Commentationes Mathematicae Universitatis Carolinae

Michal Fečkan

Problems with nonlinear boundary value conditions

Commentationes Mathematicae Universitatis Carolinae, Vol. 33 (1992), No. 4, 597--604

Persistent URL: http://dml.cz/dmlcz/118530

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1992

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

Problems with nonlinear boundary value conditions

Michal Fečkan

Abstract

The existence and multiplicity results are shown for certain types of problems with nonlinear boundary value conditions.

Keywords: nonlinear boundary value problems, multiple solutions, Melnikov functions
Classification: 34B15, 34L30

Introduction.

The purpose of this paper is to study several problems with nonlinear boundary value conditions. Mostly we study problems which are small perturbations of linear boundary value problems. The author was stimulated by the paper [1]; but in this paper we shall use several approaches to solve our problems: the implicit function theorem, the Mawhin coincidence degree theory, the Nielsen fixed point theory and when an unperturbed linear boundary value condition is a periodic one, we derive a Melnikov function for this problem [2].

Results.

We study

$$
\begin{align*}
& x^{\prime}=f_{1}(x)+\varepsilon \cdot f_{2}(t, x) \\
& A x(0)+B x(T)=\varepsilon \cdot \phi(x(0), x(T))
\end{align*}
$$

where f_{1}, f_{2}, ϕ are continuous on $R^{m}, R \times R^{m}, R^{m} \times R^{m}$, respectively, $A, B \in$ $\mathcal{L}\left(R^{m}\right), T>0, \varepsilon \in R$ is small.
Theorem 1. Let us consider ($1-\varepsilon$) for the case when $f_{1}\left(c_{0}\right)=0$ for some $c_{0} \in R^{m}$, $A c_{0}+B c_{0}=0, f_{1}, f_{2}, \phi$ are C^{1}-smooth. If $\operatorname{det}\left(A+B . e^{D f_{1}\left(c_{0}\right) \cdot T}\right) \neq 0$, then $(1-\varepsilon)$ has a solution x_{ε} defined on $[0, T]$ for each ε small satisfying $x_{\varepsilon}(.) \rightarrow c_{0}$ as $\varepsilon \rightarrow 0$.
Proof: We consider

$$
\begin{aligned}
& F_{\varepsilon}: C^{1} \rightarrow C^{0} \times R^{m} \\
& F_{\varepsilon}(x)=\left(x^{\prime}-f_{1}(x)-\varepsilon f_{2}(t, x), A x(0)+B x(T)-\varepsilon \phi(x(0), x(T))\right)
\end{aligned}
$$

We see that

$$
\begin{aligned}
& F_{0}\left(c_{0}\right)=0 \\
& D_{x} F_{0}\left(c_{0}\right) v=\left(v^{\prime}-D f_{1}\left(c_{0}\right) v, A v(0)+B v(T)\right)
\end{aligned}
$$

Thus ker $D_{x} F_{0}\left(c_{0}\right)=\left\{v \mid v^{\prime}=D f_{1}\left(c_{0}\right) v, A v(0)+B v(T)=0\right\}$ and by using our assumptions we have $\operatorname{ker} D_{x} F_{0}\left(c_{0}\right)=\{0\}$.

Let us solve

$$
\begin{aligned}
& v^{\prime}-D f_{1}\left(c_{0}\right) v=r \\
& A v(0)+B v(T)=w
\end{aligned}
$$

Then $v(t)=\int_{0}^{t} e^{D f_{1}\left(c_{0}\right)(t-s)} r(s) d s+e^{D f_{1}\left(c_{0}\right) t} c$. Hence

$$
A c+B . e^{D f_{1}\left(c_{0}\right) T} c=-B \int_{0}^{T} e^{D f_{1}\left(c_{0}\right)(T-s)} r(s) d s
$$

and the last equation we can solve in c. This completes the proof, since we can use the implicit function theorem.
Corollary 2. Let $f_{1} \equiv 0$. Then the conditions of Theorem 1 are $c_{0}=0, A+B$ is invertible.

Now we consider $(1-\varepsilon)$ for the case $A=-B=I d$ and $x^{\prime}=f_{1}(x)$ has an isolated T-periodic nonconstant solution $x_{0}($.$) . Hence (1-\varepsilon)$ has the form

$$
\begin{align*}
& x^{\prime}=f_{1}(x)+\varepsilon \cdot f_{2}(t, x) \\
& x(0)-x(T)=\varepsilon \cdot \phi(x(0), x(T))
\end{align*}
$$

Let ϕ, f_{1}, f_{2} be C^{2}-smooth mappings. We note that $(2-0)$ has the family of solutions $\Gamma=\left\{x_{0}(.+c), c \in[0, T]\right\}$. We are interested in bifurcations of solutions of $(2-\varepsilon)$ from Γ for ε small. We apply the following theorem from [5, pp. 397]:

Theorem 3. Let $F_{\varepsilon}: X \rightarrow Y$ be a C^{2}-smooth mapping, X, Y are Hilbert spaces and F_{0} possesses a compact C^{2}-manifold \mathcal{M} such that $F_{0}(\mathcal{M})=0$, ker $D_{x} F_{0}(m)=$ $T_{m} \mathcal{M}$, index $D_{x} F_{0}(m)=0, D_{x} F_{0}(m)$ is a Fredholm operator for each $m \in \mathcal{M}$. Here $T_{m} \mathcal{M}$ is the tangent space of \mathcal{M} at m. Let $P(m) \in \mathcal{L}(Y)$ be the orthogonal projection onto $\left(\operatorname{im} D_{x} F_{0}(m)\right)^{\perp}$ for each $m \in \mathcal{M}$. Consider the map $M(m)=$ $P(m) . D_{\varepsilon} F_{0}(m), M: \mathcal{M} \rightarrow Y$. If there is a $m_{0} \in \mathcal{M}$ such that $M\left(m_{0}\right)=0$, $D M\left(m_{0}\right)$ is injective. Then for any ε small the equation $F_{\varepsilon}(m)=0$ has a solution near \mathcal{M}. We note that M can be considered as a map from $R^{\operatorname{dim} \mathcal{M}}$ into $R^{\operatorname{dim} \mathcal{M}}$ in the local coordinates.

We shall derive M for the special case $(2-\varepsilon)$. We put $X=H^{1}\left([0, T], R^{m}\right), Y=$ $H^{0}\left([0, T], R^{m}\right) \times R^{m}, F_{\varepsilon}(x)=\left(x^{\prime}-f_{1}(x)-\varepsilon . f_{2}(t, x), x(0)-x(T)-\varepsilon . \phi(x(0), x(T))\right)$ and $\mathcal{M}=\left\{x_{0}(.+c), c \in[0, T]\right\}$. Hence \mathcal{M} is homeomorphic to a circle and

$$
D_{x} F_{0}(m) v=\left(v^{\prime}-D f_{1}\left(x_{0}(.+c)\right) \cdot v, v(0)-v(T)\right) .
$$

Since x_{0} is an isolated T-periodic nonconstant solution of $(2-0)$ we have ker $D_{x} F_{0}(m)=T_{m} \mathcal{M}$ for each $m \in \mathcal{M}$. Now we derive im $D_{x} F_{0}(m)$ and thus let us solve

$$
\begin{aligned}
& v^{\prime}-D f_{1}\left(x_{0}(.+c)\right) v=r \\
& v(0)-v(T)=v_{1} \in R^{m}
\end{aligned}
$$

We put $w(t)=v(t)+\frac{t \cdot v_{1}}{T}$, hence

$$
\begin{aligned}
& w^{\prime}-D f_{1}\left(x_{0}(t+c)\right) w=r+\frac{v_{1}}{T}-D f_{1}\left(x_{0}(t+c)\right) \cdot t \cdot \frac{v_{1}}{T} \\
& w(0)=w(T)
\end{aligned}
$$

It is well-known that this equation has a solution if and only if

$$
\int_{0}^{T} \tilde{x}_{0}(s+c) \cdot\left(r(s)+\frac{v_{1}}{T}-D f_{1}\left(x_{0}(s+c)\right) \cdot s \cdot \frac{v_{1}}{T}\right) d s=0
$$

where \tilde{x}_{0} is a nonzero T-periodic solution of $x^{\prime}+\left(D f_{1}\left(x_{0}\right)\right)^{\top} x=0$.
Hence $\left(r, v_{1}\right) \in \operatorname{im} D_{x} F_{0}\left(x_{0}(.+c)\right)$ if and only if

$$
\begin{aligned}
& \left\langle w(c),\left(r, v_{1}\right)\right\rangle_{Y}= \\
& \quad=\int_{0}^{T} \tilde{x}_{0}(s+c) \cdot r(s) d s+\frac{1}{T} \int_{0}^{T} \tilde{x}_{0}(s+c)\left(v_{1}-D f_{1}\left(x_{0}(s+c)\right) s \cdot v_{1}\right) d s=0
\end{aligned}
$$

where $\langle., .\rangle_{Y}$ is the scalar product on Y. Then

$$
P\left(x_{0}(.+c)\right) w_{1}=\left\langle w(c), w_{1}\right\rangle_{Y} \cdot \frac{1}{\|w(c)\|_{Y}} \cdot w(c)
$$

and

$$
M(c)=\left\langle w(c),\left(-f_{2}\left(., x_{0}(.+c)\right),-\phi\left(x_{0}(.+c), x_{0}(.+c)\right)\right)\right\rangle_{Y} /\|w(c)\|_{Y} . w(c)
$$

Now we shall use the fact: let $\frac{a(c)}{b(c)}=d(c)$, where a, b, d are real smooth functions, $b\left(c_{0}\right) \neq 0$. Then for $a\left(c_{0}\right)=0$ it follows $d^{\prime}\left(c_{0}\right) \neq 0$ if and only if $a^{\prime}\left(c_{0}\right) \neq 0$. Thus instead of $M(c)$ we can consider the map

$$
\begin{aligned}
\bar{M}(c) & =\left\langle w(c),\left(f_{2}\left(., x_{0}(.+c)\right), \phi\left(x_{0}(.+c), x_{0}(.+c)\right)\right)\right\rangle_{Y}= \\
& =\int_{0}^{T} \tilde{x}_{0}(s+c) \cdot f_{2}\left(s, x_{0}(s+c)\right) d s+ \\
& +\frac{1}{T} \int_{0}^{T} \tilde{x}_{0}(s+c) \cdot\left(\phi\left(x_{0}(s+c), x_{0}(s+c)\right)-\right. \\
& \left.-D f_{1}\left(x_{0}(s+c)\right) s \cdot \phi\left(x_{0}(s+c), x_{0}(s+c)\right)\right) d s
\end{aligned}
$$

Summing up we obtain

Theorem 4. If there is $c_{0} \in[0, T]$ such that $\bar{M}\left(c_{0}\right)=0, \bar{M}^{\prime}\left(c_{0}\right) \neq 0$, then for each ε small, $(2-\varepsilon)$ has a solution on $[0, T]$.

Remark 5. We see that for $\phi \equiv 0 \bar{M}$ is the subharmonic Melnikov function [2] and thus \bar{M} we can consider as a Melnikov function for $(2-\varepsilon)$.

Now we consider

$$
\begin{align*}
& x^{\prime}=f(t, x) \tag{3}\\
& A x(0)+B x(T)=\phi(x(0), x(T))
\end{align*}
$$

where f, ϕ are continuous. Let $G \subset R^{m}$ be an open bounded subset, $0 \in G$.
Theorem 6. Assume that
(i) $x^{\prime}=\lambda f(t, x), A x(0)+B x(T)=\lambda \phi(x(0), x(T))$ has no solution for each $\lambda \in(0,1)$ satisfying
$x(.) \subset \bar{G}, x(.) \cap \partial G \neq \emptyset$.
Moreover
(ii) $D=\left\{z \in R^{m} \mid A z+B z=0, z \in G\right\} \neq\{0\}, g(z) \neq 0$
for each $z \in \partial D$, where
$g(z)=J P\left(\phi(z, z)-B \cdot \int_{0}^{T} f(s, z) d s\right)$
here $P: R^{m} \rightarrow(\operatorname{im}(A+B))^{\perp}$ is a projection and
$J:(\operatorname{im}(A+B))^{\perp} \rightarrow\{z, A z+B z=0\}$ is an isomorphism.
(iii) $\operatorname{deg}(g, D, 0) \neq 0$.

Then (3) has a solution $x, x(.) \subset G$.
Proof: We shall apply a theorem of Mawhin [3, p. 41]. We put

$$
\begin{aligned}
& X=C^{0}\left([0, T], R^{m}\right), Y=X \times R^{m} \\
& L x=\left(x^{\prime}, A x(0)+B x(T)\right) \\
& N(x)=(f(., x), \phi(x(0), x(T))) \\
& \Omega=\{x \in X, x(.) \in G\} .
\end{aligned}
$$

By our assumptions $L x=\lambda N(x), \lambda \in(0,1)$ has no solution on $\partial \Omega$. We compute $\operatorname{ker} L=\left\{x^{\prime}=0, A x(0)+B x(T)=0\right\}=\left\{x \mid x=\right.$ constant $\left.=c_{1}, A c_{1}+B c_{1}=0\right\}$. Now $\operatorname{im} L=\left\{(v, w) \mid x^{\prime}=v, A x(0)+B x(T)=w\right\}$. But

$$
\begin{aligned}
& x(t)=\int_{0}^{t} v(s) d s+c_{1}, A c_{1}+B \int_{0}^{T} v(s) d s+B c_{1}=w \\
& A c_{1}+B c_{1}=w-B \cdot \int_{0}^{T} v(s) d s
\end{aligned}
$$

This equation has a solution if and only if

$$
P\left(w-B \cdot \int_{0}^{T} v(s) d s\right)=0
$$

Hence

$$
\operatorname{im} L=\left\{(v, w), P\left(w-B \cdot \int_{0}^{T} v(s) d s\right)=0\right\}
$$

Thus dim coker im $L=\operatorname{dim}$ ker $L \neq 0$. We take

$$
\bar{P}(v, w)=\left(0, P\left(w-B \cdot \int_{0}^{T} v(s) d s\right)\right)
$$

Then $\operatorname{im}(I-\bar{P})=\operatorname{im} L$.
Finally consider the map

$$
J . \bar{P} . N / \operatorname{ker} L \cap \Omega \rightarrow 0 \times R^{m} \circlearrowleft R^{m}
$$

defined in the following way

$$
g(z)=J . P\left(\phi(z, z)-B \cdot \int_{0}^{T} f(s, z) d s\right), z \in D
$$

Since $g(z) \neq 0$ for $z \in \partial D$ and $\operatorname{deg}(g, D, 0) \neq 0$ we see that also the last assumption of the theorem of Mawhin is satisfied. The proof is finished.
Theorem 7. Let us consider

$$
\begin{align*}
& x^{\prime}=\varepsilon \cdot f(t, x) \\
& A x(0)+B x(T)=\varepsilon \cdot \phi(x(0), x(T)) \tag{4}
\end{align*}
$$

and assume the existence of G as in Theorem 6 possessing the properties (ii), (iii). Then (4) has a solution for each ε small.
Proof: The proof is similar as for Theorem 6.
Theorem 7 expresses only the existence result. Now we shall apply a theorem of [4] to show a multiplicity result.
Theorem 8 ([4]). Let $X \subset Y$ be Banach spaces, X is compactly embedded into Y. Consider $L x=\varepsilon N(x)$, where $L: X \rightarrow Y$ is continuous, linear, Fredholm with index $L=0$, $\operatorname{ker} L \neq\{0\}$ and $N: Y \rightarrow Y$ maps bounded sets into bounded sets, continuous. Moreover we assume that the map $\Pi(z)=z+J P N(z)$ is μ-retractible onto S with a retraction π, where J is an isomorphism from $\operatorname{im} P$ onto ker L, $P: Y \rightarrow Y$ is a projection, $\operatorname{im}(I-P)=\operatorname{im} L, S$ is a compact, nonempty, locally contractible subset of $\operatorname{ker} L, \mu>0$. Then the equation $L x=\varepsilon . N(x)$ has for each ε small at least $N(\pi . \Pi)$ solutions. Here $N(\pi . \Pi)$ is the Nielsen number of the map $\pi . \Pi / S: S \rightarrow S$.

Theorem 9. Consider (4) and assume that there is S a compact, nonempty, locally contractible subset of $\left\{c \in R^{m}, A c+B c=0\right\}=W$ and the map

$$
\psi(z)=z+J P\left(\phi(z, z)-B \int_{0}^{T} f(s, z) d s\right), \psi: W \rightarrow W
$$

is μ-retractible onto S with respect to π. Then (4) has at least $N(\pi . \psi)$ solutions for each ε small. (The operators J, P are from Theorem 6.)

Proof: We put

$$
X=C^{1}\left([0, T], R^{m}\right), Y=C^{0}\left([0, T], R^{m}\right) \times R^{m}
$$

L, N as in the proof of Theorem 6 . It is clear that $\Pi=\psi$ and thus the assertion follows by Theorem 8.

Example 1. Consider

$$
\begin{align*}
& x_{1}^{\prime}=\varepsilon \cdot f_{1}\left(t, x_{1}, x_{2}\right), 0 \leq t \leq T \\
& x_{2}^{\prime}=\varepsilon \cdot f_{2}\left(t, x_{1}, x_{2}\right) \\
& a_{1} x_{1}(0)+a_{2} x_{2}(0)=\varepsilon \cdot \phi_{1}\left(x_{1}(0), x_{2}(0)\right) \\
& b_{1} x_{1}(T)+b_{2} x_{2}(T)=\varepsilon \cdot \phi_{2}\left(x_{1}(T), x_{2}(T)\right)
\end{align*}
$$

In this case

$$
A=\left(\begin{array}{cc}
a_{1} & a_{2} \\
0 & 0
\end{array}\right), \quad B=\left(\begin{array}{cc}
0 & 0 \\
b_{1} & b_{2}
\end{array}\right) .
$$

Hence

$$
A+B=\left(\begin{array}{cc}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right)
$$

Applying Corollary 2 we obtain
Proposition 10. If $a_{1} . b_{2}-a_{2} . b_{1} \neq 0$ and $f_{1}, f_{2}, \phi_{1}, \phi_{2}$ are C^{1}-smooth then $(5-\varepsilon)$ has a solution for each ε small tending to 0 as $\varepsilon \rightarrow 0$.

Consider the case $a_{1} \cdot b_{2}-a_{2} \cdot b_{1}=0, a_{1}^{2}+a_{1}^{2} \neq 0 \neq b_{1}^{2}+b_{2}^{2}$. Then (see Theorem 9)

$$
\begin{aligned}
W= & \left\{\left(c_{1}, c_{2}\right) \mid a_{1} c_{1}+a_{2} c_{2}=0, b_{1} c_{1}+b_{2} c_{2}=0\right\} \\
& =\left\{c .\left(a_{2},-a_{1}\right), c \in R\right\} \\
& (\operatorname{im}(A+B))^{\perp}=\left\{c .\left(b_{1},-a_{1}\right), c \in R\right\} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& P\left(v_{1}, v_{2}\right)=\frac{\left(v_{1} b_{1}-v_{2} a_{1}\right)}{b_{1}^{2}+a_{1}^{2}}\left(b_{1},-a_{1}\right) \\
& J\left(c .\left(b_{1},-a_{1}\right)\right)=c .\left(b_{1}^{2}+a_{1}^{2}\right) \cdot\left(a_{2},-a_{1}\right) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& g(c)=b_{1} \phi_{1}\left(c . a_{2},-c . a_{1}\right)+b_{1} \cdot a_{1} \\
& \int_{0}^{T} f_{1}\left(s, c \cdot a_{2},-c . a_{1}\right) d s \\
&-a_{1} \cdot \phi_{2}\left(c . a_{2},-c \cdot a_{1}\right)+b_{2} \cdot a_{1} \int_{0}^{T} f_{2}\left(s, c . a_{2},-c \cdot a_{1}\right) d s
\end{aligned}
$$

since $\operatorname{dim} W=1$.
Proposition 11. Let $f_{1}, f_{2}, \phi_{1}, \phi_{2}$ be continuous and

$$
\limsup _{|c| \rightarrow \infty} g(c) / c>0 \text { or } \liminf _{|c| \rightarrow \infty} g(c) / c<0 .
$$

Then $(5-\varepsilon)$ has a solution for each ε small.
Proof: The assertion follows by Theorem 7.
Example 2. Consider

$$
\begin{align*}
& x_{1}^{\prime}=\varepsilon \cdot f_{1}\left(t, x_{1}, x_{2}\right), 0 \leq t \leq T \\
& x_{2}^{\prime}=\varepsilon \cdot f_{2}\left(t, x_{1}, x_{2}\right) \\
& a_{1} x_{1}(0)+a_{2} x_{1}(T)=\varepsilon \cdot \phi_{1}\left(x_{1}(0), x_{2}(0)\right) \\
& b_{1} x_{2}(0)+b_{2} x_{2}(T)=\varepsilon \cdot \phi_{2}\left(x_{1}(T), x_{2}(T)\right) .
\end{align*}
$$

In this case

$$
A=\left(\begin{array}{cc}
a_{1} & 0 \\
0 & b_{1}
\end{array}\right), \quad B=\left(\begin{array}{cc}
a_{2} & 0 \\
0 & b_{2}
\end{array}\right) .
$$

Hence

$$
A+B=\left(\begin{array}{cc}
a_{1}+a_{2} & 0 \\
0 & b_{1}+b_{2}
\end{array}\right)
$$

According to Corollary 2 we obtain
Proposition 12. If $\left(a_{1}+a_{2}\right)\left(b_{1}+b_{2}\right) \neq 0$ and $f_{1}, f_{2}, \phi_{1}, \phi_{2}$ are C^{1}-smooth then $(6-\varepsilon)$ has a solution for each ε small tending to 0 as $\varepsilon \rightarrow 0$.

Let $a_{1}=-a_{2} \neq 0, b_{1}+b_{2} \neq 0$. Then (see Theorem 9)

$$
\begin{aligned}
& W=\{(c, 0), c \in R\} \\
& P\left(v_{1}, v_{2}\right)=\left(v_{1}, 0\right) \\
& (\operatorname{im}(A+B))^{\perp}=\{(c, 0), c \in R\} \\
& J((c, 0))=c
\end{aligned}
$$

Thus

$$
\begin{equation*}
g(c)=\phi_{1}(c, 0)-a_{2} \cdot \int_{0}^{T} f_{1}(s, c, 0) d s \tag{7}
\end{equation*}
$$

Proposition 13. Let $f_{1}, f_{2}, \phi_{1}, \phi_{2}$ be continuous and

$$
\limsup _{|c| \rightarrow \infty} g(c) / c>0 \text { or } \liminf _{|c| \rightarrow \infty} g(c) / c<0
$$

Then $(6-\varepsilon)$ has a solution for each ε small. Here g is defined by (7).
Lastly, consider $a_{1}=-a_{2} \neq 0, b_{1}=-b_{2} \neq 0$. Then (see Theorem 9) $W=R^{2}$, $P=J=I d$ and

$$
\psi\left(c_{1}, c_{2}\right)=
$$

$$
\begin{align*}
& \left(c_{1}+\phi_{1}\left(c_{1}, c_{2}\right)-a_{2} \int_{0}^{T} f_{1}\left(s, c_{1}, c_{2}\right) d s, c_{2}+\phi_{2}\left(c_{1}, c_{2}\right)-b_{2} \int_{0}^{T} f_{2}\left(s, c_{1}, c_{2}\right) d s\right) \tag{8}\\
& \psi: R^{2} \rightarrow R^{2}
\end{align*}
$$

Applying Theorem 9 we obtain
Proposition 14. Let $f_{1}, f_{2}, \phi_{1}, \phi_{2}$ be continuous and S be a compact, locally contractible subset of R^{2}. If the map ψ defined by (8) is μ-retractible onto S with respect to a retraction π then $(6-\varepsilon)$ has at least $N(\pi \cdot \psi)$ solutions for any ε small.

To be more concrete we take $S=A_{r, p}=\left\{z \in R^{2}, r \leq|z| \leq p\right\}$ for fixed $0<r<p$. We have constructed in [4] a family of mappings q for each $m \in \mathcal{N} \backslash\{1\}$ satisfying $N\left(\rho_{r, p} . q\right)=m-1$, where $\rho_{r, p}$ is the usual retraction on $A_{r, p}$ (see [4]) and q is μ-retractible onto $A_{r, p}$ with respect to $\rho_{r, p}$ for some $\mu>0$.

If $T=1=a_{2}=b_{2}$ and

$$
\begin{align*}
& f_{i}\left(s, c_{1}, c_{2}\right)=2 \cdot q_{i}\left(c_{1}, c_{2}\right) . s \\
& \phi_{i}\left(c_{1}, c_{2}\right)=2 \cdot q_{i}\left(c_{1}, c_{2}\right)-c_{i}, \quad i=1,2 \tag{9}
\end{align*}
$$

where $q=\left(q_{1}, q_{2}\right)$. Then easy computations show that the map ψ from (8) has the form $\psi=q$ and $\pi=\rho_{r, p}$. Summing up we have
Proposition 15. Consider the special case (9) of the problem discussed in Proposition 14. Then in this case $(6-\varepsilon)$ has at least $m-1$ solutions for each ε small.

References

[1] Samoilenko A.M., Le Loyong Tai, On a method of study of boundary value problems with nonlinear boundary value conditions (in Russian), Ukrainian Math. Journal 42 (1990), 951957.
[2] Guckenheimer J., Holmes P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.
[3] Mawhin J., Nonlinear functional analysis and periodic solutions of ordinary differential equations, in Summer School on Ordinary Differential Equations-Difford 74, Brno (1974), 37-60.
[4] Fečkan M., Nielsen fixed point theory and nonlinear equations, to appear in Journal of Differential Equations.
[5] Chow S.-N., Hale J.K., Methods of Bifurcations Theory, Springer-Verlag, New York, 1982.
Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, Bratislava, Czechoslovakia

