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The category of uniform spaces

as a completion of the category of metric spaces

Jiř́ı Adámek, Jan Reiterman

Abstract. A criterion for the existence of an initial completion of a concrete category K
universal w.r.t. finite products and subobjects is presented. For K = metric spaces and
uniformly continuous maps this completion is the category of uniform spaces.
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Introduction.

We investigate initial completions of concrete categories, i.e. initially complete
categories K∗ such that K is a full, concrete subcategory of K∗. Recall that K∗

is said to be a universal initial completion of K, see [H], provided that (a) K is
closed under initial sources in K∗ and (b) for each initially complete L and each
concrete functor F : K → L preserving initial sources there exists an extension to
an initial-sources preserving functor F ∗ : K∗ → L, unique up-to natural isomor-
phism. More in general, let ∆ be a collection of sources in the base-category, then
a ∆-universal initial completion of K, see [E], is an initial completion K∗ such that

(a) K is closed in K∗ under initial sources carried by ∆-sources (shortly: initial
∆-sources)

and

(b) for each initially complete category L and each concrete functor F : K→ L
preserving initial ∆-sources there exists an extension to an initial-sources
preserving functor F ∗ : K∗ → L, unique up-to a natural isomorphism.

A description of the ∆-universal initial completion (as a category of “∆-complete
sources”) has been presented in [E]. Unfortunately, the conclusion made in that
paper thatK∗ is always legitimate (i.e. lives in the universe U of classes), formulated
in Theorem 4, is false: For example, if K is a discrete, large category, then the ∆-
universal completion is illegitimate, being codable by the collection of all subclasses
of K. In the case ∆ = all sources or ∆ = ∅, the legitimacy of the ∆-universal
completion is characterized in [AHS].

In the present paper we concentrate on the case

∆fm = all finite products and monomorphisms.
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(Or, equivalently, all finite monosources.) We prove that each fibre-small, hered-
itary concrete category has a fibre-small (thus, legitimate) ∆fm-universal initial
completion. For

K =Met, metric spaces and uniformly continuous maps

this completion is

K∗ = Unif, uniform spaces and uniformly continuous maps.

In this special case the same result also holds for ∆ = all finite sources, or ∆ =
all countable sources, but it does not hold for ∆ = all sources. In fact, a concrete
description of the universal initial completion of Met is not known.
The paper has been inspired by Zdeněk Froĺık who asked us about a categorical

motivation of uniform spaces from the point of view of metric spaces. This paper
is, most unfortunately, the end of a long, fruitful, and happy collaboration of the
authors: Jan Reiterman died precisely when it was completed.

I. ∆-universal completion.

Recall from [A] that a construct (i.e. a concrete category over Set) is called
hereditary provided that every subset of the underlying set of any object K gives
rise to an initial subobject of K. This can be generalized to concrete categories over
a base category X (i.e. pairs consisting of a category K and a faithful, amnestic
functor | | : K → X) provided that a fixed factorization structure (E,M) for X-
morphisms is given:

Definition. A concrete category K over an (E,M)-base category is called
hereditary provided that given an object K of K, everyM-morphism m : X → |K|
has an initial lift.

Recall that a concrete category is fibre-small provided that for each object X of
the underlying category the fibre {K ∈ K | |K| = X} is a set.

Theorem. Let X be an E-co-wellpowered (E,M)-category, and let ∆ be a collec-
tion of sources containing allM-maps (considered as singleton sources). Then each
hereditary, fibre-small concrete category overX has a fibre-small ∆-universal initial
completion.

Proof: The ∆-universal initial completion has been described in the proof of
Theorem 4 of [E] (for the case of Γ = all sources and P = forgetful functor of K)
as the category of all ∆-complete sources in K. It is our task to show that this
category is fibre-small (thus, legitimate).

For each ∆-complete source σ = (X
fi

−→ |Si|)i∈I and each i we factorize fi =
mi · ei (mi ∈M, ei ∈ E) and denote by mi : S

′

i → Si the initial morphism induced
by mi (which exists since K is hereditary). From the fact that ∆ contains {mi} it

follows that X
ei−→ |S′

i| is a member of the (∆-complete) source σ. Thus,

σ′ = (X
ei−→ |S′

i|)i ∈ I

is a subsource of σ. This subsource fully determines σ (in other words, given two ∆-
complete sources σ1 6= σ2, it follows that σ

′

1 6= σ′

2). In fact, from the ∆-completeness
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it follows that for each i ∈ I and each morphism h : S′

i → S inK we haveX
hei−−→ |S|

in σ; consequently, σ is precisely the source of all composites of the members of σ′

with morphisms of K. Thus, to prove the fibre-smallness, it is sufficient to observe
that for each object X of X, all the possible sources σ′ form a set. In fact, since X
is E-co-wellpowered, we have a set of representatives for all ei’s, and for each such
a representative ei : X → Y we have (since K is fibre-small) only a set of possible
objects S′

i with |S′

i| = Y . Thus, there exists a set A of representative structured
maps ei : X → |S′

i|, and the collection of all ∆-complete sources with the domain
X can, obviously, be coded by the set of all subsets of A. �

Remark. For constructsK, i.e. concrete categories over Set, the ∆-universal initial
completion K∗ can be described as follows.

Objects on the underlying set X are all collections σ of K-objects K with the
underlying sets |K| = X/ ∼ (where ∼ is an equivalence relation on X) such that:

(1) If K ∈ σ then K ′ ∈ σ whenever |K ′| = X/ ∼ and the canonical map
c : X → |K ′| of |K ′| (assigning to each x ∈ X the equivalence class of x)
factorizes as the canonical map of |K| followed by a K-morphism K → K ′;

(2) For each initial ∆-source (S
fi−→ Si)i∈I in K

ASi

S

|Ki|

X

|K| = X/ kerh
∩

hi

fi

c

and each map h : X → |S| such that every fih factorizes as the canonical
map of |Ki| for some Ki ∈ σ followed by a K-morphism hi : Ki → Si it
follows that σ contains the initial lift of the inclusion X/ kerh →֒ |S|.

Morphisms from σ to σ′ are maps f : |σ| → |σ′| such that for each K ′ ∈ σ′

(with the canonical map c : |σ′| → |K ′|) σ contains the initial lift of the inclusion
|σ|/ ∼→֒ |K|, where ∼ is the kernel equivalence of c.f.

II. A completion of the category of metric spaces.

Proposition. The category Unif is a ∆fm-universal initial completion of the ca-

tegoryMet.
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Proof: We apply the general result above to the special case of ∆ = ∆fm and
K =Met. The objects of ∆fm-universal initial completion K

∗ with the underlying
set X are collections σ of metric spaces K = (X/ ∼, dK), where ∼ is an equivalence
on X , such that (1) and (2) are satisfied. Each K induces a pseudometric d∗K
on the set X by d∗K(x, y) = dK([x], [y]) (where x 7→ [x] denotes the canonical
map). The conditions (1) and (2) guarantee that the resulting set of pseudometrics
on X forms a uniformity (defined as a collection of pseudometrics). Conversely,
for each uniformity on X and each pseudometric d of that uniformity we have
a corresponding metric space on the set X/ ∼ where x ∼ y means that d(x, y) = 0.
The axioms of a uniformity guarantee that the resulting set of metric spaces is
an object of K∗. The morphisms of K∗ correspond precisely to the uniformly
continuous maps. Thus, Unif is a ∆fm-universal initial completion of Met. �

Remark. Since Met is, obviously, closed under countable initial sources in Met,
we can also say that for ∆ = all countable sources, Unif is a ∆-universal initial
completion ofMet. However, the universal completion (∆ = all sources) is different:

Example of an initial source in Met which is not initial in Unif.

Let δ be the discrete metric (with value 1) on the set N of natural numbers. Let
F be a free ultrafilter on N containing the set E of even numbers. For each F ∈ F
let δF be the following metric on N :

δF (x, y) =











1
n if {x, y} = {2n− 1, 2n} with 2n ∈ F

0 if x = y

1 else.

As proved in [PRRS], the set of all δF , F ∈ F, is a base of a uniformity σ on N
which is an atom in the fibre of N (i.e. the only strictly finer uniformity is that
induced by δ). Consequently, the following source

((N, σ)
id
−→ (N, δF ))F∈F

is initial in Unif. We will show that, nevertheless,

((N, δ)
id
−→ (N, δF ))F∈F

is initial inMet. In fact, let (X, δ0) be a metric space, and let f : X → N be a map
such that f : (X, δ0) → (N, δF ) is uniformly continuous for each F ∈ F. We will
prove that the image of f , considered as a uniform subspace of (N, σ), is discrete
— thus, f : (X, δ0)→ (N, δ) is uniformly continuous.
Suppose that image of f is not discrete. Then it is isomorphic to (N, σ). [In fact,

every uniform subspace A of (N, σ) is isomorphic to (N, σ) or is discrete, according
to whether the set {2n | n ∈ N, 2n ∈ A, 2n+ 1 ∈ A} is a member of F or not.]
Thus, we can assume that f is surjective. Since σ is an atom, it follows that f is
a final morphism. However, (N, σ) is not a quotient of a metric space, since it is
not generated by a single pseudometric — this is a contradiction.
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