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On the metric dimension of converging sequences

Ladislav Mǐśık Jr., Tibor Žáčik

Abstract. In the paper, some kind of independence between upper metric dimension and
natural order of converging sequences is shown — for any sequence converging to zero there
is a greater sequence with an arbitrary (6 1) upper dimension. On the other hand there
is a relationship to summability of series — the set of elements of any positive summable
series must have metric dimension less than or equal to 1/2.

Keywords: metric dimension, converging sequences, summability of series

Classification: 54F50, 40A05

Let (K, d) be a compact metric space. We say that an open covering C of K is
an r-covering if for every C ∈ C diam(C) < r. Let us denote by N(r,K) the least
cardinality of an r-covering of K. The following characteristic of the “massiveness”
of the set K:

dimK = lim inf
r>0

logN(r,K)
− log r

was defined in [P-S] and it is called the lower metric dimension of the set K. In
[K-T] both lower and upper (defined by lim sup) dimensions were investigated.
Let us recall some basic relations of the lower and upper metric dimensions to

the well known topological dimension – td and Hausdorff dimension – hd. The
inequalities

tdK 6 hdK 6 dimK 6 dimK
hold (c.f. [V]) for each totally bounded metric space K. For some “nice” spaces K
(e.g., for the subsets of R

n with nonempty interior) the inequality tdK = dimK
holds. On the other hand, the main difference between the lower (upper) metric
dimension and Hausdorff dimension consists in the fact that Hausdorff dimension of
any countable set is zero, while the lower (upper) metric dimension can be positive.
It is proved in [M-Z, Theorem 4] that in each compact metric space K there is
a converging sequence S of points of K with dimS = dimK (by the upper metric
dimension of the sequence we mean the upper metric dimension of the set of points
of the sequence), which is not true for lower metric dimension. This fact was
the starting point of our interest in the upper metric dimension of sequences. On
the other hand, the upper metric dimension gives an important characteristic of
sequences — a characteristic of another kind compared with a ‘speed of convergence’
(see Theorem 2).

Conventions: For simplicity we will speak about dimension instead of the upper
metric dimension. For the converging sequence {an}∞n=1 we will write A = {an}
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instead of A =
⋃

n∈N

{an}∪
{

lim
n→∞

an
}

if there is no danger of misunderstanding. For

an ∈ R, the symbols anր a (anց a) will mean that the sequence {an} is strictly
monotonically increasing (decreasing) and converging to a. By X we will denote

the cardinality of the set X . R, R
+ and N will denote the set of all real, positive

real and natural numbers, respectively. By minimal r-covering of the set K we mean
any r-covering consisting of N(r,K) sets.
In this paper we will deal with the upper metric dimension of the converging

sequences of real numbers. The outstanding position of the real sequences is given
by the following fact.

Proposition 1. Let (K, d) be a compact metric space and S = {sn} a sequence
in K converging to s0. Put dn = d(s0, sn) for each n ∈ N and D = {dn}. Then
dimD 6 dimS.

This fact is a consequence of the following

Theorem 1. Let (K, d) and (L, ̺) be two compact metric spaces. Let f : K → L
be α-Hölderian for α ∈ (0, 1〉, i.e., there is a constant L > 0 such that

(1) ρ
(

f(x), f(y)
)

< L [d(x, y)]α

for any x 6= y. Then dim f(K) 6 1
αdimK.

Proof: Take r > 0 and let C(r) be a minimal r-covering of K. Then by (1)
we have diam f(C) < L · rα for every C ∈ C(r) and, moreover, all sets f(C)
cover f(K). Each f(C) has a neighbourhood with diameter less than Lrα. Therefore
N

(

Lrα, f(K)
)

6 N(r,K) and

dim f(K) = lim sup
r→0+

logN
(

r, f(K)
)

− log r = lim sup
r→0+

logN(Lrα, f
(

K)
)

− logLrα 6

6 lim sup
r→0+

logN(r,K)
−α log r − logL

=
1

α
lim sup
r→0+

logN(r,K)
− log r

= 1αdimK .

�

Remark 1. We will use the previous theorem for a Lipschitzian (α = 1) surjective

mapping f : K → L, in this case we have dimL 6 dimK.
Proof of Proposition 1: Define π : S → D by π(s0) = 0 and π(sn) = dn for
n ∈ N. It is easy to see that for each x, y ∈ S we have the inequality |π(x)−π(y)| 6

d(x, y). Now it is sufficient to apply Theorem 1 to get the result. �

We can define the algebraic operations of addition and multiplication of two
converging sequences as well as the scalar multiplication of a converging sequence
— this can be considered as a particular case of multiplication with a constant
sequence. Hence, if A = {an} and B = {bn} are two converging sequences, then

A+B = {an + bn} ,

A · B = {an · bn} ,
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and, for α ∈ R,

α · A = {α · an} .

First we will consider the behaviour of the dimension with respect to these op-
erations.

Proposition 2. Let A = {an}, B = {bn} be two converging sequences of real
numbers and α ∈ R, α 6= 0. Then the relations

dim (A+B) 6 dimA+ dimB ,

dim (A · B) 6 dimA+ dimB ,

and

dimA = dimαA

hold.

Proof: First note that the inequality dim (A × B) 6 dimA + dimB holds for
compact A, B ⊂ R. Indeed, if A(r) and B(r) are minimal r-coverings of the sets A

and B, respectively, then C = {A× B; A ∈ A(r), B ∈ B(r)} is a (
√
2 · r)-covering

of A × B ⊂ R
2. Hence N(

√
2 · r, A × B) 6 N(r, A) · N(r, B) and by the properties

of lim sup the statement is obtained.
Moreover, dimA 6 dimB if A ⊂ B and A, B are compact (see [M-Z, Propo-

sition 3 (ii)]). Put D = {(an, bn)} ⊂ A × B and apply the above facts to get
dimD 6 dimA×B 6 dimA+dimB. Define π : D → A+B by π

(

(an, bn)
)

= an+bn

and note that

|(an + bn)− (am + bm)| 6 |an − am|+ |bn − bm| 6
√
2
√

(an − am)2 + (bn − bm)2 .

Applying Theorem 1 we get the first inequality.
Now define π′ : D → A · B by π′

(

(an, bn)
)

= an · bn and choose some α, β > 0
with α > an and β > bn for each n ∈ N. Now the following inequalities are true for
each m, n ∈ N:

|anbn − ambm| 6

6 |anbn − ambm − (anbm − ambn)|+ |anbn − ambm + (anbm − ambn)| =
= |(an + am)(bn − bm)|+ |(an − am)(bn + bm)| 6 2α|bn − bm|+ 2β|an − am| 6

6 2
√
2(α+ β)

√

(an − am)2 + (bn − bm)2 .

Applying Theorem 1 we get the second inequality.
For the proof of the third equality define B = {bn} by bn = α for each n ∈ N and

note that dimension of finite space is 0. This follows dimαA = dimB · A 6 dimA.
Now define C = {cn} by cn =

1
α for each n ∈ N. Thus dimA = dimC · (αA) 6

dimαA and the proof is finished. �

The following Corollary is a straightforward application of Proposition 2.
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Corollary 1. Let A = {an}, B = {bn} be converging real sequences and
dimB = 0. Then dim (A+B) = dimA and dim (A · B) 6 dimA.

Theorem 1 implies that the dimension is invariant under Lipschitzian homeo-
morphisms. That is the reason why in the rest of the paper we will consider only
the sequences converging to zero. Note that dimA = dim − A and dim (A ∪ B) =

max{dimA, dimB}, so we can restrict to positive sequences. Moreover, the dimen-
sion of the sequence is the dimension of the set of the values of the sequence. That
is why we will consider only the set S+ of positive strictly decreasing sequences
converging to zero, where we do not distinguish sequences which differ on the finite
set of indexes. Define a partial order on S+ in the usual way:

{an} 4 {bn} ⇐⇒ {n; an > bn} is finite .

The relations between dimension and this partial order will be considered in the
next part of the paper.
Denote Ak = { 1

nk
}∞n=1. By [Y] dimAk =

1
k+1 and Ak 4 Al for k > l, so that

smaller sequence has smaller dimension. The sequence { 12n } has dim zero and is
smaller than any An above. On the contrary the sequence { 1

logn} is greater than
any previous sequence and its dim is 1 (see, e.g., [Z]). It might seem that greater
sequences have greater dimensions, but the relations are much more complicated.

Lemma 1. For each {an} ∈ S+ there is a {bn} ∈ S+ with {bn} < {an} and
dim {bn} = 0.
Proof: By induction we will construct two sequences {rk}∞k=1, {nk}∞k=1 such that
rk ց 0, nk ր ∞:
Put r1 =

1
3 and choose an n1 such that an1 < r1. Take an r2 < r1 for which

(

1
r2

) 1

2
> n1 + 2 and an n2 such that an2 < r2.

Suppose we have chosen all rk−1 and nk−1, for some k > 3. Then we can find rk
with

(1)

(

1

rk

)
1

k

> nk−1 + 2 ,

and, moreover, satisfying the inequality

(2) rk < rk−2 − ank−2
.

Finally, there exists also an nk such that

(3) ank
< rk .

Choose an arbitrary sequence bn ց 0, for which

(4) bnk+1−1, . . . , bnk
∈ (ank

, ank
+ rk+2).
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Let r ∈ 〈rk+1, rk). Then

N



rk+1,

∞
⋃

i=nk+1

{bi}



 = 1 ,

because from (4) and (2) we have bnk+1
< ank+1

+ rk+3 < rk+1;

N



rk+1,

nk+1−1
⋃

i=nk

{bi}



 = 1 ,

as ank
< bnk+1−1 < · · · < bnk

< ank
+ rk+2 and rk+2 < rk+1;

N



rk+1,

nk−1
⋃

i=nk−1

{bi}



 = 1

from the same reason and

N



rk+1,

nk−1−1
⋃

i=1

{bi}



 6 nk−1 − 1 .

Hence by (1) and the choice of r,

N(r, {bi}) 6 1 + 1 + 1 + nk−1 − 1 = nk−1 + 2 <

(

1

rk

) 1

k

<

(

1

r

) 1

k

.

Therefore dim

(

∞
⋃

i=1
{bi}

)

= 0. �

Theorem 2. For each {an} ∈ S+ and for each α ∈ 〈0, 1〉 there is {bn} ∈ S+ with
{bn} < {an} and dim {bn} = α.

Proof: Let α ∈ 〈0, 1〉 and A = {an} be given. Lemma 1 states the existence
of a greater sequence D with dimension zero and [M-Z, Theorem 4] guarantees
the existence of a sequence C = {cn} with {cn} ∈ S+ and dimC = α. Then
B ≡ D + C < D < A and by Corollary 1 dimB = dimC = α. �

The above fact implies that there are arbitrary big sequences with prescribed
dimension. This is not true for smaller sequences (see Theorem 4 and Remark 2
below). On the other hand, if two sequences are in some sense mutually uniformly
distributed, then their dimensions are equal. This is the content of the following
theorem.
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Theorem 3. Let A = {an} and B = {bn} be two sequences from S+ and let there
be a constant ℓ ∈ N such that for every k > 0

{i; ak+1 < bi < ak} < ℓ .

Then dimA > dimB.

Proof: For r > 0 let A(r) be a covering of A by N(r, A) sets of diameter less
than r. Denote m = N(r, A)− 1. Then there are numbers n1, n2, . . . , nm such that
each interval 〈an1 , a1〉, 〈an2 , an1+1〉, 〈anm

, anm1
+1〉, . . . , (0, anm+1〉 is a subset of

one set from A(r). This covering covers also all points of the sequence B except
for points in the intervals (an1+1, an1), . . . , (anm+1, anm

). Their number is at most
(ℓ− 1)m, therefore N(r, B) 6 m+1+ (ℓ− 1)m < ℓ(m+1) = ℓ ·N(r, A). From this
we derive dimB 6 dimA. �

Example. Let {an} be a sequence in R
+, monotonically converging to zero, and

dim {an} = α. Let {bn} be a subsequence of {an} with bn = a7n. What we can say
about dim {bn}?
First note that if we denote A = {an} and B = {bn}, then B ⊂ A and by [M-Z,

Proposition 3] we obtain the inequality dimB 6 dimA.
Now, for any natural k > 1 there are exactly seven elements a7(k+1), a7(k+1)−1, . . .

. . . , a7k of A between bk+1 and bk. By the above theorem we have then dimA 6

dimB, the opposite inequality.
The answer is: dim {bn} = α.

Theorem 4. Let for a set A of elements of a series
∞
∑

n=1
an, an > 0, the inequality

dimA > 1/2 hold. Then the series is divergent.

Proof: To simplify the proof we will use the equivalent definition (see [K-T] and
[M-Z] for more details) of the upper dimension of a given compact K:

(4) dimK = lim sup
r→0+

logM(r,K)
− log r ,

where M(r,K) for r > 0 means the maximal cardinality of r-discrete subsets of K.
X ⊂ K is called r-discrete iff inf{d(x, y); x, y ∈ X, x 6= y} > r.

By the assumption of the theorem dimA > 1/2+ α, where 0 < α < 1/2. Then by
(4) for every positive r0 ∈ R there exists a number r, 0 < r < r0, such that

(5) M(r, A) >

(

1

r

)1/2+α

.

Fix this r for a moment and denote m = M(r, A). Let A(r) be a subset of A

corresponding to M(r, A), so that if x, y ∈ A(r) and x > y, then x − y > r. This
set is finite, hence it can be ordered as an increasing sequence

0 6 a1(r) < a2(r) < · · · < am(r) ,
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where ai(r) − ai−1(r) > r, i = 2, . . . , m. By this property we obtain inequalities

aj(r) > (j − 1)r , j = 1, 2, . . . , m .

Further, using these inequalities and (5),

a1(r) + a2(r) + · · ·+ am(r) > r
(

1 + 2 + · · ·+ (m − 1)
)

= r
m(m − 1)
2

>

> r
(1r )
1/2+α

(

(1r )
1/2+α − 1

)

2
=
1

2

(

r−2α − r(
1/2−α)

)

.

As 1/2 − α > 0, the last expression tends to infinity for r → 0+. Therefore for any
ℓ > 0, there is a sufficiently small r > 0 such that

s
∑

k=1
ak > ℓ, where as ≡ a1(r) for

this r. This means that the series
∞
∑

n=1
an is divergent. �

Remark 2. Theorem 2 states the existence of a greater sequence to a given se-
quence from S+ with an arbitrary dimension between 0 and 1. Theorem 4 in [M-Z]
guarantees the existence of a smaller sequence with dimension less than or equal
to a dimension of a given sequence. But the situation is not wholly symmetrical
— Theorem 4 in contrast to Theorem 2 prevents the existence, in general case, of
a smaller sequence with an arbitrary dimension near to 1. Indeed, let A = {ak}∞k=1
be a sequence such that

∞
∑

k=1
ak < ∞. Then for every sequence B = {bk}∞k=1, B 4 A,

we have
∞
∑

k=1
bk < ∞ and by Theorem 4 we have dimB 6 1/2.
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