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Bifurcation for some semilinear elliptic equations

when the linearization has no eigenvalues

Wolfgang Rother

Abstract. We prove existence and bifurcation results for a semilinear eigenvalue problem
in R

N (N ≥ 2), where the linearization — △ has no eigenvalues. In particular, we show
that under rather weak assumptions on the coefficients λ = 0 is a bifurcation point for this
problem in H1, H2 and Lp (2 ≤ p ≤ ∞).

Keywords: bifurcation point, variational method, eigenvalues, exponential decay, standing
waves

Classification: 35P30, 35A30

1. Introduction and presentation of the results.

In the present paper, we consider the nonlinear eigenvalue problem

(1.1) − △ u− q(x)|u|σ1u+ r(x)|u|σ2u = λu in R
N ,

where N ≥ 2 and σ1 and σ2 are positive constants such that σ1 < 4/N . In
particular, we are interested in the question if λ = 0 is a bifurcation point for the
equation (1.1).

Since the problem (1.1) is considered in R
N , the linearization − △ has no eigen-

values and λ = 0 is the infimum of the spectrum of − △. In case that r ≡ 0, this
problem has been studied by many authors. See for instance [5]–[7], [9], [13]–[18]
and the literature quoted therein. In case that r 6≡ 0, we only know some existence
results for the equation (1.1) (see [1], [2], [8] and [12]), but no bifurcation results.
In the following, we will close this gap by presenting some bifurcation results for
the general case.
We always assume that the functions q and r satisfy the subsequent conditions:

(A) The functions q, r : R
N → R are measurable and r fulfills r(x) ≥ 0 for

almost all x ∈ R
N .

(B) There exist a constant 0 < a ≤ 2 − (σ1N/2) and an open ball B ⊂ R
N ,

satisfying B 6= ∅ and 0 /∈ B̄ (B̄ is the closure of B), such that q(x) ≥ f(x)|x|−a

holds for almost all x ∈ ζ, where ζ = {tx; t ≥ 1, x ∈ B} and f : ζ → [0,∞) is
a measurable function satisfying f(x)→ ∞ as |x| → ∞.
Moreover, we assume that there exists a constant K such that

r(x) ≤ K|x|b holds for almost all x ∈ ζ,
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where b is defined by b = (2− a)(σ2/σ1)− 2.

(C) The functions r and q− = min(q, 0) are locally integrable.

(D) The function q+ = max(q, 0) can be written as q+ = q1 + q2, where

(D1) the function q1 satisfies 0 ≤ q1 ∈ L∞, and q1(x) tends uniformly to zero
as |x| → ∞,

(D2) and the function q2 satisfies 0 ≤ q2 ∈ Lp0 for some constant

2N/(4− σ1N) < p0 <∞.

We want to point out that the above assumptions allow the function q to decay
exponentially to −∞ or faster in some direction, and allow the function r to increase
exponentially to +∞ or faster in some direction.

Theorem 1.1. Suppose that the functions q and r satisfy the assumptions (A)–(D)
and that the constant a is defined as in condition (B). Then, there exists a constant
µa ∈ (0,∞], depending on a, such that for each µ ∈ (0, µa) there exists a nonpositive
constant λ(µ) and a nontrivial nonnegative function uµ ∈ H1 ∩ L∞ which solves

equation (1.1) in the sense of distributions. In case that a = 2− (σ1N/2), we have
µa = ∞. Moreover, it follows that λ(µ) → 0, ‖uµ‖H1 → 0 and, if p ∈ [2,∞], that

‖uµ‖p → 0 as µ → 0. Hence, λ = 0 is a bifurcation point for equation (1.1) in H1

and in Lp for p ∈ [2,∞].

Corollary 1.2. (a) If q−, r ∈ L
p
loc holds for some constant p > N/2, then uµ is

positive and locally Hölder continuous.

(b) If q and r are locally Hölder continuous, then we have uµ ∈ C2 and the
equation (1.1) holds in the classical sense.

Corollary 1.3. Suppose in addition to (A)–(D) that p0 ≥ 2 and that q, r ∈ L∞ +
L2. Then, it follows that uµ ∈ H2 and that ‖uµ‖H2 → 0 as µ→ 0. Thus, λ = 0 is
a bifurcation point for (1.1) in H2.

Remark 1.4. In case that r ≡ 0, Corollary 1.3 improves Theorem 2.6 (c) in [13].
In [13] it is assumed that q is nonnegative, that q = q+ satisfies condition (D) and
that p0 ≥ 2. Moreover, it is assumed

(i) that there exist constants A > 0 and 0 ≤ t < 2 − (σ1N/2) such that
q(x) ≥ A(1 + |x|)−t holds a.e. in R

N . In case that N ≥ 3 the author requires
additionally

(ii) that σ1 < 2/(N − 2) and p0 > 2N/(2 − σ1(N − 2)). Hence, Corollary 1.3
shows that the condition (i) can be weakened considerably and that condition (ii)
is superfluous.

The solutions of the equation (1.1) supply standing waves for nonlinear Klein-
Gordon and Schrödinger equations. So, from the standpoint of physics it is an
interesting question if the solutions of (1.1) decay exponentially to 0 at infinity.
For the proof of the exponential decay to 0 we need an additional assumption:

(E) There exists a constant R0 > 0 such that q2 satisfies

q2(x) = 0 for almost all |x| ≥ R0.
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Theorem 1.5. Suppose that σ2 ≤ σ1 and that the functions q and r satisfy the as-
sumptions (A)–(E). Then, for each µ ∈ (0, µa) the function uµ decays exponentially

to 0 at infinity.

Theorem 1.6. Suppose that σ1 < σ2 and that the functions q and r satisfy the
assumptions (A)–(E). Then, there exists a decreasing sequence (µn) ⊂ (0, µa) such
that limn→∞ µn = 0 and uµn decays exponentially to 0 at infinity.

The proofs for Theorem 1.5–1.6 can be found in § 4.

2. Some preliminaries.

For p ∈ [1,∞], Lp = Lp(RN ) and L
p
loc = L

p
loc(R

N ) are the usual Lebesgue

spaces and ‖ · ‖p is the norm on L
p. If 1 < p < ∞, then the dual index p′

of p is defined by p′ = p/(p− 1). Furthermore, Hk (k = 1, 2) is the Hilbert space

Hk(RN ) =W k,2(RN ). The norm onH1 is given by ‖u‖H1 = (‖▽u‖
2
2+‖u‖

2
2)
1/2 and

the norm on H2 by ‖u‖H2 = (‖ △ u‖22+‖▽u‖22+‖u‖22)
1/2. Finally, C∞

0 = C
∞
0 (R

N )
denotes the set of all functions which have compact support and derivatives of any
order.
If N = 2, then it follows from the Sobolev imbedding theorem that for each

p ∈ [2,∞) there exists a constant Ap such that

(2.1) ‖u‖p ≤ Ap‖u‖H1 holds for all u ∈ H1.

In case that N ≥ 3, we define 2∗ = 2N/(N − 2). Then, there exists a constant
C0 such that

(2.2) ‖u‖2∗ ≤ C0‖▽u‖2 holds for all u ∈ H1.

In particular we see that for each p ∈ [2, 2∗] there exists a constant Bp such that

(2.3) ‖u‖p ≤ Bp‖u‖H1 holds for all u ∈ H1.

Let F be one of the Banach spaces H1, H2 or Lp. Then a real number λ is called
a bifurcation point for the equation (1.1) in F if and only if there exists a sequence
(λn, un) ⊂ R × F such that un 6≡ 0, λn → λ, ‖un‖F → 0 (n→ ∞) and

∫

▽un▽ϕdx−

∫

q|un|
σ1unϕdx+

∫

r|un|
σ2unϕdx = λn

∫

unϕdx

holds for all ϕ ∈ C∞
0 and n ∈ N.

When the domain of integration is not indicated, it is understood to be R
N .

Lemma 2.1. Let v ∈ H1 be a nonnegative function. Then, there exists a sequence
(ϕn) of nonnegative functions ϕn ∈ C∞

0 such that

ϕn → v in H1.

Proof: The functions ηn (n ∈ N) may be chosen such that ηn ∈ C∞
0 , 0 ≤ ηn ≤ 1,

ηn(x) = 1 holds for |x| ≤ n, ηn(x) = 0 if |x| ≥ n+ 1 and ‖▽ηn‖∞ ≤ C, where the
constant C is independent of n. Then ηnv → v in H1.
For a function u ∈ L1loc, the regularization uε may be defined as in [3, p. 147].

Then, we can find a sequence (εn) of positive numbers εn, satisfying εn → 0, such
that ϕn = (ηnv)εn → v in H1. �
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Lemma 2.2. Let v ∈ H1 be a nonnegative function and, for t > 0, vt may be
defined by vt = min(v, t). Then it follows that vt ∈ H1, ∂ivt = ∂iv holds almost
everywhere in {x; v(x) ≤ t} and ∂ivt = 0 holds almost everywhere in {x; v(x) > t}.

Moreover, for each s ∈ [1,∞), we have 0 ≤ vs
t ∈ H1 ∩ L∞ and ∂iv

s
t = svs−1

t ∂ivt
(i = 1, . . .N).

Proof: The first part of the lemma follows from Lemma 1.1 in [10] and Theorem 7.8
in [3]. The functions ηn and the regularizations uε may be defined as in the proof
of Lemma 2.1. Then, there exists a sequence of positive numbers (εn) such that
εn → 0 and

ϕn = (ηnvt)εn −→ vt in H1.

Here, the functions ϕn satisfy ϕn ∈ C∞
0 and 0 ≤ ϕn ≤ t. Since ϕn → vt in L

2, we
can find a subsequence (ϕn(k)) of (ϕn) such that ϕn(k)(x) → vt(x) for almost all

x ∈ R
N .

Now, suppose that s > 1. Then it follows that ϕs
n(k) ∈ C10 and that

∂iϕ
s
n(k) = sϕ

s−1
n(k)

∂iϕn(k) .

Moreover, since |vs
t − ϕs

n(k)| ≤ s|vt − ϕn(k)|t
s−1, we see that ϕs

n(k) → vs
t in L

2.

Hence, we obtain: ∂iv
s
t = sv

s−1
t ∂ivt. �

The following lemma can be found in [11, p. 93].

Lemma 2.3. Suppose that ϕ(t) (t ∈ [t0,∞)) is a nonnegative and nonincreasing
function such that ϕ(h) ≤ C(h− t)−γϕ(t)δ holds for all h > t ≥ t0. The constants
γ and C are assumed to be positive and δ may satisfy δ > 1. Then, for d =

C1/γϕ(t0)
(δ−1)/γ2δ/(δ−1) it follows that ϕ(t0 + d) = 0.

3. Proof of the main results.

In the present paragraph, we will prove Theorem 1.1 and Corollary 1.2–1.3. We
start with

Lemma 3.1. There exist positive constants α and β, and for each ε > 0 a constant
Kε > 0, such that

(2 + σ1)
−1

∫

q+|u|
2+σ1 dx ≤ ε‖▽u‖22 +Kε

(

‖u‖2+α
2 + ‖u‖2+β

2

)

holds for all u ∈ H1.

Proof: For ε = 14 , the proof can be found in [5, pp. 568–569]. For general ε > 0,
the proof proceeds quite similarly. �

The nonlinear functional ξ may be defined by

ξ(u) =
1

2

∫

|▽u|2 dx− (2 + σ1)
−1

∫

q|u|2+σ2 dx

+ (2 + σ2)
−1

∫

r|u|2+σ2 dx.



Bifurcation for some semilinear elliptic equations . . . 129

By D, we denote the set

D = {u ∈ H1;

∫

|q−||u|
2+σ1 dx <∞ and

∫

r|u|2+σ2 dx <∞}.

Moreover, for µ ≥ 0, we define Dµ = {u ∈ D; ‖u‖2 ≤ µ}. Then, according to
Lemma 3.1, we see that I(µ) = infu∈Dµ

ξ(u) is a well defined real number.

Lemma 3.2. (a) Suppose that the constant a in condition (B) satisfies a = 2 −
(σ1N/2). Then it follows that I(µ) < 0 holds for all µ > 0.

(b) Suppose that a < 2− (σ1N/2). Then, there exists a constant µa > 0 such that
I(µ) < 0 holds for all µ ∈ (0, µa).

Remark 3.3. In the following, we define µa =∞ if a = 2− (σ1N/2).

Proof of Lemma 3.2: The ball B may be defined as in condition (B) and ν
may be a positive constant. Then, the function ϕ0 ∈ C∞

0 may be chosen such
that suppϕ0 ⊂ B and ‖ϕ0‖2 = ν. Moreover, for each t ≥ 1, we define ϕt(x) =

tkϕ0(t
−1x), where k = (a − 2)/σ1. Since ‖ϕt‖2 = νtk+(N/2), we see that ϕt ∈

Dνtk+(N/2) and that

I
(

νtk+(N/2)
)

≤ ξ(ϕt) = t
2k+N−2

(1

2

∫

|▽ϕ0(x)|
2 dx

− t2+kσ1(2 + σ1)
−1

∫

B
q(tx)|ϕ0(x)|

2+σ1 dx

+ t2+kσ2(2 + σ2)
−1

∫

B
r(tx)|ϕ0(x)|

2+σ2 dx
)

≤ t2k+N−2
(1

2

∫

|▽ϕ0(x)|
2 dx

− inf
x∈B

f(tx)(2 + σ1)
−1

∫

B
|x|−a|ϕ0(x)|

2+σ1 dx

+K(2 + σ2)
−1

∫

B
|x|b|ϕ0(x)|

2+σ2 dx
)

.

Since infx∈B f(tx)→ ∞ as t→ ∞, we can find a constant t0 ≥ 1 such that

(3.1) I
(

νtk+(N/2)
)

< 0 holds for all t > t0.

Now, suppose that a = 2− (σ1N/2). Then, we have k + (N/2) = 0. Hence, the
part (a) of the lemma follows from (3.1) for ν = µ. In case that a < 2 − (σ1N/2),
we have k + (N/2) < 0. Then, the assertion of the part (b) follows from (3.1) if we

define ν = 1, µa = t
k+(N/2)
0 and µ = tk+(N/2). �
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Lemma 3.4. For each µ ∈ (0, µa) there exists a function uµ ∈ Dµ such that

uµ ≥ 0, ‖uµ‖2 > 0 and ξ(uµ) = I(µ).

Proof: Let µ ∈ (0, µa), and (vn) ⊂ D may be a sequence such that ξ(vn)→ I(µ).
Then, we may assume without restriction that ξ(vn) ≤ 0 and that vn ≥ 0 holds for
all n. Hence, we obtain from Lemma 3.1:

(3.2)

1

4
‖▽vn‖

2
2 + (2 + σ1)

−1
∫

|q−||vn|
2+σ1 dx

+ (2 + σ2)
−1

∫

r|vn|
2+σ1 dx ≤ K1/4(µ

2+α + µ2+β).

Since (vn) is bounded in H
1, we can find a subsequence of (vn), still denoted by

(vn), and a uµ ∈ H1 such that vn −→
w

uµ in H
1 and vn(x) → uµ(x) for almost

all x ∈ R
N . Then, it follows from the uniform boundedness principle, (3.2) and

Fatou’s lemma that ‖uµ‖2 ≤ µ, ‖▽uµ‖2 ≤ lim inf ‖▽un‖2,

∫

|q−||uµ|
2+σ1 dx ≤ lim inf

∫

|q−||vn|
2+σ1 dx <∞

and
∫

r|uµ|
2+σ2 dx ≤ lim inf

∫

r|vn|
2+σ2 dx <∞.

Moreover, we see that uµ ≥ 0. Since the imbedding H1(G) → L(2+σ1)p′0(G) is
compact for all bounded balls G and q1(x)→ 0 as |x| → ∞, it follows that

∫

q+|vn|
2+σ1 dx −→

∫

q+|uµ|
2+σ1 dx (see [5, p. 570]).

Moreover, we obtain

I(µ) ≤ ξ(uµ) ≤ lim inf ξ(vn) = I(µ) < 0

and consequently that ξ(uµ) = I(µ) and ‖uµ‖2 > 0. �

Lemma 3.5. For µ ∈ (0, µa), the function uµ may be chosen as in Lemma 3.4.
Then, it follows that

∫

▽uµ▽ϕdx−

∫

q|uµ|
σ1uµϕdx+

∫

r|uµ|
σ2uµϕdx = λ(µ)

∫

uµϕdx

holds for all functions ϕ ∈ C∞
0 , where

λ(µ) = ‖uµ‖
−2
2

(

‖▽uµ‖
2
2 −

∫

q|uµ|
2+σ1 dx+

∫

r|uµ|
2+σ2 dx

)

.

Proof: Let ϕ ∈ C∞
0 . Then dξ(‖uµ‖2‖uµ + εϕ‖

−1
2 (uµ + εϕ))/dε | ε=0= 0 implies

the assertion. �
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Lemma 3.6. The constant λ(µ) may be defined as in Lemma 3.5. Then, we have
λ(µ) ≤ 0.

Proof: For all t ∈ (0, 1], we have

ξ(uµ) = I(µ) ≤ I(tµ) ≤ ξ(tuµ).

Hence λ(µ) = ‖uµ‖
−2
2 dξ(tuµ)/dt | t=1≤ 0 implies the assertion. �

Proposition 3.7. The constants α and β may be chosen as in Lemma 3.1. Then,
there exists a constant C such that

|λ(µ)| ≤ C(µα + µβ) and ‖▽uµ‖
2
2 ≤ C(µ2+α + µ2+β)

holds for all µ ∈ (0, µa). Hence, λ = 0 is a bifurcation point for the equation (1.1)
in H1.

Proof: Since ξ(uµ) < 0, we obtain from Lemma 3.1 that

(3.3) ‖▽uµ‖
2
2 ≤ 4K1/4(‖uµ‖

2+α
2 + ‖uµ‖

2+β
2 ) ≤ 4K1/4(µ

2+α + µ2+β).

Moreover, since λ(µ) ≤ 0, it follows from (3.3) and Lemma 3.1 that

|λ(µ)| = −λ(µ) ≤ ‖uµ‖
−2
2

∫

q+|uµ|
2+σ1 dx

≤ (2 + σ1)(4K1/4 +K1)
(

‖uµ‖
α
2 + ‖uµ‖

β
2

)

≤ C
(

µα + µβ)

.

�

Lemma 3.8. For all nonnegative functions v ∈ H1 we obtain

(3.4)

∫

▽uµ▽v dx ≤ λ(µ)

∫

uµv dx+

∫

q+u
1+σ1
µ v dx

and, according to Lemma 3.6, that

(3.5)

∫

▽uµ▽v dx ≤

∫

q+u
1+σ1
µ v dx.

Proof: Clearly, the assertion holds for all nonnegative functions v ∈ C∞
0 . Hence,

the result follows from Lemma 2.1. �

Lemma 3.9. Suppose that N ≥ 3 and that
∫

q+u
1+σ1+s
µ dx < ∞ holds for some

constant s > 1. Then, it follows that uµ ∈ L2
∗(s+1)/2.

Proof: For t > 0, the function vt may be defined by vt = min(uµ, t). Then,

according to Lemma 2.2, we see that 0 ≤ vs
t ∈ H1. Inserting vs

t in (3.5) shows that

4s(s+ 1)−2
∫

|▽v
(s+1)/2
t |2 dx ≤

∫

q+u
1+σ1+s
µ dx.

Hence, using (2.2) and letting t→ ∞, we obtain the assertion by Fatou’s lemma.
�
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Lemma 3.10. For each p ∈ [2,∞), we have uµ ∈ Lp.

Proof: For N = 2 and for p ∈ [2, 2∗], if N ≥ 3, the assertion follows from the
Sobolev imbedding theorem. Now, suppose that N ≥ 3 and that the constants
rn and sn are defined by rn = 2

∗(1 + ε0)
n and sn = (rn/p

′
0) − 1 − σ1, where

ε0 = (2
∗/2p′0) − (σ1/2)− 1. Here, the constant p0 is defined as in condition (D2).

Since p0 > 2N/(4− σ1N + 2σ1) and rn ≥ 2∗, it follows that ε0 > 0 and sn > 1.
Now, assume that uµ ∈ Lrn holds for some n ∈ N0. Then 2 ≤ 1 + σ1 + sn <

(1 + σ1 + sn)p
′
0 = rn implies that

∫

q+u
1+σ1+sn
µ dx <∞.

Hence, we obtain from Lemma 3.9 that uµ ∈ L2
∗(sn+1)/2. But

(2∗/2)(sn + 1) = (2
∗/2)((rn/p

′
0)− σ1)

≥ (2∗/2)(rn/p
′
0)− (rn/2)σ1

= rn(1 + ε0) = rn+1

implies that uµ ∈ Lrn+1 . Hence, we see that uµ ∈ Lp holds for all p ∈ [2∗,∞). �

Lemma 3.11. For each µ ∈ (0, µa), we have uµ ∈ L∞.

Proof: For t > 0, we define the function Ut by Ut = (uµ − t)+ and the set A(t)
by A(t) = {x; uµ(x) ≥ t}. Then, we obtain from (3.5) that

(3.6)

∫

▽uµ▽Ut dx ≤

∫

A(t)
q+u

2+σ1
µ dx.

The constant p1 may be defined by p1 = 2N/(4 − σ1N). Since p0 > p1, we can
find a constant p2 ∈ (1,∞) such that 1/p

′
0 · 1/p

′
2 = 1/p

′
1. Then, the inequality (3.6)

implies

(3.7)

∫

|▽Ut|
2 dx ≤ C(µ)(measA(t))1/p′1

for all t > 0, where C(µ) is defined by

(3.8) C(µ) = ‖q1‖∞
(

∫

u
(2+σ1)p1
µ dx

)1/p1

+ ‖q2‖p0

(

∫

u
(2+σ1)p′0p2
µ dx

)1/(p′0p2)
.

Now, let us assume that N ≥ 3. Then, it follows from (2.2) and (3.7) that

(3.9)
(

∫

A(t)
(uµ − t)2

∗

dx
)2/2∗

≤ C20C(µ)(measA(t))
1/p′1 .
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Moreover, for each h > t, we have

(3.10)

(

∫

A(t)
(uµ − t)2

∗

dx
)2/2∗

≥
(

∫

A(h)
(uµ − t)2

∗

dx
)2/2∗

≥ (h− t)2(measA(h))2/2
∗

.

Combining (3.9) and (3.10) yields

measA(h) ≤ (C20C(µ))
2∗/2(h− t)−2

∗

(measA(t))2
∗/2p′1

for all h > t > 0. Since 2∗/(2p′1) = 1 + (σ1N)/2(N − 2) > 1, it follows from
Lemma 2.3 that uµ is essentially bounded. Moreover, for each t0 > 0, we have

‖uµ‖∞ ≤ d+ t0,

where d = C0C(µ)
1/2(measA(t0))

σ1/421+(2(N−2)/σ1N). For t0 = ‖uµ‖2, it follows
that

measA(t0) ≤ ‖uµ‖
−2
2

∫

A(t0)
u2µ dx ≤ 1.

Hence, we obtain that

(3.11) ‖uµ‖∞ ≤ C0C(µ)
1/221+(2(N−2)/σ1N) + µ.

Finally, we consider the case that N = 2. Here, we obtain for all t > 0:

(3.12)

∫

U2t dx ≤

∫

A(t)
u2µ dx

≤
(

∫

A(t)
u2p1µ dx

)1/p1
(measA(t))1/p′1 .

Combining (3.7) and (3.12) yields

‖Ut‖
2
H1 ≤ C∗(µ)(measA(t))1/p′1

for all t > 0, where

(3.13) C∗(µ) = C(µ) +
(

∫

u2p1µ dx
)1/p1

.

Hence, (2.1) implies
(

∫

A(t)
(uµ − t)p dx

)2/p
≤ C2pC

∗(µ)(measA(t))1/p′1

for all t > 0 and p ∈ [2,∞). Then, proceeding as in the case that N ≥ 3, one can
show that

measA(h) ≤ Cp
pC

∗(µ)p/2(h− t)−p(measA(t))p/(2p′1)

holds for all h > t > 0 and p ∈ [2,∞). Hence, according to Lemma 2.3, we see that
u is essentially bounded and that

(3.14) ‖uµ‖∞ ≤ CpC
∗(µ)1/22(p/(2p′1))((p/2p′1)−1) + µ

if p > 2p′1. �
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Lemma 3.12. For all p ∈ [2,∞) we have ‖uµ‖p → 0 as µ → 0.

Proof: We start with the case that N = 2. Then, according to (2.1), we obtain:

‖uµ‖p ≤ Cp‖uµ‖H1 for all µ ∈ (0, µa).

Hence, the assertion follows from Proposition 3.7. In case thatN ≥ 3 and p ∈ [2, 2∗],
the assertion is obtained by (2.3) and Proposition 3.7. Now, assume that N ≥ 3 and
that p ∈ (2∗,∞). Then, we can find a constant t > 0 such that p = (1 + (t/2))2∗.
Thus, by the Sobolev inequality (2.2), we see that

(3.15)
‖uµ‖

2+t
p = ‖u

1+(t/2)
µ ‖22∗ ≤ C20‖▽u

1+(t/2)
µ ‖22

= C20 (1 + (t/2))
2(1 + t)−1

∫

▽uµ▽u1+t
µ dx.

The right hand side of (3.15) is well defined since uµ is bounded. From (3.5), we
conclude that

(3.16)

∫

▽uµ▽u1+t
µ dx ≤

∫

q+u
2+σ1+t
µ dx

≤ ‖q1‖∞

∫

u2+σ1+t
µ dx+ ‖q2‖p0

(

∫

u
(2+σ1+t)p′0
µ dx

)1/p′0
.

Since

p′0 < 2N/(2(N − 2) + σ1N) < 2N/(2(N − 2) + σ1(N − 2))

≤ (2N + tN)/((2 + σ1)(N − 2) + t(N − 2))

= (2 + σ1 + t)
−1 · (2N + tN)/(N − 2)

= (2 + σ1 + t)
−1p,

we see that there is a constant τ ∈ (0, 1) such that

(2 + σ1 + t)p
′
0 = τp+ (1− τ)2.

Hence, by Hölder’s inequality, we obtain

(

∫

u
(2+σ1+t)p′0
µ dx

)1/p′0
≤ ‖uµ‖

pτ/p′0
p ‖uµ‖

2(1−τ)/p′0
2 .

Then, using again the fact that p′0 < 2N/(2(N − 2) + σ1N), it is not difficult to
show that pτ/p′0 < 2 + t.
Quite similarly, one can prove that there exist constants c1 ∈ (0, 2+t) and c2 > 0

such that
∫

u2+σ1+t
µ dx ≤ ‖uµ‖

c1
p ‖uµ‖

c2
2 . Hence, we conclude from (3.15), (3.16)

and Young’s inequality that ‖uµ‖p → 0 as µ→ 0. �
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Lemma 3.13. We have ‖uµ‖∞ → 0 as µ→ 0.

Proof: The constants C(µ) and C∗(µ) may be defined as in (3.8) and (3.13).
Then, according to Lemma 3.12, it follows that C(µ)→ 0 and C∗(µ)→ 0 as µ → 0.
Hence, the assertion follows from (3.11) and (3.14). �

Proof of Corollary 1.2: Suppose that the assumptions of part (a) are fulfilled.
Then, according to Lemma 3.5, we see that

− △ uµ + c(x)uµ = 0 holds in D′(RN ),

where c(x) = −q(x)uσ1
µ (x) + r(x)u

σ2
µ (x) − λ(µ). Since p0 > N/2 and uµ ∈ L∞, we

see that c ∈ L
p1
loc, where p1 = min(p0, p) satisfies p1 > N/2. Now, the assertion

follows from Theorem 7.1 and Corollary 8.1 in [10].
Next, we suppose that the assumptions of the part (b) are fulfilled. Then, it

follows from part (a) that u is locally Hölder continuous. Hence, the distribution
△ uµ can be represented by a locally Hölder continuous function. Thus, the assertion
of the part (b) follows by a well known result from the regularity theory of elliptic
differential equations. �

Proof of Corollary 1.3: According to Lemma 3.5, we see that

(3.17) − △ uµ = λ(µ)uµ + qu
1+σ1
µ − ru1+σ2

µ holds in D′(RN ).

Then, it follows from the assumptions and from Lemma 3.10 – Lemma 3.13 that
the right hand side of (3.17) defines a function Fµ ∈ L2 such that ‖Fµ‖2 → 0 as

µ→ 0. Consequently, we see that uµ ∈ H2 and that ‖uµ‖H2 → 0 as µ→ 0. �

4. Exponential decay.

Lemma 4.1. Suppose that the functions q and r satisfy the assumptions (A)–(E)
and that for µ ∈ (0, µa) the function uµ and the constant λ(µ) are defined as in
Lemma 3.4 resp. Lemma 3.5. Moreover, we assume that λ(µ) < 0 holds for some
µ ∈ (0, µa). Then, for each c ∈ (0,−λ(µ)) there exists a constant Ac such that

uµ(x) ≤ Ac exp(−(−λ(µ) − c)1/2|x|)

holds for almost all x ∈ R
N .

Proof: Using the fact that uµ is bounded, we conclude from (D1) and (E) that
there exists a constant Rc > R0 such that

(4.1) q+(x)u
σ1
µ (x) ≤ c holds for almost all x ∈ {y; |y| > Rc}.

The function ψ may be defined by

ψ(x) = Ac exp(−(−λ(µ) − c)1/2|x|) (x ∈ R
N ).
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Here, the constant Ac may be chosen such that

(4.2) ψ(x) ≥ uµ(x) holds for almost all x ∈ {y; |y| ≤ Rc}.

Then it follows that ψ ∈ H1 and that

(4.3)

∫

▽ψ▽v dx ≥ (λ(µ) + c)

∫

ψv dx

holds for all nonnegative functions v ∈ H1.
Inequality (4.2) shows that (uµ−ψ)+ is a nonnegative function on H1 satisfying

(uµ − ψ)+(x) = 0 for almost all x ∈ {y; |y| ≤ Rc}. Hence, we obtain from (3.4),
(4.1) and (4.3) that

‖▽(uµ − ψ)+‖
2
2 =

∫

▽(uµ − ψ)▽(uµ − ψ)+ dx

≤ λ(µ)

∫

uµ(uµ − ψ)+ dx+ c

∫

uµ(uµ − ψ)+ dx

− (λ(µ) + c)

∫

ψ(uµ − ψ)+ dx

= (λ(µ) + c)‖(uµ − ψ)+‖
2
2 ≤ 0

and consequently that uµ ≤ ψ. �

Lemma 4.2. Let q and r satisfy the assumptions (A)–(D) and suppose that σ2 ≤
σ1. Then λ(µ) < 0 holds for all µ ∈ (0, µa).

Proof: Since ξ(uµ) < 0, we see that

∫

r|uµ|
2+σ2 dx < −((2 + σ2)/2)‖▽uµ‖

2
2 + ((2 + σ2)/(2 + σ1))

∫

q|uµ|
2+σ1 dx

and that

λ(µ) < ‖uµ‖
−2
2

(

−(σ2/2)‖▽uµ‖
2
2 + ((σ2 − σ1)/(2 + σ1))

∫

q|uµ|
2+σ1 dx

)

.

Then using the fact that
∫

q|uµ|
2+σ1 dx > −(2 + σ1)ξ(uµ) > 0,

we obtain the assertion. �

Now, we consider the case that σ1 < σ2. Since I(·) is a monotone decreas-
ing function on [0, µa), we can find a measurable subset M of [0, µa) such that
[0, µa)\M has measure zero and I(·) is differentiable onM (see [4, Theorem 17.12]).
Then, we see that

(4.4) I ′(µ) ≤ 0 holds for all µ ∈ M.
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Lemma 4.3. The function I(·) is Lipschitz continuous on [0, µa) and for all µ ∈ M
we have I ′(µ) ≥ µ−1‖uµ‖22λ(µ).

Proof: Let 0 ≤ ν < µ < µa. Then, we obtain

I(ν) ≤ ξ((ν/µ)uµ)

and therefore that

(4.5)

I(ν)− I(µ) ≤
1

2
((ν/µ)2 − 1)

∫

|▽uµ|
2 dx

− (2 + σ1)
−1((ν/µ)2+σ1 − 1)

∫

q|uµ|
2+σ1 dx

+ (2 + σ2)
−1((ν/µ)2+σ2 − 1)

∫

r|uµ|
2+σ2 dx.

Thus, (4.5) implies for µ ∈ M: I ′(µ) ≥ µ−1‖uµ‖22λ(µ). Moreover, we obtain

|I(µ) − I(ν)||µ− ν|−1 = (I(ν) − I(µ))(µ − ν)−1

≤ (2 + σ1)
−1(1− (ν/µ)2+σ1)(µ− ν)−1

∫

q+|uµ|
2+σ1 dx

≤ (1 − (ν/µ))(µ− ν)−1
∫

q+|uµ|
2+σ1 dx

= µ−1
∫

q+|uµ|
2+σ1 dx.

Hence, Lemma 3.1 and Proposition 3.7 show that

|I(µ)− I(ν)| ≤ C(µ1+α + µ1+β)|µ− ν|.

�

Lemma 4.4. There exists a monotone decreasing sequence (µn) ⊂ (0, µa) such
that limn→∞ µn = 0 and λ(µn) < 0 holds for all n.

Proof: Suppose that λ(µ) ≥ 0 holds for all µ ∈ (0, µa). Then, according to
Lemma 3.6, we see that λ(µ) = 0 holds for all µ ∈ (0, µa). Furthermore, (4.4) and
Lemma 4.3 would imply that I ′(µ) = 0 for all µ ∈ M and consequently that I(·) is
constant on [0, µa) (see [4, Theorem 18.15]). In particular, we would obtain that

0 = I(0) = I(min((µa/2), 1)) < 0.

Hence, there exists a constant µ1 ∈ (0, µa) such that λ(µ1) < 0. Now, repeating this
procedure, we can find a µ2 ∈ (0,min(µ1, 1/2)) such that λ(µ2) < 0. Moreover, by
induction we can show that for each n there is a constant µn ∈ (0,min(µn−1, 1/n))
so that λ(µn) < 0. �

Finally, we see that Lemma 4.1 and Lemma 4.2 imply Theorem 1.5 and that
Theorem 1.6 is obtained by Lemma 4.1 and Lemma 4.4.
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