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Zero-dimensional Dugundji spaces

admit profinite lattice structures

Lutz Heindorf

Abstract. We prove what the title says. It then follows that zero-dimensional Dugundji
space are supercompact. Moreover, their Boolean algebras of clopen subsets turn out to
be semigroup algebras.
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Introduction.

The aim of this note is to prove what its title asserts. Let us first explain the
concepts involved. For the sake of convenience, we do not give the original defini-
tions but some that are known to be equivalent. Let us agree that all topological
spaces ocurring in this paper are compact and zero-dimensional. Then a Dugundji
space is just a retract of a Cantor cube 2τ (of arbitrary weight τ). A topological
lattice is profinite iff each pair of distinct points can be separated by a continuous
homomorphisms into a finite lattice. It has been proved by Numakura [N] that
compact zero-dimensional distributive lattices are automatically profinite. As the
lattices that we construct are not necessarily distributive, we need special care to
guarantee that they become profinite.
Our theorem has two interesting corollaries. It implies that all Dugundji spaces

are supercompact (definition below) and even possess binary subbases consisting
of clopen sets.This was proved before by S. Koppelberg (unpublished) with other
methods.
The second corollary concerns the algebraic structure of the Boolean algebras

Clop(X) for Dugundji spaces, i.e. the so-called projective Boolean algebras. It
turns out that they are semigroup algebras in the sense of representation theory (cf.
[CP, 5.2] or [He] for the Boolean case). This answers a question in [He].
Here are some examples to contrasts our results. Theorem 4.8 of [S] says that for

τ > ω1, the dyadic space exp3 2
τ does not admit any continuous binary operation

that is commutative and idempotent. An example of a non-supercompact dyadic
space can be found in [B]. Let us also mention Example 2.2 of [BG]; a supercom-
pact, zero-dimensional space that admits a semilattice structure but has no binary
subbase consisting of clopen sets.

A construction of profinite lattices.

Until further notice, X = 〈X ;∧,∨〉 denotes a topological lattice and A a clopen
subset of X . We want to manufacture a new lattice to be denoted by s(X, A). Its
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underlying space will be Y = (X \ A) ∪ (A × 2) and the operations are defined
according to the following clauses in which p : Y → X denotes the projection
sending x ∈ X \A to itself and (a, ε) to a. By Aε we abbreviate A× {ε}, ε = 0, 1.
For y, z ∈ Y we put t = p(y) ∧ p(z) and define

(∧
˜
) y∧

˜
z =





t, if t /∈ A

(t, 0), if t ∈ A and y ∈ A0 or z ∈ A0

(t, 1), otherwise.

Analogously, we put u = p(y) ∨ p(z) and define

(∨
˜
) y∨

˜
z =





u, if u /∈ A

(u, 0), if u ∈ A and y /∈ A1, z /∈ A1

(u, 1), otherwise.

Having continuous restrictions to each part of a clopen decomposition of Y × Y ,
both operations are continuous. So, s(X, A) = 〈Y ;∧

˜
,∨
˜
〉 is a topological algebra.

Lemma 1. If A is convex, i.e. a ≤ x ≤ b and a, b ∈ A imply x ∈ A, then s(X, A)
is a lattice and p : s(X, A)→ X is a continuous lattice homomorphism.

Proof: It follows immediately from the definitions of ∧
˜
and ∨

˜
and the correspond-

ing properties of ∧ and ∨ that both operations are commutative and idempotent.
It is equally easy to see that p is a continuous homomorphism.
To prove the associativity of ∧

˜
we consider three elements u, v, w of Y and denote

p(u) ∧ p(v) ∧ p(w) by t.

CLAIM: (u∧
˜
v)∧

˜
w =





t, if t /∈ A

(t, 0), if t ∈ A and {u, v, w} ∩A0 6= ∅

(t, 1), otherwise.

To check this we denote (u∧
˜
v)∧

˜
w by t

˜
and notice that

(∗) t = p(u∧
˜
v) ∧ p(w).

If t /∈ A, then t
˜
= t follows immediately from (∗) and (∧

˜
).

Assume that t ∈ A and u ∈ A0. From t ≤ p(u) ∧ p(v) ≤ p(u) and t, p(u) ∈ A we
get p(u) ∧ p(v) ∈ A, by convexity. Consequently u∧

˜
v ∈ A0, by (∧˜

) and t
˜
= (t, 0),

by (∗) and (∧
˜
).

If t ∈ A and v ∈ A0, one argues in the same way.
If t ∈ A and w ∈ A0, then t˜

= (t, 0) follows immediately from (∗) and (∧
˜
).

In the “otherwise” case, t ∈ A and none of u, v, w belongs to A0. By the definition
of ∧

˜
, u∧

˜
v does not belong to A0 either. Hence t˜

= (t, 1), again by (∗) and (∧
˜
).

The claim is proved. It shows that (u∧
˜
v)∧

˜
w is a symmetric function of all

three arguments. Together with commutativity this gives (u∧
˜
v)∧

˜
w = (v∧

˜
w)∧

˜
u =

u∧
˜
(v∧

˜
w), the desired associativity.

The associativity of ∨
˜
is proved in the same way.

The absorption laws u∧
˜
(v∨

˜
u) = u and u∨

˜
(v∧

˜
u) = u are even easier. Their

proofs do not require the convexity of A. �
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Lemma 2. Let ϕ : X → L be a continuous homomorphism into a finite lattice

L = 〈L;∧,∨〉. Assume that M ⊆ L is convex. If X is profinite, then s(X, ϕ−1(M))
is also profinite.

Proof: Denote ϕ−1(M) by A and notice thatA is clopen and convex. By Lemma 1,
s(X, A) is a lattice, as is s(L,M). Denote by ψ the mapping s(X, A) → s(L,M)
sending x ∈ X \ A to ϕ(x) and (a, ε) to (ϕ(a), ε). A routine verification shows
that ψ is a continuous lattice homomorphism. It separates any pair of the form
(a, 0), (a, 1). If the pair u 6= v is not of that form, then ξ(p(u)) 6= ξ(p(v)) for some
homomorphism ξ : X→ K. It follows that ξ ◦ p : s(X, A)→ K separates u and v.

�

The proof of our third lemma relies on the following well-known folklore.

Fact. If A ⊆ Clop(Z) separates the points of Z, then A generates the Boolean
algebra Clop(Z). (As before, Z is compact and zero-dimensional.)

Lemma 3. If Z = 〈Z;∧,∨〉 is a profinite lattice, then for each C ∈ Clop(Z) there
exist a continuous homomorphism ϕ : Z → L into a finite lattice L such that

C = ϕ−1(M) for a suitable subset M ⊆ L.

Proof: Denote the collection of all ϕ−1(M) by B. Clearly, B consists of clopen
sets and, by profiniteness, separates the points of Z. So B generates Clop(Z). On
the other hand, the equations

Z \ ϕ−1(M) = ϕ−1(L \M),

and

ϕ−11 (M1) ∩ ϕ
−1
2 (M2) = (ϕ1 × ϕ2)

−1(M1 ×M2)

show that B is a subalgebra of Clop(Z). �

Now we can sum up and prove

Proposition 1. Let Z be a profinite lattice and C ∈ Clop(Z). Put Y = (Z \C) ∪
(C × 2) and let r : Y → Z be the projection. Then r is a lattice homomorphism
with respect to some profinite lattice structure on Y .

Proof: Use Lemma 3 to choose ϕ : Z → L and M ⊆ L such that C = ϕ−1(M).
If M happens to be convex, then s(Z, C) does the job, by Lemmas 1 and 2. The
general case is reduced to the convex one by induction on |M |. If |M | = 1, then
M is convex. Assume that M = N ∪ {m} with m /∈ N and put ϕ−1(N) = B and
ϕ−1(m) = A. By induction hypothesis, there is a profinite lattice structure X on
X = (Z \B) ∪ (B × 2) such that the projection q : X → Z is a homomorphism.
As A = (ϕ ◦ q)−1(m) is convex, s(X, A) is a profinite lattice with underlying

space Y such that the projection p : Y → X is a lattice homomorphism. Clearly,
r = q ◦ p is also a lattice homomorphism s(X, A)→ Z, and we are done. �
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The results.

Theorem. Every zero-dimensional Dugundji space admits a profinite lattice struc-

ture.

Proof: According to Haydon [Ha] we can represent the space X in question as the
inverse limit

X = lim
←
(Xα, p

β
α)α≤β<τ

of a well-ordered inverse system, indexed by the ordinals less than some τ such that

(a) |X0| = 1,

(b) Xγ = lim
←
(Xα, p

β
α)α≤β<γ , if γ is a limit ordinal,

(c) for all β < τ , p
β+1
β
is an open mapping with a metrizable kernel.

From Koppelberg’s analysis of projective Boolean algebras (cf. Theorem 2.7
in [K]), we know that in the zero-dimensional case condition (c) can be replaced by
the stronger

(c+) for all β < τ there is a clopen subset Aβ ⊆ Xβ such that Xβ+1 = (Xβ \

Aβ) ∪ (Aβ × 2) and pβ+1
β

is the projection sending x /∈ Aβ to itself and

(a, ε) ∈ Aβ × 2 to a.

By induction on α < τ , we turn the spaces Xα into profinite lattices Xα =

〈Xα;∧α,∨α〉 in such a way that (Xα, p
β
α)α≤β<τ becomes an inverse system of profi-

nite lattices. Its inverse limit will be a profinite lattice with underlying space X .
As X0 has only one point, there is no choice for ∧0 and ∨0. For limit ordinals γ we

take Xγ = lim
←
(Xα, p

β
α)α≤β<γ . As any pair of points of Xγ is separated by some p

γ
α,

this procedure preserves profiniteness. The step from β to β + 1 is done according
to Proposition 1. �

Remark. Let L be the four-element Boolean lattice with underlying set {0, a,−a, 1}.
Then s(L, {a}) is a pentagon. This shows that our construction does not yield
modular, let alone distributive lattices. The author was not able to decide whether
Dugundji spaces admit distributive lattice structures.

Corollary 1. Zero-dimensional Dugundji spaces are supercompact.

Before we prove that we recall the definitions, for the sake of completeness.
A collection of subsets of some set is called linked if any two of its members

intersect. A collection is called binary if each linked subcollection has non-empty
intersection.
A family S of closed subsets of a space X is called a closed subbase provided

that each closed subset of X is an intersection of finite unions of sets in S. X is
called supercompact if it possesses a binary closed subbase.
The corollary follows immediately from the theorem and

Proposition 2. The underlying space of a profinite lattice has a binary closed

subbase that consists of clopen sets.
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Proof: Let X = 〈X ;∧,∨〉 be a profinite lattice. Denote by S the collection of
all ϕ−1(m), where ϕ runs through all continuous homomorphisms of X into finite
lattices L and m ∈ L. Then S ⊆ Clop(X) and, by Lemma 3, S is a closed subbase
of X . To see that S is binary, we have to show that

⋂
T 6= ∅ for each linked

subcollection T ⊆ S. By compactness, we can assume that T is finite, i.e.

T = {ϕ−11 (m1), . . . , ϕ
−1
n (mn)}.

If n ≤ 2, then
⋂

T 6= ∅ is trivial. For n ≥ 3 we find, by induction, elements
x1, x2, x3 such that ϕi(xj) = mi for j ≤ 3 and all i 6= j.
Using that the ϕi are lattice homomorphisms, it is then easy to check that

x = (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3) satisfies ϕi(x) = mi for all i = 1, . . . , n,
i.e. x ∈

⋂
T. �

The second corollary of the theorem concerns the algebraic structure of projec-
tive Boolean algebras (cf. [K] for a survey on them). These are exactly the clopen
algebras of Dugundji spaces.
To consider Boolean semigroup algebras (see [CP] and also [He] for the Boolean

case), one has to conceive Boolean algebras as (linear) algebras over the two-element
field F2, where the meet operation acts as multiplication and symmetric difference
as addition.
Let again a profinite lattice 〈X ;∧,∨〉 be given and consider the set Σ ⊆ Clop(X)

consisting of all non-empty clopen upper sets (i.e. x ∈ S and x ≤ y imply y ∈ S)
that are closed under ∧. Notice that each S ∈ Σ has a least element. Indeed, by
Zorn’s Lemma and compactness, S contains minimal elements, but being closed
under ∧, S can have only one of them. The same argument yields a top element
for X , which, obviously, belongs to all S ∈ Σ.
It is easy to see that Σ is closed under set-theoretic intersection, i.e. multiplication

in Clop(X).
Moreover, Σ separates the points of X . Indeed, for x 6= y we find a continuous

homomorphism ϕ : X → L into a finite lattice L such that ϕ(x) 6= ϕ(y). Without
loss, ϕ(y) does not belong to M = {m ∈ L : m ≥ ϕ(x)}. So, ϕ−1(M) ∈ Σ contains
x but not y. It now follows from the fact quoted above that Σ generates Clop(X)
as a Boolean algebra.
To see that Σ is linearly independent over F2, we use the test from [He]. Assuming

that S, S1, S2, . . . Sn ∈ Σ satisfy S ⊆ S1 ∪ S2 ∪ · · · ∪ Sn, we have to find i ≤ n such
that S ⊆ Si. But this is easy, for the least element of S must belong to some Si.

Summing up the above discussion, we can conclude

Corollary 2. Clopen algebras of profinite lattices and, in particular, projective

Boolean algebras are semigroup algebras.
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