx‖, x ∈ Xδ, 0 < δ ≤ 1, t ≥ 0,(2.5)

‖Aδx‖ ≤ C ‖Ax‖δ ‖x‖1−δ, x ∈ X1, 0 ≤ δ ≤ 1.(2.6)

Tτ (t)v, as an approximate solution of (1.1) for f = 0, was introduced in [15]. We
know that Tτ (t), t ≥ 0, is a semigroup for which the smoothing effect takes place.
More exactly, we can write (cf. [16, L. 1]

Lemma 1. Let γ ≥ 0 and t, τ > 0 such that t > γτ . Then Tτ (t)x ∈ Xγ for every

x ∈ X.

Using this fact, we know that both solutions (exact and approximate, f = 0)
become smoother with increasing time. Hence we can try to establish an error
estimate in the norm of Xγ . It is easy to see that this must depend on the parameter
β, γ and probably on the time t. First, we state or prove some lemmas which play
an important part in our proofs.



248 M.Slodička

Lemma 2. If λ ∈ C, Re λ < 0 and t, τ > 0 then

|(1− τλ)−t/τ − eλt | ≤ |λ|2 |Re λ|−2 |(1− τ Re λ)−t/τ − eRe λt |.

Proof: See [15]. �

Lemma 3. Let b > 0 and

I(x; a, b) =

∫ ∞

x
e−z z−a−1(ez(1 + b−1z)−b − 1

)

dz.

Then:

(i) I(0; a, b) ≤ b−a
(

(1 − a)−1 + a−1
)

for o < a < 1,

(ii) I(0; a, b) ≤ b−1 for a = 0,
(iii) I(ε; a, b) ≤ b−1a−1ε1−a for ε > 0, a ≥ 1,
(iv) I(0; a, b) ≤ C(a)b−a(b + a)−1 for 0 > a > −b.

Proof: Let us denote

Iε,N =

∫ N

ε
e−z z−a−1(ez(1 + b−1z)−b − 1

)

dz.

for b > 0, a ∈ R, N > ε > 0. One can easily find (z > 0)

∂z
(

ez(1 + b−1z)−b − 1
)

= b−1z ez(1 + b−1z)−b−1,

∂z

∫ z

N
e−s s−a−1 ds = e−z z−a−1 .

Thus using integration by parts we have

(2.7) Iε,N =
(

∫ ε

0
b−1z ez(1 + b−1z)−b−1 dz

)(

∫ N

ε
e−z z−a−1 dz

)

+

+

∫ N

ε

(

∫ N

z
e−s s−a−1 ds

)

b−1z ez(1 + b−1z)−b−1 dz.

We consider the case 0 ≤ a < 1, first. We estimate

Iε,N ≤

∫ N

0

(

∫ N

z
e−s s−a−1 ds

)

b−1z ez(1 + b−1z)−b−1 dz ≤

≤

∫ ∞

0

(

∫ ∞

z
e−s s−a−1 ds

)

b−1z ez(1 + b−1z)−b−1 dz.

Applying
∫ ∞

z
e−s s−a−1 ds ≤ z−a−1

∫ ∞

z
e−s ds ≤ z−a−1 e−z
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we obtain

(2.8) Iε,N ≤

∫ ∞

0
b−1z−a(1 + b−1z)−b−1 dz = b−a

∫ ∞

0
w−a(1 + w)−b−1 dw.

The last estimate yields for a = 0

Iε,N ≤

∫ ∞

0
(1 + w)−b−1 dw = b−1

from which, taking the limit as N → ∞ and ε → 0, we prove (ii).

If 0 < a < 1, then after integration by parts in (2.8), we can write

Iε,N ≤ b−a(b+1)(1−a)−1
∫ ∞

0
w1−a(1+w)−b−2 dw ≤ b−a(

(1−a)−1+(a+ b)−1
)

.

Now, letting N → ∞ and ε → 0 in the last inequality, we conclude (i).

Let us consider a ≥ 1. Using (2.7) one can find

Iε,N ≤

∫ ε

0
b−1(1 + b−1z)−b−1 dz ε eε

∫ ∞

ε
e−z z−a−1 dz+

+

∫ ∞

ε

(

∫ ∞

z
e−s s−a−1 ds

)

b−1z ez(1 + b−1z)−b−1 dz.

Applying
∫ ∞

z
e−s s−a−1 ds ≤ e−z

∫ ∞

z
s−a−1 ds = a−1z−a e−z

we have

Iε,N ≤

∫ ε

0
b−1(1 + b−1z)−b−1 dz a−1ε1−a+

+

∫ ∞

ε
a−1z1−ab−1(1 + b−1z)−b−1 dz ≤ b−1a−1ε1−a ,

from which, taking the limit as N → ∞, we prove (iii).

So we have to prove (iv) to conclude the proof. Analogously as for 0 ≤ a < 1
one can find

(2.9) Iε,N ≤

∫ ∞

0

∫ ∞

z
e−s s−a−1 ds b−1z ez(1 + b−1z)−b−1 dz.

Let us denote

(2.10) x = [x] + {x}, x ∈ R
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where [x] ∈ Z, {x} ∈ 〈0, 1). Further we set

(x − 1)k =
k

∏

i=1

(x − i), k ≥ 1 and (x − 1)0 = 1.

Using integration by parts one can write

∫ ∞

z
e−s s−a−1 ds =

= e−z z−1
[−a]−1
∑

k=0

(−a − 1)kz−a−k + (−a − 1)[−a]

∫ ∞

z
e−s s{−a}−1 ds

and taking into account

∫ ∞

z
e−s s{−a}−1 ds ≤ e−z z{−a}−1

we get

(2.11)

∫ ∞

z
e−s s−a−1 ds ≤ e−z z−1

[−a]
∑

k=0

(−a − 1)kz−a−k .

Here, (2.9) and (2.11) yield for b > −a > 0

Iε,N ≤

[−a]
∑

k=0

(−a − 1)kb−a−k
∫ ∞

0
w−a−k(1 + w)−b−1 dw ≤

≤

[−a]
∑

k=0

(−a − 1)kb−a−k
∫ ∞

0
(1 + w)−a−b−k−1 dw ≤

[−a]
∑

k=0

(−a − 1)kb−a(a+ b)−1 .

Hence we have proved (b > −a > 0)

Iε,N ≤ C(a)b−a(a+ b)−1

and letting ε → 0, N → ∞ we conclude (iv). �

Now we are ready to derive the main result at this paragraph.

Theorem 1. Let A be a sectorial operator in a Banach space X where Re σ(A) >
δ0 > 0. Then (ν > 0)

(i) ‖Tτ (t)− T (t)‖ ≤ C τ t−1 for t > 0,

(ii) ‖Tτ (t)− T (t)‖−ν ≤ C τmin(1,ν) for t > 0,
(iii) ‖Tτ (t)− T (t)‖ν ≤ C τ1−ν(t − ντ)−1 for t > ντ .
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Proof: (ii) Using the spectral representation of Tτ (t), T (t) and

(2.12) A(λ+A)−1 = I − λ(λ +A)−1, λ ∈ Γ,

one can write

A−ν(

Tτ (t)− T (t)
)

=

= (−1)[ν]+1(2π i)−1
∫

Γ

(

(1− τλ)−t/τ − eλt)λ−[ν]−1A1−{ν}(λ+A)−1 dλ

where [ ], { } are defined by (2.10). Thus taking into account

(2.13) ‖Aξ(λ+A)−1‖ ≤ C |λ|ξ−1 λ ∈ Γ, 0 ≤ ξ ≤ 1

and Lemma 2, we have

‖Tτ (t)− T (t)‖−ν ≤ C

∫

Γ

∣

∣

∣
(1− τλ)−t/τ − eλt

∣

∣

∣
|λ|−ν−1 |dλ| ≤

≤ C tν
∫ ∞

δt
e−z z−ν−1(ez(1 + τt−1z)−t/τ − 1

)

dz.

Putting a = ν and b = tτ−1, in virtue of Lemma 3, we conclude (ii).

The assertions (i), (iii) can be proved in the same way. �

3. Nonhomogeneous problem.

Throughout this paragraph we suppose that the function f satisfies (1.2) i.e.
(1.2)1 and (1.2)2. Considering the discretization scheme (1.5) one can easily find

(3.1) ui = Tτ (ti)v +
i−1
∑

k=0

Tτ (ti − tk)f(tk+1, uk)τ.

Applying the semigroup theory we know that if

(3.2) 0 ≤ α < 1, α ≤ β < 1

then there exists a global unique solution u(t) of (1.1) defined by (1.3).
Let us prove some discrete analogs of Gronwall’s lemma, first.

Lemma 4. Let {Ai}, {ai} be sequences of nonnegative real numbers satisfying
(q ≥ 0)

(3.3) ai ≤ Ai +
i−1
∑

j=1

ajq, i ∈ N.
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Then

ai ≤ Ai + e
qi

i−1
∑

j=1

Ajq, i ∈ N.

Proof: Let us fix i ≥ 2. We define

S(n, i) =

i−1
∑

j=1

j−1
∑

k1=1

k1−1
∑

k2=1

· · ·

kn−1−1
∑

kn=1

Akn
for 0 < n ≤ i − 2,

S(n, i) =

i−1
∑

j=1

Aj for n = 0,

S(n, i) = 0 for n > i − 2.

Iterating (3.3) (i − 1)-times one can find

(3.4) ai ≤ Ai + q
i−1
∑

k=0

qkS(k, i).

Using mathematical induction with respect to n ≥ 0 and taking into account the
fact that

(x
y

)

= 0 for x < y one can prove

(3.5) S(n, i) =
i−1
∑

j=1

Aj

(

i − 1− j

n

)

, n ≥ 0.

Hence, (3.4) and (3.5) yield

ai ≤ Ai + q

i−1
∑

j=1

Aj

{

1 +

i−j−1
∑

k=1

qk
(

i − 1− j

k

)

}

=

= Ai + q

i−1
∑

j=1

Aj

{

1 +

i−j−1
∑

k=1

qk(i − j)k

k!

k
∏

l=1

(

1−
l

i − j

)}

≤

≤ Ai + q

i−1
∑

j=1

Aj e
q(i−j) ≤ Ai + e

qi
i−1
∑

j=1

Ajq.

�

Lemma 5. Let {An}, {wn} be sequences of nonnegative real numbers satisfying

(3.6) wn ≤ An + C

n−1
∑

k=1

(tn − tk)
a−1wkτ
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for 0 < τ < 1, 0 < a ≤ 1, C > 0, tn = nτ ≤ T . Then

wn ≤ C
(

An +

n−1
∑

k=1

Akτ +

n−1
∑

k=1

(tn − tk)
a−1Akτ

)

, C = C(a, T ).

Proof: Let us put m = min{n ∈ N; na ≥ 1}. Iterating (3.6) once, we have

wn ≤ C
(

An +

n−1
∑

k=1

(tn − tk)
a−1Akτ +

n−1
∑

k=1

k−1
∑

l=1

(tn − tk)
a−1(tk − tl)

a−1wkτ2
)

≤

≤ C
(

An +

n−1
∑

k=1

(tn − tk)
a−1Akτ +

n−1
∑

k=1

(tn − tk)
2a−1wkτ

)

.

Thus, after (m − 1) iterations we obtain

wn ≤ C
(

An +

n−1
∑

k=1

(tn − tk)
a−1Akτ +

n−1
∑

k=1

wkτ
)

.

The rest of the proof follows from the last inequality and Lemma 4. �

As is standard practice, we need a priori estimates for exact and approximate
solutions.

Theorem 2. Let A be a sectorial operator in a Banach space X where Re σ(A) >
δ0 > 0. Suppose (1.2), (3.2). Then for 0 ≤ γ ≤ β we have

(i) ‖u(t)‖γ ≤ C for t > 0,
(ii) ‖ui‖γ ≤ C for i ∈ N,

(iii) ‖u(t)‖2α ≤ C t(β−2α)− for t > 0,

where u(t), ui are defined by (1.3), (3.1), respectively, and (x)− = min(0, x) for
x ∈ R.

Proof: (i) Using (1.3) one can write

(3.7) ‖u(t)‖γ ≤ C
(

1 +

∫ t

0
(t − s)−γ‖u(s)‖α ds

)

.

Setting γ = α in (3.7) and using Gronwall’s lemma, we get ‖u(t)‖α ≤ C. Hence
(3.7) yields (i).

(ii) Let us note that

‖Tτ (ti)‖γ ≤ ‖T (ti)‖γ + ‖Tτ (ti)− T (ti)‖γ ≤ C
(

t
−γ
i + τ−γ(i − γ)−1

)

≤ C t
−γ
i .

The rest can be proved analogously as (i).

(iii) In view of (1.3) we can write

A2αu(t) = A2α−βT (t)Aβv +

∫ t

0
AαT (t− s)Aαf(s, u(s)) ds.

Hence

‖u(t)‖2α ≤ C t(β−2α)− + C

∫ t

0
(t − s)−α(

1 + ‖u(s)‖2α
)

ds.

Now, applying Gronwall’s lemma we conclude the proof. �
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Theorem 3. Let A be a sectorial operator in a Banach space X where Re σ(A) >
δ0 > 0. Suppose (1.2), (3.2). Then for 0 ≤ γ < β we have

‖u(t+ h)− u(t)‖γ ≤ C hβ−γ , 0 ≤ t < t+ h ≤ T.

Proof: We can write

(3.8) u(t+ h)− u(t) =
(

T (h)− I
)

T (t)v +

∫ t+h

t
T (t+ h − s)f(s, u(s)) ds+

+

∫ t

0

(

T (h)− I
)

T (t − s)f(s, u(s)) ds = I1 + I2 + I3 .

Now we estimate all the addends in (3.8).

‖I1‖γ ≤ ‖
(

T (h)− I
)

Aγ−βT (t)Aβv‖ ≤ C hβ−γ .

For the second item we have

‖I2‖γ ≤

∫ t+h

t
‖AγT (t+ h − s)‖ ‖f(s, u(s))‖ ds ≤

≤ C

∫ t+h

t
(t+ h − s)−γ ds ≤ C hβ−γ .

Estimating the last term we find

‖I3‖γ ≤ C hβ−γ
∫ t

0
‖AγT (t − s)f(s, u(s))‖ ds ≤ C hβ−γ ,

which concludes the proof. �

We are ready now to give the estimate of (u(ti)−ui) in the norm of Xγ . It is very
important for practical reasons to have a positive rate of convergence uniformly for
every i ∈ N.

Theorem 4. Let A be a sectorial operator in a Banach space X where Re σ(A) >
δ0 > 0. Suppose (1.2), (3.2). Then for i ∈ N and 0 ≤ γ < β we have

‖u(ti)− ui‖γ ≤ C τβ−γ .

Proof: (i) Let us rewrite (u(ti)− ui) into the following form

(3.9) u(ti)− ui =
7

∑

j=1

Ij
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where

I1 =
(

T (ti)− Tτ (ti)
)

v

I2 =
i−1
∑

k=1

Tτ (ti − tk)
(

f(tk+1, u(tk))− f(tk+1, uk)
)

τ,

I3 =

i−1
∑

k=1

(

T (ti − tk)− Tτ (ti − tk)
)

f(tk+1, u(tk))τ,

I4 =

i−1
∑

k=1

∫ tk+1

tk

T (ti − s)
(

f(s, u(s))− f(tk+1, u(s))
)

ds,

I5 =

i−1
∑

k=1

∫ tk+1

tk

T (ti − s)
(

f(tk+1, u(s))− f(tk+1, u(tk))
)

ds,

I6 =

i−1
∑

k=1

∫ tk+1

tk

(

T (ti − s)− T (ti − tk)
)

f(tk+1, u(tk)) ds,

I7 =

∫ τ

0
T (ti − s)f(s, u(s)) ds − Tτ (ti)f(τ, v)τ.

Let us start estimating all the items in (3.9). Using Theorem 1, we have

‖I1‖γ = ‖Aγ−β(

T (ti)− Tτ (ti)
)

Aβv‖ ≤ C τβ−γ ,(3.10)1

‖I1‖α = ‖
(

T (ti)− Tτ (ti)
)

Aαv‖ ≤ C τt−1i .(3.10)2

The second term can be estimated as follows:

‖I2‖γ ≤

i−1
∑

k=1

‖AγTτ (ti − tk)
(

f(tk+1, u(tk))− f(tk+1, uk)
)

‖τ.

Thus

(3.11) ‖I2‖γ ≤ C
i−1
∑

k=1

(ti − tk)
−γ‖u(tk)− uk‖ατ.

Further

AγI3 =

i−1
∑

k=1

Aγ(

T (ti − tk)− Tτ (ti − tk)
)

f(tk+1, u(tk))τ.

From this, applying Theorem 1, Theorem 2 we have

(3.12)1 ‖I3‖γ ≤ C τ1−γ
i−1
∑

k=1

(ti − tk − γτ)−1τ ≤ C τβ−γ .
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Analogously

AαI3 =
i−1
∑

k=1

(

T (ti − tk)− Tτ (ti − tk)
)

Aαf(tk+1, u(tk))τ.

Hence

(3.12)2
‖I3‖α ≤ C τ

i−1
∑

k=1

(ti − tk)
−1(1 + ‖u(tk)‖2α

)

τ ≤

≤ C τ ln τ−1
(

1 + t
(β−2α)−
i

)

.

For the forth item, one can write

AγI4 =

i−1
∑

k=1

∫ tk+1

tk

AγT (ti − s)
(

f(s, u(s))− f(tk+1, u(s))
)

ds,

‖I4‖γ ≤ C τ

∫ ti

0
(ti − s)−γ ds ≤ C τ.

(3.13)

We rewrite I5 into the following form

AγI5 =
i−1
∑

k=1

∫ tk+1

tk

AγT (ti − s)
(

f(tk+1, u(s))− f(tk+1, u(tk))
)

ds.

So, applying [3, T. 3.5.2], we obtain

‖I5‖γ ≤ C

i−1
∑

k=1

∫ tk+1

tk

(ti − s)−γ‖u(s)− u(tk)‖α ds ≤

≤ C

i−1
∑

k=1

∫ tk+1

tk

(ti − s)−γ
∫ s

tk

‖∂ξu(ξ)‖α dξ ds ≤ C τ

∫ ti

τ
(ti − s)−γs−1 ds.

Hence

(3.14) ‖I5‖γ ≤ C τ ln τ−1t−γ
i .

The sixth term is estimated as follows:

AγI6 =

i−1
∑

k=1

∫ tk+1

tk

(

I − T (s− tk)
)

AγT (ti − s)f(tk+1, u(tk)) ds,
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thus

(3.15)1 ‖I6‖γ ≤ C τβ−γ
i−1
∑

k=1

∫ tk+1

tk

(ti − s)−β‖f(tk+1, u(tk))‖ ds ≤ C τβ−γ .

On the other hand

AαI6 =

i−1
∑

k=1

∫ tk+1

tk

(

I − T (s− tk)
)

T (ti − s)Aαf(tk+1, u(tk)) ds,

hence

(3.15)2
‖I6‖α ≤ C τ

i−1
∑

k=1

∫ tk+1

tk

(ti − s)−1
(

1 + ‖u(tk)‖2α
)

ds ≤

≤ C τ ln τ−1
(

1 + t
(β−2α)−
i

)

.

For the last addendum in (3.9), one can easily find

(3.16) ‖I7‖γ ≤ C τt
−γ
i .

Collecting all the results from (3.9), (3.10)2, (3.11), (3.12)2, (3.13), (3.14), (3.15)2
and (3.16) for γ = α we obtain

‖u(ti)−ui‖α ≤ C
(

τ+τ ln τ−1+τt−1i +τ ln τ−1t−ν
i +

i−1
∑

k=1

(ti−tk)
−α‖u(tk)−uk‖ατ

)

for any 0 ≤ ν < 1. Thus Lemma 5 implies

(3.17) ‖u(ti)− ui‖α ≤ C
(

τ + τ ln τ−1 + τt−1i + τ ln τ−1t−ξ
i

)

for any 0 ≤ ξ < 1.
Now using (3.9), (3.10)1, (3.11), (3.12)1, (3.13), (3.14), (3.15)1 and (3.16) we get

(3.18) ‖u(ti)− ui‖γ ≤ C
(

τβ−γ +

i−1
∑

k=1

(ti − tk)
−γ‖u(tk)− uk‖ατ

)

.

At the end, inserting (3.17) into (3.18) we conclude the proof. �

4. Appendix.

In this appendix we present some ideas connected with the previous sections. At
the end we give some simple examples in order to demonstrate our results.
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Remark 2. The restriction β < 1 in (3.2) is probably due to our proof-technique.
We have not been able to remove it in general but it can be a good pastime to do
so. �

Remark 3. The error estimate at time steps described in Theorem 4 can be easily
prolonged to the whole interval 〈0, T 〉. In fact, if we define

un(t) = ui−1 + (t − ti−1)τ
−1(ui − ui−1) t ∈ 〈ti−1, ti), i ∈ N,

then for t ∈ 〈ti−1, ti)

u(t)− un(t) = u(t)− u(ti−1) + u(ti−1)− ui−1+

+ (t − ti−1)τ
−1(ui − u(ti) + u(ti)− u(ti−1) + u(ti−1)− ui−1

)

.

Now, applying Theorems 3 and 4 we can estimate ‖u(t)− un(t)‖γ . �

There arise the following questions in many applications: “How is the minimal
regularity of initial data, if we want to derive the error estimate independent of t in
some functional space?” “How is the rate of convergence?” The answer, in many
concrete cases, can be found using our results and the Sobolev imbedding theorem.
In the following examples, let us suppose that Ω ⊂ RN is a bounded domain

with sufficiently smooth ∂Ω. Let us denote

Xδ =W 2δ,p(Ω) ∩ W̊ δ,p(Ω)

for δ ≥ 0, p > 1, N ≥ 1, X = X0 = Lp(Ω). The norm in Xδ is equivalent to the one

in W 2δ,p(Ω) where

‖w‖
p
W k+s,p(Ω)

= ‖w‖
p
W k,p(Ω)

+
∑

|α|=k

∫

Ω

∫

Ω
|Dαw(x) − Dαw(y)|p|x − y|−n−ps dx dy

for k ∈ N, 0 < s < 1. Further we denote

B =
N

∑

i=1

ai∂xi , ai ∈ R.

Example 1.

du(t)

dt
− △ u(t) = f(t, u(t)) in Ω

u = 0 on ∂Ω,

u(0) = v ∈ Xβ , 0 < β < 1,

where f as a real function is global Lipschitz continuous in all variables. Then

‖u(ti)− ui‖Lp(Ω) ≤ C τβ .

�



Semigroup formulation of Rothe’s method 259

Example 2.

du

dt
− △ u = sin(Bu) in Ω

u = 0 on ∂Ω,

u(0) = v ∈ Xβ .

If 1/2 ≤ β < 1, 0 ≤ γ < β then

‖u(ti)− ui‖W 2γ,p(Ω)
∼= ‖u(ti)− ui‖γ ≤ C τβ−γ .

If N/(2p) < γ < β < 1, 1/2 ≤ β then

‖u(ti)− ui‖L∞(Ω) ≤ C ‖u(ti)− ui‖γ ≤ C τβ−γ .

These results cannot be obtained by the classical proof technique in Rothe’s method
because of the low regularity of the initial data v (cf. [4], [6]). �
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842 15 Bratislava, Czechoslovakia

(Received October 11, 1991)


		webmaster@dml.cz
	2012-04-30T13:22:19+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




