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Sufficient conditions for convexity
in manifolds without focal points

M. BELTAGY

Abstract. In this paper, local, global, strongly local and strongly global supportings of
subsets in a complete simply connected smooth Riemannian manifold without focal points
are defined. Sufficient conditions for convexity of subsets in the same sort of manifolds
have been derived in terms of the above mentioned types of supportings.

Keywords: supporting of subsets, convex subsets (hypersurfaces), conjugate (focal) points,
horospheres

Classification: 53C42

1. Introduction.

Convexity of subsets in Euclidean space E™ has been a very interesting fruitful
area of research for a long time [4], [7], [8]. A comprehensive survey of the study of
sufficient conditions for convexity of subsets of E™ is given in [4]. In Section 3 of
[4], the subject of local supporting of subsets in E™ is considered and the following
results are established.

(i) An open connected set G C E™ is convex if, for each boundary point = € 9G,
there exists a local supporting hyperplane H (z) passing through x.

(ii) A closed connected set F' C E™ possessing interior points is convex if there exists
a o > 0 such that for each x € JF, there is a hyperplane passing through x which
leaves the set F'N Uy(x) in a closed half-space, where Uy(z) is a p-neighborhood of
the point z in E™.

(iii) A closed connected set F C E™ possessing interior points is convex if there
is a ¢ > 0, such that for each x € OF, there exists a cylinder Z whose base is an
(n — 1)-dimensional ball with center z and radius g, where Int (Z) N F = (). The
height of the cylinder may depend on z.

The result (ii) above is generalized to subsets of linear topological spaces in [4].

In [4], the authors expected a more general result which seems to be an extension
of the results (i)—(iii) above in a general Riemannian manifold M in the condition
that one could find supporting hypersurfaces in M possessing behavior similar to
that of hyperplanes in E™.

The main goal of this paper is to show some realization of the above expected
viewpoint in a complete simply connected C°° Riemannian manifold W without
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focal points. In a brief word we define and study convexity of subsets of W in
terms of local and global supportings of the same subsets. The most candidate
hypersurfaces to be used in defining supportings are the horospheres of W as we
shall see below. Actually, horospheres in W behave nicely (see Section 2 below).

2. Preliminaries.

From now on, let us take W (resp. W) to denote C'*° complete simply connected
Riemannian manifold without conjugate (resp. focal) points. M will denote a gene-
ral C>® Riemannian manifold. For a subset A C M, A will denote the closure of A
while 0A its boundary. For basic properties of W and W we refer the reader to 3],
(5], [6].

Concerning conjugate and focal points we just quote the following principal facts
which we shall frequently use throughout the paper (see [2], [6]).

(a) A manifold with non-positive sectional curvatures is free from focal points.

(b) Every manifold without focal points has no conjugate points but the converse
is not generally true.

(c) For each pair of points p,q € W, there exists a unique geodesic segment
from p to ¢ and is denoted by [pg]. When p is deleted from the geodesic
segment we write (pq].

Let d(p, q) denote the distance between the two points p,q € W. For each element
v of the unit sphere bundle SW of W and for each real number s > 0, let us define
the real-valued functions bys : W — R by bys(q) = s — d(yv(s),q), where 7, is
the maximal geodesic of W with initial velocity 7,,(0) = v. The functions b, are
increasing with s and absolutely bounded by d(7,(0),q). The Busemann function
of v is defined by b, = lims_,oc bys. Each b, is C! function defined on the whole
of W. In particular, if W is E™, each b, represents the usual height function in the
direction of v. Call H, = b;1(0) the horosphere and D, = b;1[0,00) the closed
horodisc of v [5].

From the above argument we may look at the horospheres (resp. horodiscs) in
W as geodesic spheres (resp. balls) of infinite radius.

The nice behavior — mentioned before — of horospheres in a manifold W without
focal points may be understood if one takes into account that [3]:

(1) Each Busemann function in W is C2 and has gradient vector field of unit
length.

(2) The level hypersurfaces (horospheres) of each Busemann function in W form
an equidistant family whose orthogonal trajectories are geodesics.

(3) If w is a unit vector at p € W, then u = grad b,(p). Moreover, if v =
grad by (q) for some ¢ € W then b, and b, differ only by a constant. Hence,
the horospheres determined by b,, are the same as those determined by b,.

3. On convexity.
A subset B C M is convex if for each pair of points p,q € B, there is a unique
minimal geodesic segment [pg] from p to ¢ and this segment is in B [2]. A subset
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K C M is a convex body if it is a convex subset of M with a non-empty interior.
The boundary OF of the convex open subset F' C M is a convex hypersurface of M.
A closed subset A C M is called strictly convex if it is convex and the boundary
0A contains no geodesic segments. -

The following results on convexity in W are necessary for Section 4 below which
represents the main part of this work. For the proofs see [1].

Lemma 3.1. Let A C W be an open subset. Then A is convex if and only if A is
convex.

Lemma 3.2. In W, each geodesic ball B(x,\) of center x and finite radius A > 0
is a strictly convex body.

Lemma 3.3. In W, each horodisc is a convex body.

Notice that although a horodisc in W is a limit of a sequence of geodesic balls,
horodisc is convex not necessarily strictly convex. Half-space in E"™ is a good ex-
ample for this claim. Horodiscs in hyperbolic space H™ are strictly convex subsets.

Lemma 3.4. For a closed convex subset B C W with smooth boundary hypersur-
face OB, each tangent geodesic v to OB has the property

yNInt(B) = 0.

Corollary 3.5. Let v be a maximal geodesic in W tangent to the horosphere H,.
Then ~y lies wholly in the closed subset W — (Dy, U D_y).

4. Main results.

In this section we state and prove our main results. We start by giving the
definitions of types of supportings.

Definition 4.1. A subset A C W is globally supported by a closed horodisc D,
for v € SW if

(i) A is a proper subset of D;

(i) AN Hy # 0.
If in addition AN H, is a single point set, then A is strongly globally supported
by Dy.

Definition 4.2. A subset A C W is locally supported at the point p € 0A by the
closed horodisc D, if p € H, and there exists a neighborhood U(p) in W such that
ANU(p) is globally supported by D,,. If ANU(p) is strongly globally supported at
p by Dy, then A is strongly locally supported at p by D,,.

From the above definitions, it is clear that if a subset A C W is globally supported
by D,, then no point of H, is an interior point of A. Besides, if A C W is locally
supported at p € OA by D, then each point of H, sufficiently close to p cannot be an
interior point of A. Moreover, each global supporting horodisc for a certain subset
A C W is local supporting of the same subset but the converse is not necessarily
true.
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Theorem 4.3. Let A be an open connected subset of W with smooth boundary
hypersurface 0A. Assume that A is locally (resp. strongly locally) supported at
each boundary point. Then A is convex (resp. strictly convex).

PrOOF: Firstly, we show that if A is locally supported at each boundary point,
then A is convex.

Let us fix the following notation. At the boundary point @ € JA, n(z) is the
unit normal of A at z in the interior direction of A.

Assume, on the contrary, that A is locally supported by En(x) at each boundary
point x € JA while A is non-convex. Consequently, there exist two interior points
p,q € A with a connecting geodesic segment [pg] not contained wholly in A. We
have now two possibilities to be considered separately (i) [pq] C A and (ii) [pq] ¢ A.

(i) [pgc A

Let us now move from the interior point p along [pg] towards ¢. Let x be the first
point at which [pg] touches OA. It is easy to see that all the points of the geodesic
subsegment [pz] joining p and z are interior points of A except x. Let us consider
the local supporting closed horodisc En(x) at x.

Clearly, the geodesic segment [zp] is tangential to A at x. Since A is locally
supported by En(x) at x, then z € H,(,) and [zp] is also tangential to H,,,) at .
For a point r € (px) sufficiently close to z, we have [rz) C D, (), i.e. the maximal
geodesic v through p and x satisfies v N Dy () # () contradicting Lemma 3.4 and
Corollary 3.5 (see Fig. 1).

Figure 1.

(ii) [pg] ¢ A

Since A is connected, then there exists a curve 7 joining p and ¢ such that 7 C A.
Let us consider all geodesic segments joining p to all the points of 7. For points
sufficiently close to p these segments are in A. If we move from p towards ¢ along T,
we find a geodesic segment [py] joining p to a point y € A and this segment touches
OA at some x such that all the points of the subsegment [px] are interior points of
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A except x € JA (see Fig. 2).

Figure 2.

We arrive again to a situation exactly as that of Fig. 1. Repeating the same argu-
ment of the case (i) we finally have that A is convex.

To complete the proof assume that A is strongly locally supported at each bound-
ary point. By the above argument we have that A is convex. Assume, on the con-
trary, that A is not strictly convex. Consequently, there exists a pair of points p, ¢ €
OA such that [pg] C JA. Let us consider y € [pg] to be the middle point of [pg]. Since
A is strongly locally supported at y, then there exists a sufficiently small neighbor-

hood U(y) in W about y such that ANU(y) C ﬁn(y) and (ANU(y))NHy, () = {y}-
Consequently, [pg] N U(y) C En(y) and ([pg] NU(y)) N Hy(y) = {y}, which means
that the maximal geodesic « through p and ¢ satisfies (i) v is tangent to H,, at
y, (i) 7N Dyy) # () contradicting Corollary 3.4 and the proof of Theorem 4.3 is
now complete (see Fig. 3). O

Dy

Figure 3.

Notice that we have neglected completely discussing local supporting in the outer
direction —n(x) at € A as the closed horodisc E_n(x) cannot support A locally
at x.

We can easily construct examples in the hyperbolic space H™ to show that the
converse of Theorem 4.3 is not generally true.

Theorem 4.4. Let A be an open bounded subset of W with smooth boundary
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hypersurface 0A. Assume that A is globally (resp. strongly globally) supported at
each boundary point. Then A is convex (resp. strictly convex).

PrOOF: Firstly, we show that A is connected.

Assume, on the contrary, that A is disconnected. Also assume without loss of
generality that A is the union of two open disjoint subsets A1 and Ao with smooth
boundary hypersurfaces 0A; and 0Asg, respectively. Notice that A1 NAy =0
otherwise 0A = 0A1 U 0As , will not be a hypersurface of W. Since both A1 and
Ay are bounded subsets of W, then A; and As are compact subsets of W. Let us
assume that the Hausdorff distance [7] between A; and Ag is A > 0 and p € 94;
and g € JAs is a closest pair of points, i.e. d(p,q) = A. Consider the maximal
geodesic v through the points p, ¢ parametrized by arc-length for which p = ~(0)
and ¢ = v(A). Clearly ~ intersects 941 and Ay at p and g orthogonally, respectively
(see [2, p. 216]). Moreover, there exist p’ € A and ¢ € As such that p’, ¢ € v,
p' =~(u1) and ¢’ = y(u2) where 1 < 0 and ps > \ (see Fig. 4).

H_y(0) Hyn)

Figure 4.

The subset A cannot be globally supported at either p or ¢ since

b_,y/(o) (p/) > 0 and b_,y/(o) (q/) < —)\ < 0,

b,yl()\) (p/) < —A <0 and b,Y/(A)(q/) > 0,
contradicting the assumption of the theorem. Hence A is connected.
Since each global (resp. strongly global) supporting is local (resp. strongly local)
we conclude by using Theorem 4.3 that A is a convex (resp. strictly convex) subset
of W and the proof of Theorem 4.4 is now complete. O

Theorem 4.4 can be proved independently of Theorem 4.3 in the following way:

(1) Prove that A is connected as mentioned above.

(2) Prove that A is the intersection of convex subsets of W, namely the supporting
closed horodiscs of A. Taking into account that the intersection of convex subsets is
convex we obtain that A is itself convex and consequently A is convex by Lemma 3.1.
It is also noteworthy that the converse of Theorem 4.4 is not generally true.
Examples can also be constructed in H™ to show the validity of this claim.
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