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On p-sequential p-compact spaces

Salvador Garcia-Ferreira, Angel Tamariz-Mascarua

Abstract. It is shown that a space X is L(µp)-Weakly Fréchet-Urysohn for p ∈ ω∗ iff it
is L(νp)-Weakly Fréchet-Urysohn for arbitrary µ, ν < ω1, where µp is the µ-th left power
of p and L(q) = {µq : µ < ω1} for q ∈ ω∗. We also prove that for p-compact spaces,
p-sequentiality and the property of being a L(νp)-Weakly Fréchet-Urysohn space with

ν < ω1, are equivalent; consequently if X is p-compact and ν < ω1, then X is p-sequential
iff X is νp-sequential (Boldjiev and Malyhin gave, for each P -point p ∈ ω∗, an example
of a compact space Xp which is 2p-Fréchet-Urysohn and it is not p-Fréchet-Urysohn. The
question whether such an example exists in ZFC remains unsolved).

Keywords: p-compact, p-sequential, FU(p)-space, Rudin-Keisler order, tensor product of
ultrafilters, left power of ultrafilters, SMU(M)-space, WFU(M)-space

Classification: 04A20, 54A25, 54D55

0. Introduction.

In [BM], Boldjiev and Malyhin gave an example of a compact Franklin space
Xp which is a FU(p

2)-space but not a FU(p)-space, for each P -point p ∈ ω∗. We
prove in this article that this is not the case when we consider p-sequentiality; that
is, every compact 2p-sequential space is p-sequential for every p ∈ ω∗ (3.9). In
order to obtain this result we introduce, in the first section, the left exponentiation
νp of p ∈ ω∗ for each ν < ω1, and we study its basic properties and its relation
with the power pν defined by Booth in [Bo]. In Section 2, we analyze the concepts
of M -Weakly Fréchet-Urysohn space (WFU(M)-space) and M -Strongly Fréchet-
Urysohn space (SFU(M)-space) for M ⊂ ω∗. In the last section, we prove that if
X is a p-compact space, then X is p-sequential iff X is a WFU(L(νp))-space, where
L(q) = {µq : µ < ω1} with q ∈ ω∗ (3.7 and 3.8). As a consequence, in the class of
p-compact spaces we have that p-sequentiality and νp-sequentiality coincide.

1. Preliminaries.

We restrict our attention throughout this paper to Tychonoff spaces. For A ⊂ X ,
the closure and interior of A in X are denoted by ClX(A) (or simply Cl(A)) and
InX (A), respectively. For x ∈ X , N (x) will be the set of all neighborhoods of x.
The Stone-Čech compactification β(ω) of the natural numbers is identified with the

set of all ultrafilters on ω, where a basic clopen subset of β(ω) is Â = Clβ(ω)(A) =

{p ∈ β(ω) : A ∈ p} for A ⊂ ω. The remainder of β(ω) is ω∗ = β(ω) \ ω and, for

A ⊂ ω, we let A∗ = Â∩ω∗. If f : ω → ω is a function, then f : β(ω)→ β(ω) denotes
the Stone-Čech extension of f . The Rudin-Keisler (pre-)order on ω∗ is defined by

p ≤ RK q if there is a surjection f : ω → ω such that f(q) = p, for p, q ∈ ω∗. If
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p, q ∈ ω∗ satisfy p ≤ RK q and q ≤ RK p, then we say that p and q are RK-equivalent
and write p ≃ RK q. It is not difficult to verify that p ≃ RK q iff there is a permutation
σ of ω such that σ(p) = q. The type of p ∈ ω∗ is T (p) = {q ∈ ω∗ : p ≃ RK q}.
Now we recall the definition of p-limit, for p ∈ ω∗, introduced and studied by

Bernstein in [Be].

Definition 1.1. Let (xn)n<ω be a sequence in a space X and p ∈ ω∗. An element
x of X is a p-limit point of (xn)n<ω (in symbols, x = p- limn→∞ xn) if for each
V ∈ N (x), {n < ω : xn ∈ V } ∈ p.
If p ≤ RK q, then every p-limit point is also a q-limit point as stated in the next

lemma, the proof of which is easy.

Lemma 1.2. Let (xn)n<ω be a sequence in a space X such that p- limn→∞ xn =

x ∈ X . If f : ω → ω is a function such that f(q) = p, then x = q- limn→∞ xf(n).

In [Be] the author also considered the following notion.

Definition 1.3. Let p ∈ ω∗. A space X is p-compact if every sequence (xn)n<ω of
points of X has a p-limit point in X .

The sum of a countable set of ultrafilters on ω with respect to an ultrafilter on
ω has been studied by Froĺık [F]; for the general case, arbitrary filters on arbitrary
sets, by Vopěnka [V] and Katětov [K].

Definition 1.4. Let p ∈ ω∗ and {pn : n < ω} ⊆ ω∗. The sum of {pn : n < ω} with
respect to p, denoted Σppn, is the set

{A ⊆ ω × ω : {n < ω : {m < ω : (n, m) ∈ A} ∈ pn} ∈ p}.

It is evident that Σppn is an ultrafilter on ω×ω and can be viewed as an ultrafilter
on ω via a bijection between ω × ω and ω. If p, q ∈ ω∗ and pn = q for each n < ω
then Σppn is the usual tensor product p⊗ q of p and q. It is not hard to see that ⊗
is not a commutative operation on ω∗. However, Booth [Bo] showed that ⊗ induces
a semigroup structure on the set of types of ω∗.
We also have that the sum and tensor product satisfy:

Lemma 1.5. Let (pn)n<ω , (qn)n<ω be two sequences in ω∗ and p, s, q, r ∈ ω∗.
Then

(1) (Blass [Bl]) if {n < ω : pn ≤ RK qn} ∈ p, then Σppn ≤ RKΣpqn; and
Σppn < RK Σpqn if {n < ω : pn < qn} ∈ p.

(2) (Kunen, see [Bo, 2.21]) if (rn)n<ω is a discrete sequence in ω∗ and
rn ≃ RK Σqn

pk for all n < ω, then Σprn ≃ RKΣΣpqn
pn;

(3) (folklore) r < RK p⊗ r and r < RK r ⊗ p;
(4) if p ≤ RK s and q ≤ RK r, then p⊗ q ≤ RK s⊗ r.

(5) (Blass [Bl]) If f : ω → ω is a function satisfying f(q) = p, and pn ≤ RK qn

for all n < ω, then Σppn ≤ RKΣqqf(n).

Throughout this paper, for each 2 ≤ ν < ω1 we fix an increasing sequence
(ν(n))n<ω of ordinals in ω1 so that
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(1) if 2 ≤ ν < ω, ν(n) = ν − 1;
(2) ω(n) = n for n < ω;
(3) if ν is a limit ordinal, then ν(n)րν;
(4) if ν = µ+m where µ is a limit ordinal and m < ω, then ν(n) = µ(n) +m
for each n < ω.

In [Bo], the power (or the right power) T (p)ν is defined for each 0 < ν < ω1 and
for p ∈ ω∗. For our convenience, if 0 < ν < ω1 and p ∈ ω∗, then pν stands for an
arbitrary point in T (p)ν . The basic properties of Booth’s powers of ultrafilters are
summarized in the following lemma.

Lemma 1.6. Let p, q ∈ ω∗. Then

(1) (Booth [Bo]) if 1 < ν < ω1, then pν ≃ RKΣpp
ν(n);

(2) (Booth [Bo]) if 0 < µ < ν < ω1, then pµ < RK pν ;
(3) if p ≤ RK q, then pν ≤ RK qν for all 0 < ν < ω1;
(4) ([G-F2, 2.29]) if 0 < ν < ω1 is a limit ordinal and ω ≤ µ < ν, then

p⊗ pµ ≤ RK pν ;
(5) ∀ 0 < µ, ν < ω1∃ θ < ω1 (p

µ ⊗ pν ≤ RK pθ);

(6) ∀ 0 < µ, ν < ω1∃ θ < ω1 ((p
µ)ν ≤ RK pθ).

Proof: The proofs of (3), (5) and (6) are similar to those given for 1.7 (3′), 1.7 (5′)
and 1.7 (6′) below, respectively, and we omit them. �

We can also define a left exponentiation which will play an important role in the
next section:
2T (p) = T (p⊗p) and n+1T (p) = T (p)⊗ nT (p) for n < ω. If µT (p) has been

defined for all 0 < µ < ν < ω1 and ν is a limit ordinal, then νT (p) = T (e(p)),

where e : ω → ω∗ is an embedding with e(n) ∈ ν(n)T (p) for n < ω. If ν = µ + 1,
then νT (p) = T (p)⊗ µT (p) (the basic difference between the left power and Booth’s
power is that in [Bo] T (p)µ+1 is defined by T (p)µ ⊗T (p)). As above, if 0 < ν < ω1
and p ∈ ω∗, then νp stands for an arbitrary point in νT (p). Observe that, because of
associativity of ⊗ on the set of types, nT (p) = T (p)n for every n < ω, and therefore
ωT (p) = T (p)ω. It is proved in [Bo, Corollary 2.23] that T (p)ω+1 < RK

ω+1T (p).
Some properties of the left power of ultrafilters and its relations with the right

power are given in the next lemma.

Lemma 1.7. Let p, q ∈ ω∗. Then

(2′) if 0 < µ < ν < ω1, then
µp < RK

νp;

(3′) if p ≤ RK q, then νp ≤ RK
νq for all 0 < ν < ω1;

(4′), (5′) ∀ 0 < µ, ν < ω1∃ θ < ω1 (
µp⊗ νp ≤ RK

θp);

(6′) ∀ 0 < µ, ν < ω1∃ θ < ω1 (
µ(νp) ≤ RK

θp);

(7) ∀ 0 < µ < ω∃ θ, τ < ω1 (p
µ ≤ RK

θp and µp ≤ RK pτ ).

Proof: (2′) Since µp ≃ RK pµ for every 0 < µ ≤ ω, then by 1.6 (2) we have:
µp < RK

νp for all 0 < µ < ν ≤ ω. Suppose that for every µ < λ < ν < ω1 the
inequality µp < RK

λp holds. If ν = λ + 1, then, by 1.5 (3), µp ≤ RK
λp < RK p⊗ λp



350 S.Garcia-Ferreira, A.Tamariz-Mascarua

≃ RK
νp. Now, assume that ν is a limit ordinal. Then there is N < ω such that

µ < ν(n) for every n > N . By induction hypothesis we have that µp < RK
ν(n)p for

every n > N . So, {n < ω : µp < RK
ν(n)p} ∈ p. Therefore, by 1.5 (1), we obtain

that µp < RK
µ+1p ≃ RKΣp

µp < RKΣp
ν(n)p ≃ RK

νp.

(3′) First we shall show that there is g : ω → ω onto such that g(m) ≤ m for all
m < ω and g(q) = p. We consider the following two cases:

I. There is no finite-to-one function f : ω → ω for which f(q) = p. Let g : ω → ω
be onto such that g(q) = p. Assume that A = {m < ω : m < g(m)} ∈ q. Then,
there is N ∈ B = g[A] such that |g−1(N)∩A| = ω. If m > N and m ∈ g−1(N)∩A,
then g(m) = N < m, which is a contradiction. Therefore, {m < ω : g(m) ≤ m} ∈ q.
We may assume that g(m) ≤ m for all m < ω.

II. There is a finite-to-one function f : ω → ω such that f(q) = p. Then,
for each n < ω we have that f−1(n) = {kn

0 , . . . , k
n
rn
}. Define h : ω → ω by

h(n) = min{kn
0 , . . . , k

n
rn
}. Notice that h is one-to-one. Put g = h ◦ f . If m < ω and

f(m) = n, then g(m) = h(f(m)) = h(n) ≤ m since m ∈ {kn
0 , . . . , k

n
rn
}. Since h is

one-to-one, by [CN, 9.2 (b)], g(q) = h(f(q)) = h(p) ≃ RK p. This proves our claim.

We now proceed by induction. By 1.5 (4) we have that np ≤ RK
nq for all 1 ≤

n < ω. Assume that µp ≤ RK
µq for all µ < ν < ω1. If ν = µ + 1, by 1.5 (4), we

have that νp ≃ RK p⊗ µp ≤ RK q ⊗ µq ≃ RK
νq. Suppose that ν is a limit ordinal.

Let g : ω → ω be such that g(n) ≤ n for all n < ω and g(q) = p. By assumption,

and using (2′), we have that ν(n)p ≤ RK
ν(n)q and ν(g(n))q ≤ RK

ν(n)q. From 1.5 (5)

and 1.5 (1) it follows that νp ≃ RK Σp
ν(n)p ≤ RKΣq

ν(g(n))q ≤ RK Σq
ν(n)q ≃ RK

νq.

(4′), (5′) We proceed by induction on µ. By definition we have that p⊗ νp ≤ RK

ν+1p for every ν < ω1. Assume that for each ν < ω1 and each λ < µ < ω1, there is
θ < ω1 for which

λp⊗ νp ≤ RK
θp. First, suppose that µ = λ+ 1, then by induction

hypothesis there exists θ < ω1 such that
µp⊗ νp ≃ RK p⊗(λp⊗ νp) ≤ RK p⊗ θp ≃ RK

θ+1p. Now, assume that µp ≃ RKΣp
µ(n)p. By assumption, for each n < ω, there

is λn < ω1 such that
µ(n)p⊗ νp ≤ RK

λnp. Set λ = sup{λn : n < ω}. Then,
µ(n)p⊗ νp ≤ RK

λp for all n < ω. Hence, by 1.5 (2) and 1.5 (1), µp⊗ νp ≃ RK

(Σp
µ(n)p)⊗ νp ≃ RKΣp(

µ(n)p⊗ νp) ≤ RK p⊗ λp ≃ RK
λ+1p.

(6′) The proof is by induction on µ. Suppose that for each ν < ω1 and each

λ < µ < ω1 there is θ for which λ(νp) ≤ RK
θp. If µ = λ + 1, then by induction

hypothesis there exists δ < ω1 such that
λ+1(νp) ≃ RK

νp⊗ λ(νp) ≤ RK
νp⊗ δp.

Because of (5′) we can find θ < ω1 for which
µ(νp) ≤ RK

νp⊗ δp ≤ RK
θp. If µ is

a limit ordinal we have that µ(νp) ≃ RKΣq
µ(n)q, where q = νp. By assumption, for

each n < ω there is λn such that
µ(n)q ≤ RK

λnp. If we put λ = sup{λn : n < ω},

then µ(n)q ≤ RK
λp and so Σq

µ(n)q ≤ RK q ⊗ λp. Applying (5′) there is θ < ω1 such

that µ(νp) ≃ RKΣq
µ(n)q ≤ RK

νp⊗ λp ≤ RK
θp.

(7) We are going to prove the first inequality because the second one is shown
in an analogous fashion. Assume that for each 0 < ν < µ < ω1 there is θ <
ω1 such that

νp ≤ RK pθ. If µ = λ + 1, then there is δ < ω1 such that
µp =

λ+1p ≃ RK p⊗ λp ≤ RK p⊗ pδ. By 1.6 (4), we can find θ < ω1 satisfying
µp ≤ RK
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p⊗ pδ ≤ RK pθ. Let us suppose now that µp ≃ RKΣp
µ(n)p. By induction hypothesis,

for each n < ω, there is δn < ω1 such that
µ(n)p ≤ RK pδn . If δ = sup{δn : n <

ω}, then µ(n)p ≤ RK pδ for all n < ω. Thus, using 1.5 (1) and 1.6 (4), we obtain
µp ≃ RK Σp

µ(n)p ≤ RKΣpp
δ ≃ RK p⊗ pδ ≤ RK pθ for some θ < ω1. �

Observe that we do not have a statement in 1.7 analogous to that in 1.6 (1).

In fact, because of 1.5(1) we obtain the following inequality: Σp
(ω+1)(n)p ≃ RK

Σp
ω(n)+1p ≃ RKΣp

n+1p < RKΣp
ωp ≃ RK p⊗ωp ≃ RK

ω+1p.

Notation 1.8. For p ∈ ω∗ we put L(p) = {νp : ν < ω1} and R(p) = {pν : ν < ω1}.

2. SFU(M)-spaces and WFU(M)-spaces.

The Fréchet-Urysohn spaces and sequential spaces can be generalized using p-
limits as follows:

Definition 2.1. Let p ∈ ω∗ and X be a space. Then

(1) (Comfort-Savchenko) X is a FU(p)-space if for each A ⊆ X and x ∈ Cl(A)
there is a sequence (xn)n<ω in A such that x = p- limxn;

(2) (Kombarov [Ko])X is p-sequential if for every non-closed subset A ofX there
is x ∈ Cl(A) \ A and a sequence (xn)n<ω in A such that x = p- limxn.

The p-limits and subsets of ω∗ can be used to produce the following classes of
spaces, which are closely related to the FU(p)-property.

Definition 2.2 (Kočinac [Koč]). Let ∅ 6=M ⊆ ω∗ and let X be a space. Then

(1) X is a WFU(M)-space if for A ⊆ X and x ∈ A− there are p ∈ M and
a sequence (xn)n<ω in A such that x = p- limxn;

(2) X is a SFU(M)-space if for A ⊆ X and x ∈ A− there is a sequence (xn)n<ω

in A such that x = p- limxn for all p ∈ M .

Notice that the concept of SFU(ω∗)-space (resp. WFU(ω∗)-space) coincides with
the concept of Fréchet-Urysohn space (resp. countable tightness). If p ∈ ω∗, then
SFU({p})-space = WFU({p})-space = FU(p)-space. The fundamental properties
of the notions given in 2.2 are stated in the next theorem.

Theorem 2.3. Let ∅ 6=M ⊆ ω∗. Then

(1) if p ∈ M , SFU(M)-space ⇒ FU(p)-space ⇒WFU(M)-space;
(2) SFU(M)-space ⇔ SFU(Clβ(ω)(M))-space;

(3) FU(p)-space ⇔WFU(T (p))-space, for p ∈ ω∗;
(4) WFU(M)-space ⇒WFU(Clβ(ω)(M))-space.

For a nonempty closed subset M of ω∗, we define ξ(M) = ω∪{M}, where ω has
the discrete topology and the neighborhood system of M is {{M}∪ A : A ⊆ ω and
M ⊆ A∗}. Then ξ(M) is a WFU(M)-space for each ∅ 6= M ⊆ ω∗. Observe that,
for A ⊂ ω, M ∈ Clξ(M)(A) iff there is p ∈ M such that A ∈ p, and if M is closed,

M =
⋂

{B∗ : B ⊆ ω and M ⊆ B∗}.
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This kind of spaces will supply some important examples. We are also going to
analyze when ξ(M) is a SFU(M)-space and when it is a Fréchet-Urysohn space.

Lemma 2.4. Let M ⊂ ω∗ be closed. Then ξ(M) is a SFU(M)-space iff for each
A ⊂ ω satisfying A∗ ∩ M 6= ∅, there exists f : ω → A such that f [M ] ⊂ M ∩ A∗.

Proof: Necessity. Let A ⊂ ω such that A∗ ∩ M 6= ∅. Thus, M ∈ Clξ(M)(A).

Hence, there is a sequence (an)n<ω in A such that M = p- lim an for every p ∈ M .
Let f : ω → A defined by f(n) = an. It is not difficult to see that f(M) ⊂ M ∩A∗.

Sufficiency. M ∈ Clξ(M)(A) implies that M ∩ A∗ 6= ∅. By hypothesis, there

exists f : ω → A for which f [M ] ⊂ M ∩ A∗. The sequence (f(n))n<ω q-converges
to M for every q ∈ M . �

Next, we give some equivalent conditions which guarantee that ξ(M) is Fréchet-
Urysohn. The statement (1) ⇔ (2) below is due to Malyhin [M, Theorem 1].

Theorem 2.5. Let M be a closed subset of ω∗. Then the following statements are
equivalent

(1) M is a regular closed subset of ω∗;
(2) ξ(M) is a Fréchet-Urysohn space;
(3) ξ(M) is a SFU(M)-space and Inω∗(M) 6= ∅.

Proof: (1) ⇒ (2). Assume that M = Clω∗(Inω∗(M)) and M ∈ Clξ(M)(A). Then

there is p ∈ M such that A ∈ p. We claim that A∗∩ Inω∗(M) 6= ∅. If not, then A∗∩
M = ∅ which would be a contradiction. Let D ⊆ ω such that D∗ ⊆ A∗ ∩ Inω∗(M).
We may suppose that D ⊆ A. Enumerate faithfully D by {dn : n < ω}. We shall
verify that dn → M . Let B ⊆ ω be such that M ⊆ B∗. If |D \ B| = ω, then there
is q ∈ (D \ B)∗ ⊆ D∗ ⊆ M ⊆ B∗, but this is impossible. Thus, |D \ B| < ω and so
there is m < ω such that dn ∈ B for all m ≤ n < ω. This shows that dn → M .

(2) ⇒ (3). We only need to show that Inω∗(M) 6= ∅. By assumption there is
a sequence (nk)k<ω of positive integers such that nk → M . Set A = {nk : k < ω}.
We claim that A∗ ⊂ M . Indeed, let p ∈ A∗ and suppose that p /∈ M . Then we can
find B ⊂ A such that B ∈ p and B∗ ∩ M = ∅. Since M ⊂ (ω \ B)∗, there is m < ω
such that nk ∈ A \ B whenever m ≤ k < ω, but this is impossible because B is an
infinite subset of A.

(3) ⇒ (1). We shall verify that Inω∗(M) is dense in M . Fix p ∈ M and A ∈ p.
Then M ∈ Clξ(M)(A) and so there is a sequence (xn)n<ω in A such that M =

q- limxn for all q ∈ M . By hypothesis, there is B ⊂ ω satisfying B∗ ⊂ Inω∗(M). If
q ∈ B∗, then {n < ω : xn ∈ B∗} ∈ q. Hence, |A ∩ B| = ω and so ∅ 6= A∗ ∩ B∗ ⊂
A∗ ∩ Inω∗(M). �

Examples 2.6. (1) If p ∈ ω∗, then ξ(p) is a FU(p)-space and not a SFU(T (p))-
space.

(2) Let p, q ∈ ω∗ be RK-incomparable (see [CN, 10.4]). Then ξ(p) is
a WFU(Clβ(ω) T (q))-space and not a WFU(T (q))-space since ξ(p) cannot be
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a FU(q)-space (by [G-F1, 2.2]). Also, ξ(p) is not q-sequential and is a WFU({p, q})-
space; this shows that WFU(M)-space does not imply r-sequential for r ∈ M .

(3) If p, q ∈ ω∗, and p is not ≃ RK -equivalent to q, then ξ({p, q}) is not
a SFU({p, q})-space.

(4) Let p ∈ ω∗ and {pn : n < ω} be a discrete subset of T (p). If M = Clω∗({pn :
n < ω}), then ξ(M) is a SFU(M)-space and is not Fréchet-Urysohn. In fact, since
Inω∗(M) = ∅, ξ(M) cannot be Fréchet-Urysohn (2.5). Since {pn : n < π} is discrete,
we can find a partition {An : n < ω} of ω such that An ∈ pn for each n < ω. Let
A ⊂ ω be such that A∗ ∩ M 6= ∅. Choose r ∈ A∗ ∩ M . Without loss of generality,
we may assume that r 6= pn for all n < ω. Then there is m < ω such that pm ∈ A∗.
Since pn ≃ RK pm and pn ∈ A∗ ∩ A∗

n, for each m 6= n < ω, there is a bijection
σn : An → A such that σn(pn) = pm. Define σ =

⋃
m6=n<ω σn : ω → A. Then we

have that σ[M ] = {pm} ∈ A∗ ∩ M and the conclusion follows from 2.4.

In the next theorem, we will show that the WFU(L(νp))-property agrees with
the WFU(R(pµ))-property for each 0 < ν, µ < ω1. First, we prove a lemma.

Lemma 2.7. Let N, M ⊆ ω∗ such that N 6= ∅ 6= M and ∀ p ∈ M∃ q ∈ N
(p ≤ RK q). Then every WFU(M)-space is a WFU(N)-space.

Proof: Let X be a WFU(M)-space and A ⊆ X . Fix x ∈ Cl(A). Then, there is
a sequence (xn)n<ω in A and p ∈ M such that x = p- limxn. By assumption, there
is q ∈ N such that p ≤ RK q. Let f : ω → ω be a surjection such that f(q) = p.
By 1.2, we have that x = q- limxf(n). Thus, x is a WFU(N)-space. �

Theorem 2.8. If p ∈ ω∗ and 0 < ν, µ < ω1, then a space X is WFU(L(νp))-space
iff it is a WFU(R(pµ))-space.

Proof: By 1.7 (6′), 1.7 (7), 1.5 (3) and 1.8 (6) for each ν, µ, θ < ω1 there are γ, τ <

ω1 such that
θ(νp) ≤ RK (p

µ)γ ≤ RK
τ (νp). Then the conclusion is a consequence

of 2.7. �

3. p-sequential p-compact spaces.

We saw in 2.6 (2) that a WFU(M)-space is not necessarily r-sequential whenever
r ∈ M . There are also r-sequential spaces with r ∈ M ⊂ ω∗, which are not
WFU(M)-spaces; for instance, every p-sequential which is not a FU(p)-space, for
p ∈ ω∗ (see [G-F1]). The situation is quite different in the class of p-compact spaces
when M = L(p), as we shall prove in this section (3.8). First some preliminary
lemmas and definitions.

Definition 3.1. Let p be a free ultrafilter on ω×ω and (xn,m)n,m<ω a bisequence
in a space X . Then we say x = p- limxn,m if for every V ∈ N (x) we have that
{(n, m) ∈ ω × ω : xn,m ∈ V } ∈ p.

Lemma 3.2. Let p, qn ∈ ω∗, for n < ω, and let (xn,m)n,m<ω be a bisequence in
a space X . If qn- limm→∞ xn,m exists for all n < ω, then x = (Σpqn)- limxn,m iff

x = p- lim
n→∞

(qn- lim
m→∞

xn,m).
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Proof: Necessity. Assume that x 6= p- limn→∞(qn- limm→∞ xn,m). Then there
is V ∈ N (x) such that {n < ω : qn- limm→∞ xn,m /∈ Cl(V )} ∈ p. By assumption,
A = {(n, m) ∈ ω × ω : xn,m ∈ V } ∈ Σpqn; that is, {n < ω : {m < ω : xn,m ∈
V } ∈ qn} ∈ p. Thus, there is N < ω such that qN - limm→∞ xN,m /∈ Cl(V ) and
{m < ω : xN,m ∈ V } ∈ qN , but this is a contradiction.

Sufficiency. If V ∈ N (x), then {n < ω : qn- limm→∞ xn,m ∈ V } ∈ p and hence
{n < ω : {m < ω : xn,m ∈ V } ∈ qn} ∈ p. Thus, {(n, m) ∈ ω × ω : xn,m ∈ V } ∈
Σpqn. Therefore, x = (Σpqn)- limxn,m. �

We remark that the conclusion of 3.2 does not hold if we drop the condition
qn- limm→∞ xn,m exists for each n < ω. For instance, in the space ξ(p⊗ p) =
ω×ω∪{p⊗ p} we have that p⊗ p = p⊗ p- lim(n, m), but p- limn→∞(n, m) does not
exist for each n < ω.

Definition 3.3. Let X be a space, A ⊂ X and p ∈ ω∗. We put Ap,0 = A, and, if
Ap,λ is already defined for every λ < µ ≤ ω1, then Ap,µ = {x ∈ X : x = p- limxn

for some sequence (xn)n<ω in
⋃

λ<µ Ap,λ}. When it is clear what p we are talking

about, we write Aλ instead of Ap,λ. We also define L(q, A) = {x ∈ X : x = q- limxn

for some (xn)n<ω ⊂ A}. Because of 1.2, if p ≤ RK q, then L(p, A) ⊂ L(q, A).

We omit the proof of the next easy lemma.

Lemma 3.4. Let p ∈ M ⊆ ω∗, and let X be a space. Then

(1) X is p-sequential iff for every A ⊂ X , ClX(A) =
⋃

λ<ω1
Ap,λ;

(2) X is a WFU(M)-space iff for every A ⊂ X , ClX(A) =
⋃

p∈M L(p, A);

(3) X is a FU(p)-space iff for every A ⊂ X , ClX(A) = Lp,A.

Definition 3.5. Let p ∈ ω∗. A p-sequential space X has a degree of p-sequentiality
equal to µ ≤ ω1 if µ is the least ordinal such that for every A ⊂ X , ClX(A) = Aµ

(see the notation in 3.3).

Theorem 3.6. For p ∈ ω∗, every p-sequential space is aWFU(L(p))-space. More-
over, if X has a degree of p-sequentiality equal to µ < ω1 (resp. 0 < µ < ω) then X
is a FU(µ+1p)-space (resp. FU(µp)-space).

Proof: Let p ∈ ω∗, X a p-sequential space and A ⊆ X . In order to prove all
the statements in the theorem, it is enough to show that Aλ ⊂ L(λ+1p, A) for

every 0 < λ < ω1, and Aλ ⊂ L(λp, A) if 0 < λ < ω (see 3.4). We proceed
by induction. Evidently, A1 ⊂ L(p, A). Suppose that for every λ < µ < ω1,

Aλ ⊂ L(λ+1p, A) (resp. for every 0 < λ < µ < ω, Aλ ⊂ L(λp, A)). Let x ∈ Aµ,
so x = p- limn→∞ xn, where xn ∈

⋃
λ<µ Aλ for all n < ω. For each n < ω

there is λn < µ such that xn ∈ Aλn
. Let ν = sup{λn : n < ω}. By hypoth-

esis xn ∈ L(νp, A) for every n < ω. Then, for each n < ω there exists a se-
quence (xn,m)m<ω ⊂ A such that xn =

νp- limm→∞ xn,m. Then, because of 3.2,

x = p- limn→∞(
νp- limm→∞ xn,m) =

ν+1p- limxn,m; that is, x ∈ L(ν+1p, A) ⊂
L(µp, A) if 0 < µ < ω, and x ∈ L(ν+1p, A) ⊂ L(µ+1p, A) if ω ≤ µ < ω1. �

The following lemma is a direct consequence of [G-F2, 2.7 (3)], 1.2 and 1.7 (7).
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Lemma 3.7. For p ∈ ω∗ and 0 < ν < ω1, p-compactness, νp-compactness and
pν -compactness are equivalent.

We are ready now to prove that the converse of Theorem 3.6 holds in the class
of p-compact spaces.

Theorem 3.8. Let p ∈ ω∗. If X is a p-compact, WFU(L(p))-space, then X is
p-sequential. In addition, if X is a FU(µp)-space for some 0 < µ < ω1, then X has
a degree of p-sequentiality ≤ µ.

Proof: Let A ⊂ X . We will prove by induction that for every 0 < λ < ω1,
L(λp, A) ⊂ Aλ (see the definition in 3.4). It is clear that A1 = L(p, A). Assume

that, for every 0 < λ < µ < ω1, we have L(λp, A) ⊂ Aλ. Let x ∈ L(µp, A), then
x = µp- limn→∞ xn for some sequence (xn)n<ω in A. First, suppose that µ = λ+1,

so x = p⊗ λp- limxn,m where xn,m ∈ A for all n, m < ω (this is possible because

of 1.2). Since X is p-compact, by 3.7, X is λp-compact and so λp- limm→∞ xn,m

exists for each n < ω. In virtue of 3.2, x = p- limn→∞ (
λp- limm→∞ xn,m). By

induction hypothesis, we have that, for each n < ω, yn =
λp- limm→∞ xn,m ∈ Aλ.

Therefore, x = p- limn→∞ yn ∈ Aλ+1 = Aµ.

Now assume that µ is a limit ordinal. So µp ≃ RKΣp
µ(n)p and hence, by 1.2,

x = Σp
µ(n)p- limxn,m where xn,m ∈ A for all n, m < ω. According to 3.7, X is

µ(n)p-compact for all n < ω. Then, µ(n)p- limm→∞ xn,m exists for each n < ω.

By 3.2, x = p- limn→∞ (
µ(n)p- limm→∞ xn,m). By assumption, for each n < ω,

yn =
µ(n)p- limm→∞ xn,m ∈ Aµ(n). Therefore, x ∈ Aµ, and so L(µp, A) ⊂ Aµ. �

As a direct consequence of 2.8, 3.6 and 3.8 we have:

Corollary 3.9. Let p ∈ ω∗, 0 < ν < ω1 and X be a p-compact space. Then the
following are equivalent

(a) X is p-sequential;
(b) X is νp-sequential;
(c) X is pν -sequential.

Observe that if p ∈ ω∗, then ξ(p2) is p2-sequential, but it is not p-sequential, by
[G-F1, 2.2].
If we assume CH, then the situation for p-compact FU(p)-spaces is quite different

to that described in 3.9. In fact, Boldjiev and Malyhin [BM] have shown that, under
CH, for every P -point p of ω∗ there is a compact Franklin space Xp (this space is

constructed from a suitable almost disjoint family on ω) which is a compact FU(p2)-
space and is not a FU(p)-space. The answer to the following question remains
unknown.

Question 3.10. Does ZFC imply that there is a p-compact, FU(p2)-space which
is not a FU(p)-space, for each p ∈ ω∗?
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