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Strong unicity criterion in some space of operators

Grzegorz Lewicki

Abstract. Let X be a finite dimensional Banach space and let Y ⊂ X be a hyperplane. LetL Y = {L ∈ L (X, Y ) : L |Y = 0}. In this note, we present sufficient and necessary condi-
tions on L0 ∈ L Y being a strongly unique best approximation for given L ∈ L (X).
Next we apply this characterization to the case of X = ln

∞
and to generalization of

Theorem I.1.3 from [12] (see also [13]).

Keywords: best approximation, strongly unique best approximation, approximation in
spaces of linear operators

Classification: Primary 41A65, 41A52, 41A35

0. Introduction.

Let W be a normed linear space and let V ⊂ W be its nonempty subset. An
element v ∈ V is called a best approximation to w ∈W iff

(0.1) ‖w − v‖ = dist (w, V ) = inf{‖w − y‖; y ∈ V }.

If an element v satisfies additionally

(0.2)
‖w − y‖ ≥ ‖w − v‖+ r · ‖y − v‖ with a constant r > 0

independent of y ∈ V,

then v is said to be a strongly unique best approximation (briefly SUBA) to w ∈ V .
The theory of strong uniqueness has its origin in the following result of Newman

and Shapiro [11]. Given a compact Hausdorff space T , let C(T,K) denote the Ba-
nach space of either complex (K = C) or real-valued (K = R) continuous functions
on V . If V is a Haar subspace of C(T,K), then for every w ∈ C(T,K), one can
find a constant r > 0 such that the best approximation v ∈ V satisfies one of the
following inequalities:

(0.3) ‖w − y‖ ≥ ‖w − v‖+ r · ‖y − v‖, for y ∈ V

if K = R, and

(0.4) ‖w − y‖2 ≥ ‖w − v‖2 + r · ‖y − v‖2, for y ∈ V

in the complex case.
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The significance of this notion can be illustrated by Cheney’s observation that
strong unicity of an optimal element yields the continuity of metric projection
(see [6]). One can see that the proof of the convergence of the Remez algorithm de-
pends, in fact, on strong unicity (for an extended version see [9]). For more precise
information about strong unicity the reader is referred to [3], [4], [8], [11], [14], [15].
In this note we will investigate strong unicity in the case W = L (X), the space

of all linear operators going from a finite dimensional real Banach space X into
itself, and V = L Y (X,Y ) = {L ∈ L (X,Y ) : L |Y = 0} (we will write L Y for
brevity), where Y ⊂ X is a hyperplane. We characterize strong unicity in terms of
the functionals from X∗ or Y ∗, which is more convenient for applications. Next we
apply this characterization to the case of X being an arbitrary three dimensional
Banach space and to X = ln∞. In particular, we generalize Theorem I.1.3 from [12]
(see also [13]) and Theorem 2.5b) from [10].
Now we introduce some notations which will be used in this note. By SX we

will denote the unit sphere in a Banach space X . The symbol ext SX stands for
the set of all extremal points of SX . Given L ∈ L (X), we write P Y (L) = {L0 ∈
L Y : ‖L−L0‖ = dist (L,L Y )}. In this note, if nothing special is assumed, X will
denote a finite dimensional real Banach space and f a functional from X∗ \ {0}. If
Y ⊂ X is a linear subspace and A ⊂ X∗ then A |Y stands for a set of all restrictions
of functionals from A. In the sequel we will use the following

Theorem 0.1 (see [10, Theorem 2.3]). Assume X is a reflexive space and Y is
a Banach space both over the same field K (K = R or K = C). Denote by K (X,Y )
the space of all compact operators going from X into Y and let V ⊂ K (X,Y ) be
a convex set. For given K ∈ K (X,Y ) and V ∈ V put

(0.5) crit∗Y (K − V ) = {h ∈ ext SY ∗ : ‖h ◦ (K − V )‖ = ‖K − V ‖}

and for every h ∈ crit∗Y (K − V ) define

(0.6) Ah = {x ∈ ext SX : h(K − V )x = ‖K − V ‖}.

Then we have:

(a) V ∈ PV (K) (the set of all best approximants to K in V ) if and only if for
every U ∈ V there exists h ∈ crit∗Y (K − V ) with inf{re(h(U − V )x) : x ∈
Ah} ≤ 0.

(b) V is a SUBA to K in V with a constant r > 0 if and only if for every U ∈ V

there exists h ∈ crit∗(K−V ) with inf{re(h(U−V )x) : x ∈ Ah} ≤ r·‖U−V ‖.

I. The main result.

We start with two preliminary remarks.

Remark 1.1. For L ∈ L (X) let us set

(1.1) crit (L) = {x ∈ SX : ‖Lx‖ = ‖L‖}.

Assume L0 ∈ P Y (L), Y = ker f , ‖f‖ = 1 and ‖L− L0‖ > ‖L |Y ‖. Put

(1.2) CL−L0 = {x ∈ crit (L− L0) : f(x) > 0}.
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Then CL−L0 is a nonempty closed set, CL−L0 ∩ −CL−L0 = ∅ and CL−L0 ∪
−CL−L0 = crit (L− L0).

Proof: It is clear that the set A = {x ∈ crit (L − L0) : f(x) ≥ 0} is closed. Since
dist (L,L Y ) > ‖L |Y ‖ and Y is a hyperplane,

A = {x ∈ crit (L − L0); f(x) > 0},

which proves that CL−L0 is closed. The fact crit (L−L0)∩ Y = ∅ implies immedi-
ately that CL−L0 ∪ −CL−L0 = crit (L). By (1.2) CL−L0 ∩ −CL−L0 = ∅.

�

Remark 1.2. Let L ∈ L (X), dist (L,L Y ) > ‖L |Y ‖, L0 ∈ L Y . Define

(1.3) DL−L0 = {h ∈ crit∗X(L − L0) : CL−L0 ∩Ah 6= ∅}

(see (0.6)) and if L ∈ L (X,Y ),

(1.4) DY
L−L0

= {h ∈ crit∗Y (L− L0) : CL−L0 ∩Ah 6= ∅}.

Then DL−L0 (D
Y
L−L0

resp.) is a compact set, DL−L0 ∩ −DL−L0 = ∅ (DY
L−L0

∩

−DY
L−L0

= ∅ resp.).

Proof: Assume h ∈ cl (DL−L0) and let {hn} ⊂ DL−L0 , hn → h. By (1.3), for
every n ∈ N there exists xn ∈ CL−L0 ∩ Ahn

, i.e. hn(L − L0)xn = ‖L − L0‖.
Passing to the subsequence, if necessary, we may assume xn → x. By Remark 1.1,
x ∈ CL−L0 . Note that h(L − L0)x = hn(L − L0)x + (h − hn)(L − L0)x = hn(L −
L0)xn+hn(L−L0)(x−xn)+(h−hn)(L−L0)x. Since the last two terms tend to 0 as
n→ ∞, h(L−L0)x = ‖L−L0‖ and consequently x ∈ Ah. Since x ∈ CL−L0 , by (1.3)
h ∈ DL−L0 . Note that dist (L,L Y ) > ‖L |Y ‖ implies DL−L0 ∩−DL−L0 = ∅. The

proof for the set DY
L−L0

goes on in the same manner, so we omit it. �

Now we state the main result of this note.

Theorem 1.3. Assume L ∈ L (X) and let Y = ker f , ‖f‖ = 1. Assume further-
more that dist (L,L Y ) > ‖L |Y ‖ and let L0 ∈ L Y . Then the following conditions

are equivalent:

(a) L0 is a SUBA to L in L Y (L0 ∈ P Y resp.),
(b) 0 ∈ int conv DL−L0 |Y (0 ∈ conv DL−L0 |Y resp.).

Proof: Assume L0 is a SUBA to L in L Y and let 0 /∈ int conv DL−L0 |Y . It
means that there exists ψ ∈ Y ∗∗ with ψ(h) ≥ 0 for every h ∈ DL−L0 |Y (we
may assume ‖ψ‖ = 1). Since Y is finite dimensional, ψ = y for some y ∈ SY .
Define L1 = f(·) · y and note that L1 ∈ L Y . By (1.3) and Remark 1.2, for every
h ∈ DL−L0 we have

inf{h(L1x) : x ∈ Ah} = inf{f(x) · h(y) : x ∈ Ah} =

= h(y) · inf{f(x) : x ∈ Ah} ≥ 0 > −r · ‖L1‖ for every r > 0.
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By Theorem 0.1 L0 is not a SUBA to L in L |Y ; a contradiction. Since by Re-
mark 1.2 the set DL−L0 is compact and consequently conv DL−L0 is also compact,
the proof of the second case goes on the same line.
To prove the converse, let us define a function g : SY → R by

(1.5) g(y) = inf{gh(y) : h ∈ DL−L0} for y ∈ SY ;

where gh(y) = inf{f(x)·h(y) : x ∈ Ah}. Note that the function SY ∋ y → f(x)·h(y)
is continuous and consequently the functions gh and g are upper-semicontinuous.
Now assume 0 ∈ int conv DL−L0 |Y . It means that for every y ∈ SY there

exists h ∈ DL−L0 with h(y) < 0. (If no, then DL−L0 |Y ⊂ {h ∈ Y ∗ : h(y) ≥ 0}
for some y ∈ SY and consequently int conv DL−L0 |Y ⊂ {h ∈ Y ∗ : h(y) > 0}.
But 0 ∈ int conv DL−L0 ; a contradiction.) Since dist (L,L Y ) > ‖L |Y ‖ and Y
is a hyperplane, for every y ∈ SY , g(y) < 0. Since g is upper-semicontinuous, the
value γ = max{g(y) : y ∈ SY } is attained in some point y0 ∈ SY and consequently
γ < 0. We show that L0 is a SUBA to L in L Y with r = −γ. To do this,
fix L1 ∈ L Y \ {0}. It is clear that L1 = f(·) · y1 for some y1 ∈ Y \ {0}. Put
y2 = y1/‖y1‖, fix ε > 0 and take h ∈ DL−L0 with gh(y2) < g(y2) + ε. Note that

gh(y2) = inf{f(x) · h(y2) : x ∈ Ah} = inf{h(L1x)/‖y1‖; x ∈ Ah} ≤

≤ g(y2) + ε ≤ −r + ε, which gives inf{h(L1x) : x ∈ Ah} ≤ −(r − ε) · ‖L1‖.

Following Theorem 0.1 and Remark 1.2, L0 is SUBA to L in L Y with r − ε for
every ε > 0 and consequently with r. The proof is complete. �

Remark 1.4. If L ∈ L (X,Y ) then the set DL−L0 in Theorem 1.3 can be replaced

by DY
L−L0

(see (1.4)).

As an immediate consequence of Theorem 1.3 we get

Corollary 1.5. Assume L ∈ L (X), L0 ∈ P Y (L), ‖L− L0‖ > ‖L |Y ‖. Then the
set DL−L0 |Y is linearly dependent. If L ∈ L (X,Y ), the same holds for DY

L−L0
.

Reasoning as in [10, Theorem 2.5] we may show

Remark 1.6. The constant r defined in Theorem 1.3 is the best possible.

Now we will point out when the assumption dist (L,L Y ) > ‖L |Y ‖ is fulfilled.

Remark 1.7. Assume X is a Banach space and let Y ⊂ X be its complemented
subspace. Let P (X,Y ) = {P ∈ L (X,Y ) : P |Y = id}. Take P0 ∈ P (X,Y ) and
note that dist (P0,L Y ) = inf{‖P‖ : P ∈ P (X,Y )} = λ(X,Y ).

In many cases of hyperplanes, dist (P0,L Y ) > ‖P0 |Y ‖ = 1 (see e.g. [2], [5]).
It is well known (see e.g. [12]) that if X is not a Hilbert space then there exists

a hyperplane Y in X satisfying λ(X,Y ) > 1. If dist (P0,L Y ) > 1 then it is easy to
show that dist (L,L Y ) > ‖L |Y ‖ if ‖L− P0‖ < dist (P0,L Y )− 1.
Now we show an estimation from above of the number dist (L,L Y ).
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Proposition 1.8. Assume X is a Banach space and let Y be its complemented
subspace. Then for every L ∈ L (X,Y )

‖L |Y ‖ ≤ dist (L,L Y ) ≤ λ(X,Y ) · ‖L |Y ‖.

Proof: Fix L ∈ L (X,Y ) and ε > 0. Take Pε ∈ P (X,Y ) with ‖Pε‖ < λ(X,Y )+ε
and put Lε = L ◦ (I − Pε). It is clear that Lε ∈ L Y . Compute,

‖L− Lε‖ = ‖L− L ◦ (I − Pε)‖ = ‖L ◦ Pε‖ ≤ ‖L |Y ‖ · ‖Pε‖,

which gives the desired result. �

Corollary 1.9. Assume that λ(X,Y ) = 1. Then

dist (L,L Y ) = ‖L |Y ‖ for every L ∈ L (X,Y ).

In particular if there exists P0 ∈ P (X,Y ) with ‖P0‖ = 1, then the operator
L0 = L ◦ (I − P0) ∈ PY (L).

Since in the case when Y is a hyperplane we have λ(X,Y ) ≤ 2 (for more precise
results see [1], [7], [12, p. 84], we immediately get

Corollary 1.10. Assume Y ⊂ X is a hyperplane. Then

‖L |Y ‖ ≤ dist (L,L Y ) ≤ 2 · ‖L |Y ‖ for every L ∈ L (X,Y ).

II. Applications.

Now we apply Theorem 1.3 to generalize Theorem I.1.3 from [12] (see also [13]).

Theorem 2.1. Assume X is a three dimensional Banach space and let Y ⊂ X be
a hyperplane. Assume furthermore L ∈ L (X,Y ), dist (L,L Y ) > ‖L |Y ‖. Then
there exists L0 ∈ L Y which is a SUBA to L in L Y .

Proof: SinceL Y is a finitely dimensional linear space, the setP Y (L) is nonempty.
Take an arbitrary L0 ∈ P Y (L). By Theorem 1.3 and Remark 1.4 it is sufficient to

show that 0 ∈ int conv DY
L−L0

(see 1.4). Assume on the contrary that it is not true.

Following Theorem 1.3, 0 ∈ conv DY
L−L0

. Since dimY = 2, 0 = α ·h1+(1−α) ·h2,

where h1, h2 ∈ DY
L−L0

and α ∈ (0, 1). Since ‖h1‖ = ‖h2‖ = 1, we easily get

α = 1/2. Consequently h1 = −h2 which gives h1 ∈ DY
L−L0

∩−DY
L−L0

; a contradic-

tion with Remark 1.2.
�

Remark 2.2. The assumption dist (L,L Y ) > ‖L |Y ‖ in Theorem 2.1 is essential.
Take e.g. X = l3∞, Y = ker f , f = (1/2, 1/2, 0). It is easy to check that the
operators P1 = Id− f(·) · (2, 0, 0) and P2 = Id− f(·) · (0, 2, 0) ∈ P (X,Y ), P1 6= P2,

‖P1‖ = ‖P2‖ = 1. Consequently the set PY (P1) ⊃ {0, P1 − P2} and strong unicity
does not hold.
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Remark 2.3. The assumption dimX = 3 in Theorem 2.1 is essential. Take e.g.
X = l4∞, Y = ker f , f = (1/3, 1/3, 1/3, 0). It is well known (see [5] or [12]) that
λ(X,Y ) = 4/3. Take P0 ∈ P (X,Y ) with ‖P0‖ = 4/3 (the formula for such
a projection is given for example in [12, p. 104]). Then dist (P0,L Y ) = λ(X,Y ) =
4/3 > 1 = ‖P0 |Y ‖. By Theorem 2.5 b) of [10], 0 is not a SUBA to P0 in L Y .

Now we use Theorem 1.3 to extend Theorem 2.5 b) from [10].

Theorem 2.4. Assume X = ln∞, Y = ker f , ‖f‖1 = 1. Let L ∈ L (X) and let
dist (L,L Y ) > ‖L |Y ‖ (by Theorem 1 from [5] and Remark 1.7 such operators
exist if and only if |fi| < 1/2 for i = 1, . . . , n). If |fi| > 0 for i = 1, . . . , n then there
exists L0 ∈ L Y which is a SUBA to L in L Y .

Proof: Since L Y is a finitely dimensional space the setP Y (L) is nonempty. Fix
L0 ∈ P Y (L) and let DL−L0 = {φ1, . . . , φk} where φi = ∓ej(i) for i = 1, . . . , k.

By Theorem 1.3, 0 ∈ conv DL−L0 |Y . Hence 0 =
∑l

i=1 λi · φi, l ≤ k, λi > 0,∑l
i=1 λi = 1. Since dimY = n − 1, by Carathéodory’s Theorem we can assume

l ≤ n. We will show that l = n. To do this, by Corollary 1.5, it is sufficient
to show that for each i ∈ {1, . . . , n} the set Ei = {e1, . . . , ei−1, ei+1, . . . , , en} is
total over Y . So assume

∑n
i=1 fi · yi = 0 and ej(y) = 0 for j 6= i. It means that

yj = 0 for j 6= i and fi · yi = 0. Since fi 6= 0, yi = 0. Consequently l = n and
0 ∈ int conv DL−L0 |Y . By Theorem 1.3, L0 is a SUBA to L in L Y . The proof is
complete. �

Note that Remark 2.3 shows that the assumption fi 6= 0 for i = 1, . . . , n in
Theorem 2.4 is essential.
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