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Problems with nonlinear boundary value conditions

Michal Fečkan

Abstract. The existence and multiplicity results are shown for certain types of problems
with nonlinear boundary value conditions.

Keywords: nonlinear boundary value problems, multiple solutions, Melnikov functions

Classification: 34B15, 34L30

Introduction.

The purpose of this paper is to study several problems with nonlinear boundary
value conditions. Mostly we study problems which are small perturbations of linear
boundary value problems. The author was stimulated by the paper [1]; but in this
paper we shall use several approaches to solve our problems: the implicit function
theorem, the Mawhin coincidence degree theory, the Nielsen fixed point theory and
when an unperturbed linear boundary value condition is a periodic one, we derive
a Melnikov function for this problem [2].

Results.

We study

(1− ε)
x′ = f1(x) + ε.f2(t, x)

Ax(0) +Bx(T ) = ε.φ(x(0), x(T )),

where f1, f2, φ are continuous on R
m, R × Rm, Rm × Rm, respectively, A,B ∈

L(Rm), T > 0, ε ∈ R is small.

Theorem 1. Let us consider (1−ε) for the case when f1(c0) = 0 for some c0 ∈ Rm,

Ac0+Bc0 = 0, f1, f2, φ are C
1-smooth. If det(A+B.eDf1(c0).T ) 6= 0, then (1− ε)

has a solution xε defined on [0, T ] for each ε small satisfying xε(.)→ c0 as ε→ 0.

Proof: We consider

Fε : C
1 → C0 ×Rm

Fε(x) = (x
′ − f1(x)− εf2(t, x), Ax(0) +Bx(T )− εφ(x(0), x(T ))).

We see that

F0(c0) = 0

DxF0(c0)v = (v
′ −Df1(c0)v,Av(0) +Bv(T )).
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Thus kerDxF0(c0) = {v | v′ = Df1(c0)v,Av(0) + Bv(T ) = 0} and by using our
assumptions we have kerDxF0(c0) = {0}.
Let us solve

v′ −Df1(c0)v = r

Av(0) +Bv(T ) = w.

Then v(t) =
t
∫

0
eDf1(c0)(t−s)r(s) ds+ eDf1(c0)tc. Hence

Ac+B.eDf1(c0)T c = −B

T
∫

0

eDf1(c0)(T−s)r(s) ds

and the last equation we can solve in c. This completes the proof, since we can use
the implicit function theorem. �

Corollary 2. Let f1 ≡ 0. Then the conditions of Theorem 1 are c0 = 0, A+B is
invertible.

Now we consider (1 − ε) for the case A = −B = Id and x′ = f1(x) has an
isolated T -periodic nonconstant solution x0(.). Hence (1−ε) has the form

(2− ε)
x′ = f1(x) + ε.f2(t, x)

x(0)− x(T ) = ε.φ(x(0), x(T )).

Let φ, f1, f2 be C
2-smooth mappings. We note that (2 − 0) has the family of

solutions Γ = {x0(. + c), c ∈ [0, T ]}. We are interested in bifurcations of solutions
of (2−ε) from Γ for ε small. We apply the following theorem from [5, pp. 397]:

Theorem 3. Let Fε : X → Y be a C2-smooth mapping, X, Y are Hilbert spaces
and F0 possesses a compact C

2-manifoldM such that F0(M) = 0, kerDxF0(m) =
TmM, index DxF0(m) = 0, DxF0(m) is a Fredholm operator for each m ∈ M.
Here TmM is the tangent space ofM at m. Let P (m) ∈ L(Y ) be the orthogonal
projection onto (im DxF0(m))

⊥ for each m ∈ M. Consider the map M(m) =
P (m).DεF0(m), M : M → Y . If there is a m0 ∈ M such that M(m0) = 0,
DM(m0) is injective. Then for any ε small the equation Fε(m) = 0 has a solution

near M. We note that M can be considered as a map from RdimM into RdimM

in the local coordinates.

We shall deriveM for the special case (2− ε). We put X = H1([0, T ], Rm), Y =
H0([0, T ], Rm)×Rm, Fε(x) = (x

′−f1(x)−ε.f2(t, x), x(0)−x(T )−ε.φ(x(0), x(T )))
andM = {x0(.+ c), c ∈ [0, T ]}. HenceM is homeomorphic to a circle and

DxF0(m)v = (v
′ −Df1(x0(.+ c)).v, v(0) − v(T )).
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Since x0 is an isolated T -periodic nonconstant solution of (2 − 0) we have ker
DxF0(m) = TmM for each m ∈ M. Now we derive im DxF0(m) and thus let us
solve

v′ −Df1(x0(.+ c))v = r

v(0)− v(T ) = v1 ∈ Rm.

We put w(t) = v(t) + t.v1
T , hence

w′ −Df1(x0(t+ c))w = r +
v1
T

−Df1(x0(t+ c)).t.
v1
T

w(0) = w(T ).

It is well-known that this equation has a solution if and only if

T
∫

0

x̃0(s+ c).(r(s) +
v1
T

−Df1(x0(s+ c)).s.
v1
T
) ds = 0,

where x̃0 is a nonzero T -periodic solution of x
′ + (Df1(x0))

⊤x = 0.
Hence (r, v1) ∈ im DxF0(x0(.+ c)) if and only if

〈w(c), (r, v1)〉Y =

=

T
∫

0

x̃0(s+ c).r(s) ds +
1

T

T
∫

0

x̃0(s+ c)(v1 −Df1(x0(s+ c))s.v1) ds = 0,

where 〈., .〉Y is the scalar product on Y . Then

P (x0(.+ c))w1 = 〈w(c), w1〉Y .
1

‖ w(c) ‖Y
.w(c)

and

M(c) = 〈w(c), (−f2(., x0(.+ c)),−φ(x0(.+ c), x0(.+ c)))〉Y / ‖ w(c) ‖Y .w(c).

Now we shall use the fact: let
a(c)
b(c)
= d(c), where a, b, d are real smooth functions,

b(c0) 6= 0. Then for a(c0) = 0 it follows d
′(c0) 6= 0 if and only if a

′(c0) 6= 0. Thus
instead of M(c) we can consider the map

M̄(c) =〈w(c), (f2(., x0(.+ c)), φ(x0(.+ c), x0(.+ c)))〉Y =

=

T
∫

0

x̃0(s+ c).f2(s, x0(s+ c)) ds+

+
1

T

T
∫

0

x̃0(s+ c).(φ(x0(s+ c), x0(s+ c))−

−Df1(x0(s+ c))s.φ(x0(s+ c), x0(s+ c))) ds.

Summing up we obtain
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Theorem 4. If there is c0 ∈ [0, T ] such that M̄(c0) = 0, M̄
′(c0) 6= 0, then for each

ε small, (2− ε) has a solution on [0, T ].

Remark 5. We see that for φ ≡ 0 M̄ is the subharmonic Melnikov function [2]
and thus M̄ we can consider as a Melnikov function for (2− ε).
Now we consider

(3)
x′ = f(t, x)

Ax(0) +Bx(T ) = φ(x(0), x(T )),

where f, φ are continuous. Let G ⊂ Rm be an open bounded subset, 0 ∈ G.

Theorem 6. Assume that

(i) x′ = λf(t, x), Ax(0) +Bx(T ) = λφ(x(0), x(T )) has no solution
for each λ ∈ (0, 1) satisfying
x(.) ⊂ Ḡ, x(.) ∩ ∂G 6= ∅.

Moreover

(ii) D = {z ∈ Rm | Az +Bz = 0, z ∈ G} 6= {0}, g(z) 6= 0
for each z ∈ ∂D, where

g(z) = JP (φ(z, z)−B.
T
∫

0
f(s, z) ds)

here P : Rm → (im (A+B))⊥ is a projection and
J : (im (A+B))⊥ → {z,Az +Bz = 0} is an isomorphism.

(iii) deg(g,D, 0) 6= 0.

Then (3) has a solution x, x(.) ⊂ G.

Proof: We shall apply a theorem of Mawhin [3, p. 41]. We put

X = C0([0, T ], Rm), Y = X ×Rm

Lx = (x′, Ax(0) +Bx(T ))

N(x) = (f(., x), φ(x(0), x(T )))

Ω = {x ∈ X,x(.) ∈ G}.

By our assumptions Lx = λN(x), λ ∈ (0, 1) has no solution on ∂Ω. We compute
kerL = {x′ = 0, Ax(0)+Bx(T ) = 0}={x | x= constant =c1, Ac1+Bc1 = 0}. Now
im L = {(v, w) | x′ = v, Ax(0) +Bx(T ) = w}. But

x(t) =

t
∫

0

v(s)ds + c1, Ac1 +B

T
∫

0

v(s) ds+Bc1 = w,

Ac1 +Bc1 = w −B.

T
∫

0

v(s) ds.
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This equation has a solution if and only if

P (w −B.

T
∫

0

v(s) ds) = 0.

Hence

im L = {(v, w), P (w −B.

T
∫

0

v(s) ds) = 0}.

Thus dim coker im L = dim ker L 6= 0. We take

P̄ (v, w) = (0, P (w −B.

T
∫

0

v(s) ds)).

Then im (I − P̄ ) = im L.
Finally consider the map

J.P̄ .N/ kerL ∩ Ω→ 0×Rm
	 Rm

defined in the following way

g(z) = J.P (φ(z, z)−B.

T
∫

0

f(s, z) ds), z ∈ D.

Since g(z) 6= 0 for z ∈ ∂D and deg(g,D, 0) 6= 0 we see that also the last assumption
of the theorem of Mawhin is satisfied. The proof is finished. �

Theorem 7. Let us consider

(4)
x′ = ε.f(t, x)

Ax(0) +Bx(T ) = ε.φ(x(0), x(T ))

and assume the existence of G as in Theorem 6 possessing the properties (ii), (iii).
Then (4) has a solution for each ε small.

Proof: The proof is similar as for Theorem 6. �

Theorem 7 expresses only the existence result. Now we shall apply a theorem of
[4] to show a multiplicity result.

Theorem 8 ([4]). Let X ⊂ Y be Banach spaces, X is compactly embedded into Y .
Consider Lx = εN(x), where L : X → Y is continuous, linear, Fredholm with
index L = 0, kerL 6= {0} and N : Y → Y maps bounded sets into bounded sets,
continuous. Moreover we assume that the map Π(z) = z + JPN(z) is µ-retractible
onto S with a retraction π, where J is an isomorphism from im P onto kerL,
P : Y → Y is a projection, im (I − P ) = im L, S is a compact, nonempty, locally
contractible subset of kerL, µ > 0. Then the equation Lx = ε.N(x) has for each
ε small at least N(π.Π) solutions. Here N(π.Π) is the Nielsen number of the map
π.Π/S : S → S.
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Theorem 9. Consider (4) and assume that there is S a compact, nonempty, locally
contractible subset of {c ∈ Rm, Ac+Bc = 0} =W and the map

ψ(z) = z + JP (φ(z, z)−B

T
∫

0

f(s, z) ds), ψ : W →W

is µ-retractible onto S with respect to π. Then (4) has at least N(π.ψ) solutions
for each ε small. (The operators J, P are from Theorem 6.)

Proof: We put

X = C1([0, T ], Rm), Y = C0([0, T ], Rm)×Rm,

L, N as in the proof of Theorem 6. It is clear that Π = ψ and thus the assertion
follows by Theorem 8. �

Example 1. Consider

(5− ε)

x′1 = ε.f1(t, x1, x2), 0 ≤ t ≤ T

x′2 = ε.f2(t, x1, x2)

a1x1(0) + a2x2(0) = ε.φ1(x1(0), x2(0))

b1x1(T ) + b2x2(T ) = ε.φ2(x1(T ), x2(T )).

In this case

A =

(

a1 a2
0 0

)

, B =

(

0 0
b1 b2

)

.

Hence

A+B =

(

a1 a2
b1 b2

)

.

Applying Corollary 2 we obtain

Proposition 10. If a1.b2−a2.b1 6= 0 and f1, f2, φ1, φ2 are C
1-smooth then (5−ε)

has a solution for each ε small tending to 0 as ε→ 0.

Consider the case a1.b2−a2.b1 = 0, a
2
1+a

2
1 6= 0 6= b

2
1+b

2
2. Then (see Theorem 9)

W ={(c1, c2) | a1c1 + a2c2 = 0, b1c1 + b2c2 = 0}

= {c.(a2,−a1), c ∈ R}

(im (A+B))⊥ = {c.(b1,−a1), c ∈ R}.

Hence

P (v1, v2) =
(v1b1 − v2a1)

b21 + a
2
1

(b1,−a1)

J(c.(b1,−a1)) = c.(b
2
1 + a

2
1).(a2,−a1).
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Thus

g(c) =b1φ1(c.a2,−c.a1) + b1.a1

T
∫

0

f1(s, c.a2,−c.a1) ds

−a1.φ2(c.a2,−c.a1) + b2.a1

T
∫

0

f2(s, c.a2,−c.a1) ds,

since dimW = 1.

Proposition 11. Let f1, f2, φ1, φ2 be continuous and

lim sup
|c|→∞

g(c)/c > 0 or lim inf
|c|→∞

g(c)/c < 0.

Then (5− ε) has a solution for each ε small.

Proof: The assertion follows by Theorem 7. �

Example 2. Consider

(6− ε)

x′1 = ε.f1(t, x1, x2), 0 ≤ t ≤ T

x′2 = ε.f2(t, x1, x2)

a1x1(0) + a2x1(T ) = ε.φ1(x1(0), x2(0))

b1x2(0) + b2x2(T ) = ε.φ2(x1(T ), x2(T )).

In this case

A =

(

a1 0
0 b1

)

, B =

(

a2 0
0 b2

)

.

Hence

A+B =

(

a1 + a2 0
0 b1 + b2

)

.

According to Corollary 2 we obtain

Proposition 12. If (a1 + a2)(b1 + b2) 6= 0 and f1, f2, φ1, φ2 are C
1-smooth then

(6− ε) has a solution for each ε small tending to 0 as ε→ 0.

Let a1 = −a2 6= 0, b1 + b2 6= 0. Then (see Theorem 9)

W = {(c, 0), c ∈ R}

P (v1, v2) = (v1, 0)

(im (A+B))⊥ = {(c, 0), c ∈ R}

J((c, 0)) = c.

Thus

(7) g(c) = φ1(c, 0)− a2.

T
∫

0

f1(s, c, 0) ds.
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Proposition 13. Let f1, f2, φ1, φ2 be continuous and

lim sup
|c|→∞

g(c)/c > 0 or lim inf
|c|→∞

g(c)/c < 0.

Then (6− ε) has a solution for each ε small. Here g is defined by (7).

Lastly, consider a1 = −a2 6= 0, b1 = −b2 6= 0. Then (see Theorem 9) W = R2,
P = J = Id and

(8)

ψ(c1, c2) =

(c1 + φ1(c1, c2)− a2

T
∫

0

f1(s, c1, c2) ds, c2 + φ2(c1, c2)− b2

T
∫

0

f2(s, c1, c2) ds)

ψ : R2 → R2.

Applying Theorem 9 we obtain

Proposition 14. Let f1, f2, φ1, φ2 be continuous and S be a compact, locally
contractible subset of R2. If the map ψ defined by (8) is µ-retractible onto S with
respect to a retraction π then (6− ε) has at least N(π.ψ) solutions for any ε small.

To be more concrete we take S = Ar,p = {z ∈ R2, r ≤ |z| ≤ p} for fixed
0 < r < p. We have constructed in [4] a family of mappings q for each m ∈ N \ {1}
satisfying N(ρr,p.q) = m−1, where ρr,p is the usual retraction on Ar,p (see [4]) and
q is µ-retractible onto Ar,p with respect to ρr,p for some µ > 0.
If T = 1 = a2 = b2 and

(9)
fi(s, c1, c2) = 2.qi(c1, c2).s

φi(c1, c2) = 2.qi(c1, c2)− ci, i = 1, 2,

where q = (q1, q2). Then easy computations show that the map ψ from (8) has the
form ψ = q and π = ρr,p. Summing up we have

Proposition 15. Consider the special case (9) of the problem discussed in Propo-
sition 14. Then in this case (6− ε) has at least m− 1 solutions for each ε small.
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