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Contact manifolds, harmonic curvature tensor

and (k, µ)-nullity distribution

Basil J. Papantoniou

Abstract. In this paper we give first a classification of contact Riemannian manifolds with
harmonic curvature tensor under the condition that the characteristic vector field ξ belongs
to the (k, µ)-nullity distribution. Next it is shown that the dimension of the (k, µ)-nullity
distribution is equal to one and therefore is spanned by the characteristic vector field ξ.

Keywords: contact Riemannian manifold, harmonic curvature, D-homothetic deformation

Classification: 53C05, 53C20, 53C21

It is well known that there exist contact Riemannian manifolds [M2n+1,

(ϕ, ξ, η, g)] for which the curvature tensor R in the direction of the characteris-
tic vector field ξ satisfies RXY ξ = 0, for any tangent vector fields X, Y of M2n+1.
The tangent sphere bundle of a flat Riemannian manifold, for example, admits
such a structure [2]. Applying a D-homothetic deformation [7] on M2n+1 with
RXY ξ = 0, we find a new class of contact metric manifolds satisfying the relation

(1.1) R(X, Y )ξ = k(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY ), (k, µ) ∈ R
2

where 2h is the Lie derivative of ϕ with respect to ξ. An interesting property of
this class is that the form of (1.1) is invariant under a D-homothetic deformation.
The purpose of this paper is, on the one hand, the classification of the contact

Riemannian manifolds having a harmonic curvature tensor under the condition
that the characteristic vector field ξ belongs to the (k, µ)-nullity distribution, i.e.
satisfies the condition (1.1), and on the other hand, to prove that the (k, µ)-nullity
distribution, which we will denote by N(k, µ) for k < 1, k 6= 0, is a 1-dimensional
subspace of TpM for every p ∈ M and is spanned by the characteristic vector field ξ.

2. Preliminaries and known results.

Manifolds and tensor fields are supposed to be of the class C∞.
Let M =M2n+1 be a connected differentiable manifold with contact form η, i.e.

a tensor field of type (0, 1) satisfying η ∧ (dη)n 6= 0. It is well known that such
a manifold admits a vector field ξ, called the characteristic vector field such that
η(ξ) = 1 and dη(ξ, X) = 0, for every X ∈ χ(M) (χ(M) being the Lie algebra of the

∗This work was done while the author was a visiting scholar at Michigan State University.
The author would like to express his sincere thanks to Prof. D.E. Blair for contributing valuable

information, making this study possible.
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vector fields of M). Moreover, M admits a Riemannian metric g and a tensor field
ϕ of type (1.1) such that

(2.1) (i) ϕ2 = −I + η ⊗ ξ, (ii) g(X, ξ) = η(X), (iii)g(X, ϕY ) = dη(X, Y ).

We then say that (ϕ, ξ, η, g) is a contact metric structure. As a consequence of these
relations, one has

(2.2) (i) g(ϕX, ϕY ) = g(X, Y )− η(X)η(Y ), (ii) ϕξ = 0, (iii) ηϕ = 0.

Denoting by L and R the Lie differentiation and the curvature tensor respectively,
we define the operators ℓ and h by

(2.3) (i) ℓX = R(X, ξ)ξ, (ii) hX =
1

2
(Lξϕ)X.

The (1, 1) tensors ℓ and h are self-adjoint and satisfy

(2.4) (i) hξ = 0, (ii) ℓξ = 0, (iii) tr h = tr hϕ = 0, (iv) hϕ = −ϕh.

Since h anticommutes with ϕ, if X is an eigenvector of h corresponding to the
eigenvalue λ, then ϕX is also an eigenvector of h corresponding to the eigenvalue
−λ. If ▽ is the Riemannian connection of g, then

(2.5) (i) ▽Xξ = −ϕX − ϕhX, (ii)▽Xϕ = 0, (iii) ϕℓϕ − ℓ = 2(h2 + ϕ2).

A contact metric manifold for which ξ is a Killing vector field is called a K-contact
manifold. It is well known that a contact manifold is K-contact if and only if h = 0.
Moreover, on a K-contact manifold it is valid R(X, ξ)ξ = X − η(X)ξ. A contact
metric manifold is said to be a Sasakian manifold if

(2.6) (▽Xϕ)Y = g(X, Y )ξ − η(Y )X

in which case

(2.7) (i) ▽Xξ = −ϕX, (i) R(X, Y )ξ = η(Y )X − η(X)Y.

Note that a Sasakian manifold is K-contact, but the converse holds if and only
if dimM = 3.
A contact manifold is said to be η-Einstein if

(2.8) Q = a I d+ bη ⊗ ξ,

where Q is the Ricci operator and a, b are smooth functions on M . The sectional
curvature K(ξ, X) of a plane section spanned by ξ and a vector X orthogonal to ξ

is called a ξ-sectional curvature, while the sectional curvature K(X, ϕX) is called
a ϕ-sectional curvature. The (k, µ)-nullity distribution of a contact metric manifold
for the pair (k, µ) ∈ R

2, is a distribution

N(k, µ) : p → Np(k, µ) = {Z ∈ TpM | R(X, Y )Z = k[g(Y, Z)X − g(X, Z)Y ]

+ µ[g(Y, Z)hX − g(X, Z)hY ]}.
So, if the characteristic vector field ξ belongs to the (k, µ)-nullity distribution we
have

(2.9) R(X, Y )ξ = k(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY ).

Now the following lemma is well known [4], but for completness, we also give the
proof.
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Lemma 2.1. Let [M2n+1, (ϕ, ξ, η, g)] be a contact metric manifold with ξ belong-

ing to the (k, µ)-nullity distribution. Then
(2.10)
1. ℓX = k(X − η(X)ξ) + µhX, ∀X ∈ χ(M)

2. R(ξ, X)Y = k(g(X, Y )ξ − η(Y )X) + µ(g(hX, Y )ξ − η(Y )hX)

3. h2 = (k − 1)ϕ2, k ≤ 1
4. QX = [2(n − 1)− nµ]X + [2(n − 1) + µ]hX + [2(1− n) + n(2k + µ)]η(X)ξ,

n ≥ 1
5. ϕQ = Qϕ − 2[2(n − 1) + µ]hϕ.

Proof: 1. Using the relations (2.3 (i)) and (2.9) we have

(2.11)
ℓX = R(X, ξ)ξ = k(η(ξ)X − η(X)ξ) + µ(η(ξ)hX − η(X)hξ)

= k(X − η(X)ξ) + µhX.

2. Using the relation (2.9) and g(hX, Y ) = g(X, hY ) we have

g(R(ξ, X)Y, Z) = g(R(Y, Z)ξ, X) = g(k(η(Z)Y − η(Y )Z), X) + g(µ(η(Z)hY

− η(Y )hZ), X) = k[g(X, Y )η(Z)− g(X, Z)η(Y )] + µ[g(X, hY )η(Z)

− g(X, hZ)η(Y )] = k[g(X, Y )g(ξ, Z)− η(Y )g(X, Z)]

+ µ[g(hX, Y )g(ξ, Z)− η(Y )g(hX, Z)]

and since this equation is valid for any Z ∈ χ(M), we get the required result.

3. Using (2.5 (iii)), (2.10 (i)), and (2.4 (iv)) we have

(−ℓ+ ϕℓϕ)X = −ℓX + ϕℓϕX

= −k(X − η(X)ξ)− µhX + ϕ(kϕX + µhϕX)

= 2kϕ2X − µh(X + ϕ2X) = 2kϕ2X

but on the other hand, −ℓ + ϕℓϕ = 2(h2 + ϕ2), so we easily get the result. Now
using the definition of the Ricci operator Q and the orthonormal basis {ei} one
easily computes that

Qξ =

2n+1
∑

i=1

R(ξ, ei)ei = (2n+ 1)kξ − kξ + µ(tr h)ξ = 2nkξ.

But on any contact manifold Q(ξ, ξ) = 2n− ‖h‖2, hence we have ‖h‖2 = 2n(1− k)
≥ 0, from which k ≤ 1.
4.–5. Similarly, one can easily prove these cases as well. �

For more details concerning contact metric manifolds we refer the reader to [2].
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We close this section with a brief discussion of the harmonicity of the curvature
tensor of a Riemannian manifold. It is well known that, if the divergence of the
curvature tensor of a Riemannian manifold is equal to zero, then this curvature
tensor is called harmonic. So, a Riemannian manifold has harmonic curvature
tensor if and only if the Ricci operator Q, which is given by g(QX, Y ) = S(X, Y )
where S is the Ricci tensor, satisfies the following relation:

(2.12) (▽XQ)Y − (▽Y Q)X = 0.

3. Contact manifolds with harmonic curvature tensor and ξ belonging

to the (k, µ)-nullity distribution.

Let [M2n+1, (ϕ, ξ, η, g)] be a contact Riemannian manifold with ξ belonging to
the (k, µ)-nullity distribution, i.e.

(3.1) R(X, Y )ξ = k(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY ), (k, µ) ∈ R
2.

Let Q be the Ricci operator of M , then the manifold has the harmonic curvature
tensor if, as mentioned above,

(3.2) (▽XQ)Y − (▽Y Q)X = 0

for any vector fields X, Y of M .
We first prove the following lemma.

Lemma 3.1. Let [M2n+1, (ϕ, ξ, η, g)] be a contact Riemannian manifold with ξ

belonging to the (k, µ)-nullity distribution. Then

(3.3)

g((▽XQ)Y − (▽Y Q)X, ξ) = 2[2(n+ k − 1)− µ(k − 1)]g(X, ϕY )

+ 2g(Y, QϕX)− 2[2(n− 1) + µ]g(Y, hϕX)

+ g(Y, (Qϕh+ hQϕ)X)

for any X, Y ∈ χ(M).

Proof: Using the symmetry of the operator ▽XQ and (2.10, 4) we have

g((▽XQ)Y, ξ) = g(Y, (▽XQ)ξ) = −2nkg(Y, ϕX + ϕhX) + g(Y, Q(ϕX + ϕhX)).

Similarly,

g((▽Y Q)X, ξ) = −2nkg(X, ϕY + ϕhY ) + g(X, Q(ϕY + ϕhY )).

Hence

(3.4)

g((▽XQ)Y − (▽Y Q)X, ξ) = 4nkg(X, ϕY )

+ g(Y, QϕX) + g(Y, QϕhX)

+ g(Y, ϕQX) + g(Y, hϕQX).
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Now using (2.10, 5) and (2.10, 3) we have

g((▽XQ)Y − (▽Y Q)X, ξ) = 4nkg(X, ϕY ) + g(Y, QϕX) + g(Y, QϕhX)

+ g(Y, QϕX − 2[2(n − 1) + µ]hϕX)

+ g(Y, hQϕX − 2[2(n − 1) + µ](k − 1)ϕ3X)
= 2[2(k + n − 1)− µ(k − 1)]g(X, ϕY ) + 2g(Y, QϕX)

− 2[2(n− 1) + µ]g(Y, hϕX) + g(Y, (Qϕh+ hQϕ)X)

and the proof is complete. �

We now state the main result.

Theorem 3.1. Let [M2n+1, (ϕ, ξ, η, g)] be a contact metric manifold with harmonic
curvature tensor and ξ belonging to the (k, µ)-nullity distribution. ThenM is either

(i) an Einstein Sasakian manifold, or
(ii) an η-Einstein manifold, or

(iii) locally isometric to the product of a flat (n+1)-dimensional manifold and an
n-dimensional manifold of positive constant curvature equal to 4, including
a flat contact metric structure for n = 1.

The proof of this theorem depends largely on the following results.

Lemma 3.2 [4]. Let [M2n+1, (ϕ, ξ, η, g)] be a contact metric manifold with ξ be-

longing to the (k, µ)-nullity distribution. Then k ≤ 1. If k < 1, thenM2n+1 admits

three mutually orthogonal and integrable distributions D(0), D(λ), D(−λ) defined
by the eigenspaces of h, where λ =

√
1− k > 0.

Theorem 3.2 [2]. Let [M2n+1, (ϕ, ξ, η, g)] be a contact metric manifold with
RXY ξ = 0 for all vector fields X, Y of M . Then M is locally the product of a flat

(n + 1)-dimensional manifold of positive constant curvature equal to 4, including
a flat contact metric structure for n = 1.

Theorem 3.3 [4]. Let [M2n+1, (ϕ, ξ, η, g)] be a contact metric manifold with ξ

belonging to the (k, µ)-nullity distribution. If k < 1 then for any X orthogonal to ξ

(1) The ξ-sectional curvature K(X, ξ) is given by

K(X, ξ) =

{

k + λµ, if X ∈ D(λ)

k − λµ, if X ∈ D(−λ),

(2) the sectional curvature of a plane section {X, Y } normal to ξ is given by

K(X, Y ) =











2(1 + λ)− µ, if X, Y ∈ D(λ),

−(k + µ)(g(X, ϕY ))2, for any unit vectors X ∈ D(λ), Y ∈ D(−λ)

2(1− λ)− µ, if X, Y ∈ D(−λ), n > 1.

Next we prove the following lemma.
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Lemma 3.3. Let [M2n+1, (ϕ, ξ, η, g)] be a contact metric manifold with ξ belong-

ing to the (k, µ)-nullity distribution. Then

(i) If X ∈ D(λ), h(▽ξX) = λ(▽ξX + µϕX)(3.5)

(ii) If X ∈ D(−λ), h(▽ξX) = −λ(▽ξX + µϕX).(3.6)

Proof: (i) Since X ∈ D(λ), applying (3.1) we easily get

(1) R(ξ, X)ξ = −(k + λµ)X.

On the other hand, using the definition of the curvature tensor we have

R(ξ, X)ξ = ▽ξ▽Xξ − ▽[ξ,X]ξ = −▽ξ(ϕX + ϕhX)

+ ϕ[ξ, X ] + ϕh[ξ, X ] = −λϕ▽ξX + ϕh▽ξX + ϕ(ϕX + ϕhX)

+ ϕh(ϕX + ϕhX) = −λϕ▽ξX + ϕh▽ξX − (1− λ2)X

and since k = 1− λ2, we have

(2) R(ξ, X)ξ = −λϕ▽ξX + ϕh▽ξX − kX.

Now comparing (1) with (2) we get

(3.7) −λϕ▽ξX + ϕh▽ξX = −λµX,

or applying with ϕ and using hξ = 0 and g(▽ξX, ξ) = 0 we get the required
result (3.5).

(ii) For X ∈ D(−λ), again applying (3.1) we have

(3) R(ξ, X)ξ = −(k − λµ)X.

On the other hand, using the definition of the curvature tensor we easily have

(4) R(ξ, X)ξ = λϕ▽ξX + ϕh▽ξX − kX.

So, comparing (3) and (4) we have

ϕh▽ξX = λ(−ϕ▽ξX + µX)

and acting with ϕ we get

h(▽ξX) = −λ(▽ξX + µϕX)

and the proof is complete. �

We are now going to give the proof of the main Theorem 3.1.
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Proof of Theorem 3.1: The case of k = 1, µ ∈ R gives λ =
√
1− k = 0, or

equivalently h = 0. So, R(X, Y )ξ = η(Y )X−η(X)Y and the manifold is a Sasakian.
Now using Lemma 3.1 we easily get that this manifold with harmonic curvature
tensor is an Einstein manifold. Let k < 1 and µ ∈ R, and suppose X ∈ D(λ),
Y ∈ D(−λ). Then one easily proves that g(Y, QϕhX + hQϕX) = 0 and using the
harmonicity of the curvature tensor, applying Lemma 3.1, we get

(1) g(QϕX, Y ) = {λ[2(n − 1) + µ]− λ2µ − 2(n − λ2)}g(X, ϕY ).

Replacing Y by ϕZ (Z ∈ D(λ)) and using (2.2 (i)) and (2.10, 5) we deduce

(3.8) g(QX, Z) = c1g(X, Z), ∀X, Z ∈ D(λ),

where

(3.9) c1 = λ[2(n − 1) + µ] + λ2µ+ 2(n − λ2) = const.

Next, replacing X by ϕW (W ∈ D(−λ)) in (1) and using (2.2 (i)) we get

(3.10) g(QW, Y ) = c2g(W, Y ), ∀Y, W ∈ D(−λ),

where

(3.11) c2 = −λ[2(n − 1) + µ] + λ2µ+ 2(n − λ2).

Now differentiating (2.10, 4) with respect to ξ and again using (3.8) we get

g((▽ξQ)X +Q(−ϕX − ϕhX), Z) + g(QX,−ϕZ − ϕhZ)

= c1[−g(ϕX + ϕhX, Z)− g(X, ϕZ + ϕhZ)]

or

(3)
g((▽ξQ)X, Z)− g(Q(ϕX + ϕhX), Z)− g(QX, ϕZ + ϕhZ)

= c1[g(ϕX + ϕhX, Z) + g(X, ϕZ + ϕhZ)].

But one easily can prove that

(4) g(ϕX + ϕhX, Z) = (1 + λ)g(ϕX, Z), g(X, ϕZ + ϕhZ) = −(1 + λ)g(Z, ϕX)

and

(5)
g(QϕX +QϕhX, Z) = (1 + λ)g(QϕX, Z),

g(QX, ϕZ + ϕhZ) = −(1 + λ)g(ϕQX, Z).

So, the equation (3) is reduced to

(3.12) g((▽ξQ)X, Z) = 0, ∀X, Z ∈ D(λ).
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Now, since the curvature tensor is harmonic, using (4) and (5) and g(ϕX, Z) = 0,
we have

0 = g((▽ξQ)X, Z) = g((▽XQ)ξ, Z) = −2nkg(ϕX + ϕhX, Z)

+ g[Q(ϕX + ϕhX), Z] = (1 + λ)g(QϕX, Z).

Hence, g(ϕX, QZ) = 0 and also since g(QZ, ξ) = 0, we conclude from (3.8) and
Lemma 3.2 that

(3.13) QX = c1X, ∀X ∈ D(λ).

Similarly, one can obtain

(3.14) QX = c2X, ∀X ∈ D(−λ).

Now differentiating (3.13) with respect to ξ we have

(3.15) (▽ξQ)X +Q▽ξX = c1▽ξX, ∀X ∈ D(λ).

Now suppose that

(6) ▽ξX = (▽ξX)λ + (▽ξX)−λ .

Using (3.15) and this equation, we have

(▽XQ)ξ = (▽ξQ)X = −Q▽ξX + c1▽ξX

= −Q[(▽ξX)λ + (▽ξX)−λ] + c1(▽ξX)λ + c1(▽ξX)−λ .

But from (3.13) and (3.14) we have

Q(▽ξX)λ = c1(▽ξX)λ, Q(▽ξX)−λ = c2(▽ξX)−λ .

So,

(3.16) (▽XQ)ξ = (c1 − c2)(▽ξX)−λ ,

where

(3.17) c1 − c2 = 2λ[2(n − 1) + µ].

On the other hand,

(▽XQ)ξ = 2nk▽Xξ +Q(ϕX + ϕhX) = −2nk(ϕX + ϕhX) + (1 + λ)QϕX

and using (3.14), we have

(3.18) (▽XQ)ξ = (1 + λ)(c2 − 2nk)ϕX.
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Comparing (3.16), (3.17) and (3.18) we get

(3.19) 2λ[2(n − 1) + µ](▽ξX)−λ = (1 + λ)(c2 − 2nk)ϕX.

Now, if we substitute the equation (6) into equation (3.5) of Lemma 3.3, we easily
deduce that

(▽ξX)−λ = −µ

2
ϕX.

Substituting this equation into equation (3.19) and using (3.11) we conclude either

(3.20) (i) µ+ 2(n − 1) = 0, or (ii) k = µ.

If the first (i) equality holds, then applying Lemma 2.1, we conclude that the Ricci
operator Q is given by

(3.21) QX = 2(n2 − 1)X + 2(1 + nk − n2)η(X)ξ

which is of the form (2.8) and therefore, the manifold M2n+1 is η-Einstein.
If the second (ii) equality holds, then from Theorem 3.3 we get for the ξ-sectional

curvatures

(3.22) K(X, ξ) = (1 + λ)k, ∀X ∈ D(λ), K(X, ξ) = (1 − λ)k, ∀X ∈ D(−λ)

and for the sectional curvatures

(3.23)

(i) K(X, Y ) = 2(1 + λ)− k = (1 + λ)2, ∀X, Y ∈ D(λ),

(ii) K(X, Y ) = 2(1− λ)− k = (1− λ)2, ∀X, Y ∈ D(−λ),

(iii) K(X, Y ) = 2(λ2 − 1)(g(X, ϕY ))2, ∀X ∈ D(λ), ∀Y ∈ D(−λ).

On the other hand, another implication of k = µ may be taken from Lemma 2.1,
and therefore, we get

(3.24) QX = [2(n − 1)− nk]X + λ[2(n − 1) + k]X, ∀X ∈ D(λ).

But, as we proved QX = c1X for every X , so we will have

2n−2−nk+2(n−1)λ+λ(1−λ2) = 2(n−1)λ+λ(1−λ2)+λ2(1−λ2)+2n−2λ2,

from which we get

(3.25) λ4 + (1 + n)λ2 − (2 + n) = 0.

The only positive root of this equation is λ = 1 and since k = 1− λ2 (Lemma 3.2),
we conclude that k = µ = 0. Hence RXY ξ = 0 for all vector fields X, Y . Now,
the equation (3.23) gives (i) K(X,Y)=4, ∀X, Y ∈ D(λ), or (ii) K(X,Y)=0, either
X, Y ∈ D(−λ) or X ∈ D(λ), Y ∈ D(−λ). Therefore, we conclude that the manifold
is locally isometric to the product of a flat (n + 1)-dimensional manifold and an
n-dimensional manifold of positive curvature 4 and the proof of the theorem is
complete. �
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4. The dimension of the (k, µ)-nullity distribution.

In the previous paragraph we considered the (k, µ)-nullity distribution N(k, µ)
of the contact metric manifold [M2n+1, (ϕ, ξ, η, g)]. Hence it is natural to ask how
large N(k, µ) can be. If k = µ = 0 then RXY ξ = 0 for any X, Y and so the
manifold locally is isometric to the product En+1(0) × Sn(4), with ξ belonging to
the Euclidean factor [3]. Thus dimN(0, 0) = n+ 1.
Recently, the following theorem has been proved [4]:

Theorem 4.1. Let M2n+1 be a contact metric manifold with ξ belonging to the

(k, µ)-nullity distribution. Then k ≤ 1, and if k = 1 holds, then M is a Sasakian. If

k < 1 then M admits three mutually orthogonal and integrable distributions D(0),
D(λ) and D(−λ) determined by the eigenspaces of h, where λ =

√
1− k. Moreover,

(4.1)

1. R(Xλ, Yλ)Z−λ = (k − µ)[g(ϕXλ, Z
−λ)ϕXλ − g(ϕXλ, Z

−λ)ϕYλ]

2. R(X
−λ, Y

−λ)Zλ = (k − µ)[g(ϕY
−λ, Zλ)ϕX

−λ − g(ϕX
−λ, Zλ)ϕY

−λ]

3. R(Xλ, Y
−λ)Z−λ = kg(ϕXλ, Z

−λ)ϕY
−λ + µg(ϕXλ, Y

−λ)ϕZ
−λ

4. R(Xλ, Y
−λ)Zλ = −kg(ϕY

−λ, Zλ)ϕXλ − µg(ϕY
−λ, Xλ)ϕZλ

5. R(Xλ, Yλ)Zλ = [2(1 + λ)− µ][g(Yλ, Zλ)Xλ − g(Xλ, Zλ)Yλ]

6. R(X
−λ, Y

−λ)Z−λ = [2(1− λ)− µ][g(Y
−λ, Z

−λ)X−λ − g(X
−λ, Z

−λ)Y−λ]

where Xλ, Yλ, Zλ ∈ D(λ) and X
−λ, Y

−λ, Z
−λ ∈ D(−λ).

We now state and prove the main result of this section.

Theorem 4.2. Let [M2n+1, (ϕ, ξ, η, g)] be a contact metric manifold of dimension
2n + 1 ≥ 5 such that ξ belongs to the (k, µ)-nullity distribution N(k, µ). If k < 1
and k 6= 0 then dimN(k, µ) = 1 and N(k, µ) is just the span of ξ.

Proof: If P ∈ M then by definition

(4.2)
NP (k, µ) = {Z ∈ TP M | R(X, Y )Z = k(g(Y, Z)X − g(X, Z)Y )

+ µ(g(Y, Z)hX − g(X, Z)hY )}.

Suppose that there exist a unit vector Z ∈ N(k, µ) orthogonal to ξ. Then Z =
aZλ + bZ

−λ where Zλ, Z
−λ are unit vectors and a, b ≥ 0.

Suppose that X, Y ∈ D(λ), then using Theorem 4.1 we get

(4.3)
R(X, Y )Z = a[2(1 + λ) − µ][g(Y, Zλ)X − g(X, Zλ)Y ]

+ b(k − µ)[g(ϕY, Z
−λ)ϕX − g(ϕX, Z

−λ)ϕY ].

On the other hand, from (4.2) we have

(4.4) R(X, Y )Z = a(k + λµ)[g(Y, Zλ)X − g(X, Zλ)Y ].

Now comparing these two equations, we get

(4.5)
a(1 + λ)(1 + λ − µ)[g(Y, Zλ)X − g(X, Zλ)Y ]

+ b(k − µ)[g(ϕY, Z
−λ)ϕX − g(ϕX, Z

−λ)ϕY ] = 0
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for all X, Y ∈ D(λ).

Suppose that g(X, Y ) = 0 and choose ϕY = Z
−λ. Then this equation is reduced

to

a(1 + λ)(1 + λ − µ)[g(Y, Zλ)X − g(X, Zλ)Y ] = b(k − µ) · ϕX = 0,

from which, by taking inner products with ϕX we deduce

(4.6) b(k − µ) = 0

and

(4.7) a(1 + λ)(1 + λ − µ) = 0.

Now suppose that X, Y ∈ D(−λ), then working similarly we get

(4.8)
b(λ − 1)(λ+ µ − 1)[g(Y, Z

−λ)X − g(X, Z
−λ)Y ]

+ a(k − µ)[g(ϕY, Zλ)ϕX − g(ϕX, Zλ)ϕY ] = 0.

If we choose X, Y to be such that g(X, Y ) = 0 and ϕY = Zλ then the equation
(4.8) is reduced to

(4.9) b(λ − 1)(λ+ µ − 1)[g(Y, Z
−λ)X − g(X, Z

−λ)Y ] + a(k − µ)ϕX = 0,

from which, taking the inner products with ϕX , we conclude that

(4.10) a(k − µ) = 0

and

(4.11) b(λ − 1)(λ+ µ − 1) = 0.

Now if k 6= µ, (4.6) and (4.10) imply a = b = 0 and the proof is complete, since we
have Z = 0. So suppose k = µ. Then since k = 1− λ2, (4.7) and (4.11) become

(4.12) aλ(1 + λ2) = 0

and

(4.13) bλ(λ − 1)2 = 0.

But λ 6= 0 (k < 1) and λ 6= ±1 (k 6= 0) so we also conclude that a = b = 0.
Therefore, there does not exist a vector Z perpendicular to ξ belonging to the
(k, µ)-nullity distribution, N(k, µ) is spanned by ξ and hence dimN(k, µ) = 1. �
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