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Non-commutative Gelfand-Naimark theorem

Janusz Migda

Abstract. We show that if Y is the Hausdorffization of the primitive spectrum of a C∗-
algebra A then A is ∗-isomorphic to the C∗-algebra of sections vanishing at infinity of the
canonical C∗-bundle over Y .
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Terminology and notations.

A function f : X → R of a topological space X is called vanishing at infinity
if for every ε > 0 there is quasicompact K ⊂ X with |f(y)| < ε for every y /∈ K.
By an H-family ϕ : A → ξ of a C∗-algebra A we mean a family ϕ = {ϕx}X

of ∗-epimorphisms ϕx : A → ξx where X is a topological space, ξ = {ξx}X is
a family of C∗-algebras and for every s ∈ A the function x 7→ ‖ϕx(s)‖ is upper
semicontinuous and vanishing at infinity (or equivalently for every s ∈ A and ε > 0
the set {x ∈ X | ‖ϕx(s)‖ ≥ ε} is quasicompact and closed in X). If ϕ : A → ξ is an
H-family and ξ = {ξx}X we denote by b(ϕ) the triple (p,

`
ξ, X) where p :

`
ξ → X

is the canonical projection of disjoint sum, and
`

ξ is equipped with the topology
generated by all tubes T (V, s, ε) =

`
x∈V B(ϕx(s), ε) (disjoint sum of open balls), V

open in X , s ∈ A, ε > 0. By the same argument as in [1], [5], b(ϕ) is a C∗-bundle,
by which we mean an (H) C∗-bundle defined as in [3]. It is easy to see that for
any C∗-bundle η the set Γ0(η) of sections vanishing at infinity is a C∗-algebra. For
every H-family ϕ : A → ξ the formula ϕ̃(s)(x) = ϕx(s) gives a ∗-homomorphism
ϕ̃ : A → Γ0(b(ϕ)).

Example 1. Let c : Ǎ → X be a continuous map of the primitive spectrum Ǎ
of a C∗-algebra A onto a Hausdorff space X . Let cx : A → A/

⋂
c−1(x) be the

quotient map for every x ∈ X . If W is a closed subset of Ǎ and s ∈ A then there
is w0 ∈ W such that ‖s +

⋂
W‖ = sup{‖s + w‖ | w ∈ W} = ‖s + w0‖. Indeed

the first equality is well known (cf. e.g. [4, 1.9]) and the existence of w0 is an easy
consequence of [2, 3.3.6]. Using this we see that for every s ∈ A and ε > 0 we
have c({w ∈ Ǎ | ‖s + w‖ ≥ ε}) = {x ∈ X | ‖cx(s)‖ ≥ ε}, whence we obtain an
H-family c.

Example 2. For every C∗-bundle η the family of evaluations is an H-family of the
C∗-algebra Γ0(η).
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Theorem 1 (Stone-Weierstrass theorem for H-families). Let ϕ : A → ξ be an
H-family, and B a C∗-subalgebra of A. Assume that B + (kerϕx ∩ kerϕy) = A for
all x, y ∈ X . Then B +

⋂
X kerϕx = A.

Proof: Taking the quotient A/
⋂

X kerϕx and factorizations of all of ϕx we may

assume that
⋂

X kerϕx = 0. Let hull (kerϕx) denote the set {w ∈ Ǎ | kerϕx ⊂

w}. Then
⋃

X hull (kerϕx) is a dense subset of Ǎ, whence, by the openness of the

canonical map P (A) → Ǎ,
⋃

X im P (ϕx) is dense in the weak closure P (A) of the
pure state space P (A), here P (ϕx) : P (ξx) → P (A) is the canonical map induced

by ϕx. We shall show that for any f ∈ P (A) there are x ∈ X and a map g : ξx → C

with f = g ◦ ϕx. Choose a net {fi}I ⊂
⋃

X im P (ϕx) such that fi → f . For
every i ∈ I there are xi ∈ X and gi ∈ P (ξxi

) with fi = gi ◦ ϕxi
. Let xi → x and

a ∈ kerϕx. If |f(a)| = 2δ > 0 then there is i1 ∈ I such that |fi(A)| > δ for every
i ≥ i1. Then ‖ϕxi

(a)‖ ≥ |gi(ϕxi
(a))| = |fi(a)| > δ for every i ≥ i1. Since the

function y 7→ ‖ϕy(a)‖ is upper semicontinuous, the set U = {y ∈ X | ‖ϕy(a)‖ < δ}
is a neighborhood of x. Hence, there is i2 ∈ I such that xi ∈ U for every i ≥ i2.
Suppose now that i ≥ i1 and i ≥ i2. Then we obtain δ > ‖ϕxi

(a)‖ > δ and
this contradiction shows that f(a) = 0. Hence kerϕx ⊂ ker f and this shows the
existence of g. Taking a subnet if necessary, we see that if x is an accumulation
point of {xi}I then there is a map g : ξx → C such that f = g ◦ ϕx. Suppose that
the set of accumulation points of {xi}I is empty. Let s ∈ A and ε > 0. Choose
a quasicompact K ⊂ X with ‖ϕx(s)‖ < ε for x /∈ K. Then for sufficiently large
i ∈ I

|f(s)| ≤ |f(s)− fi(s)|+ |fi(s)| < ε+ |gi(ϕxi
(s))| < 2ε.

Hence f = 0 and the existence of g (for every x ∈ X) is obvious. Now, let f1, f2 ∈

P (A) ∪ {0} and f1 6= f2. Take s ∈ A such that f1(s) 6= f2(s), choose x1, x2 ∈ X
and maps g1, g2 with fi = gi ◦ ϕxi

, i = 1, 2. Since A = B + (kerϕx1 ∩ kerϕx2),
there are t ∈ B and t′ ∈ (kerϕx1 ∩ kerϕx2) such that s = t + t′. We obtain
f1(t) = f1(s) 6= f2(s) = f2(t). Thus B = A by Stone-Weierstrass-Glimm theorem
[2, 11.5.2]. �

Corollary 1. Let η be a C∗-bundle over X , B and A C∗-subalgebras of Γ0(η) and
B ⊂ A. Assume that for all x, y ∈ X and s ∈ A there is t ∈ B with t(x) = s(x) and
t(y) = s(y). Then B = A.

Proof: Let ex : Γ0(η)→ ηx, ex(s) = s(x) be the evaluation map for every x ∈ X .
Let ξx = ex(A) and ϕx : A → ξx denote the restriction of ex for every x ∈ X ,
we obtain an H-family ϕ : A → ξ. It is obvious that by our assumption we have
B + (kerϕx ∩ kerϕy) = A for every x, y ∈ X . Now, the result follows immediately
from Theorem 1. �

Corollary 2. Let ϕ : A → ξ be an H-family. Assume that kerϕx + kerϕy = A
whenever x, y ∈ X , x 6= y. Then ϕ̃ : A → Γ0(b(ϕ)) is a ∗-epimorphism.

Proof: Let x, y ∈ X , x 6= y. If w ∈ ξx, v ∈ ξy then by the condition kerϕx +
kerϕy = A there is t ∈ A such that ϕx(t) = w and ϕy(t) = v. This implies that for
every s ∈ Γ0(b(ϕ)) there is t ∈ A such that ϕ̃(t)(x) = s(x) and ϕ̃(t)(y) = s(y). Now,
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applying Corollary 1 to C∗-algebras Γ0(b(ϕ)) and ϕ̃(A) we obtain ϕ̃(A) = Γ0(b(ϕ)).
�

Corollary 3. Let c : Ǎ → X be a continuous map onto a Hausdorff space X . Then
≃
c : A → Γ0(b(c)) is a ∗-isomorphism.

Proof: Obviously ker
≃
c =

⋂
X ker cx =

⋂
X

⋂
c−1(x) =

⋂
Ǎ = {0}. If x, y ∈ X ,

x 6= y, then c−1(x), c−1(y) are closed disjoint subsets of Ǎ. Assume p ∈ Ǎ is
a primitive ideal such that (ker cx + ker cy) ⊂ p. Then

⋂
c−1(x) ⊂ p, hence p ∈

c−1(x). Similarly p ∈ c−1(y) and this contradiction shows that the closed ideal
ker cx + ker cy is equal to A. Now the result follows from Corollary 2. �

The next theorem is our main result and it is an immediate consequence of
Corollary 3.

Theorem 2 (Non-commutative Gelfand-Naimark theorem). Let h : Ǎ → h(Ǎ) be

the Hausdorffization map of the primitive spectrum Ǎ of a C∗-algebra A. Then
≃

h
is a ∗-isomorphism.

Remarks. Corollary 1 generalizes Theorem 4.1 of [4], Corollary 3 is an analogue of
Theorem 3.1 in [6]. If h(Ǎ) = Ǎ then Theorem 2 coincides with Non-commutative
Gelfand-Naimark theorem obtained by Fell in [4] and Tomiyama in [6]. If A is a C∗-
algebra with identity then Theorem 2 coincides with Non-commutative Gelfand-
Naimark theorem obtained by Dauns and Hofmann in [1].
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