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On the topological structure of compact 5-manifolds

Alberto Cavicchioli, Fulvia Spaggiari

Abstract. We classify the genus one compact (PL) 5-manifolds and prove some results
about closed 5-manifolds with free fundamental group. In particular, let M be a closed
connected orientable smooth 5-manifold with free fundamental group. Then we prove that
the number of distinct smooth 5-manifolds homotopy equivalent to M equals the 2-nd
Betti number (mod 2) of M .

Keywords: colored graph, crystallization, genus, manifold, surgery, s-cobordism, normal
invariants, homotopy type

Classification: 57N15, 57N65, 57R67

1. Preliminaries.

In this paper we work in the piecewise linear (PL) category (see for example
[9]). All considered manifolds will be compact and connected. We also use edge-
colored graphs to represent manifolds according to [2], [4] and [5]. Here we recall
the basic definitions. An edge-coloration c on a multigraph G =

(

V (G), E(G)
)

is
a map c : E(G) −→ CG (where CG is a finite set, called the color set of G) such
that c(e) 6= c(f) for any two adjacent edges e, f ∈ E(G). The pair (G, c) is said to
be an (n + 1)-colored graph if G is regular of degree n+ 1 and CG = {0, 1, . . . , n}.
For any B = {b1, b2, . . . , bk} ⊂ CG, we set GB =

(

V (G), c−1(B)
)

and denote by
αb1b2...bk the number of components of GB . An n-pseudocomplex K = K(G) can
be associated with (G, c) as follows: 1) take an n-simplex σn(v) for each vertex
v ∈ V (G) and label its vertices by CG; 2) if v and w are joined in G by an i-
colored edge, then identify the (n − 1)-faces of σn(v) and σn(w) opposite to the
vertex labelled by i so that equally labelled vertices coincide. We say that (G, c)
represents the polyhedron |K(G)| and every homeomorphic space. We note that
each component θ of the subgraph GB uniquely corresponds to an (n− k)-simplex
σθ (card B = k) of K(G), whose vertices are labelled by CG\B. The polyhedron
|K(θ)| is said to be the disjoined link of σθ in K, written lkd(σθ ,K). Actually
|K| is a closed n-manifold if and only if |K(G

î
)| is an (n − 1)-sphere, î = CG\{i},

i ∈ CG. A crystallization of a closed n-manifoldM is an (n+1)-colored graph (G, c)
representingM such that G

î
is connected for each i ∈ CG. Any bipartite (resp. non-

bipartite) (n+1)-colored graph (G, c) admits a particular 2-cell imbedding (see [15])
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fǫ : |G| −→ Fǫ, where Fǫ denotes the orientable closed (resp. non-orientable) surface
of Euler-characteristic

χ(Fǫ) =
∑

i∈Zn+1

αǫiǫi+1 + (1 − n)p/2 .

Here p is the order of G and ǫ = (ǫ0, ǫ1, . . . , ǫn) is a cyclic permutation of the
color set CG. We set gǫ(G) = 1 − χ(Fǫ)/2, i.e. gǫ(G) is the genus (resp. half of
the genus) of Fǫ if G is bipartite (resp. non-bipartite). Then the genus g(M) of
a closed n-manifold M is the minimum gǫ(G) over all crystallizations G of M and
cyclic permutations ǫ of CG. It is known that the n-sphere S

n is the only closed
n-manifold of genus zero (see for example [5]). In [4] all closed 4-manifolds of genus
one are proved to be (PL) homeomorphic to S

1⊗S
3. Here S

1⊗S
3 denotes either the

topological product S
1 × S

3 or the twisted S
3-bundle over S

1. In the present paper
we classify all compact 5-manifolds of genus one. Then we obtain some results about
closed orientable 5-manifolds with free fundamental group. We also conjecture that
the genus characterizes the simply-connected closed 5-manifolds.

2. Main results.

From now on, let (G, c) be a crystallization of a closed 5-manifoldM , K = K(G)
the triangulation of M represented by G, {vi / i ∈ CG} the vertex-set of K and
(i, j, h, r, s, t) an arbitrary permutation of the color-set CG. We may always assume
that vi corresponds to the subgraph Gî for each color i ∈ CG. If B ⊂ CG, then
K(B) denotes the subcomplex of K = K(G) generated by the vertices vi’s, i ∈ B.
Obviously the number of (k− 1)-simplexes of K(B), cardB = k, equals the number
αCG\B of components of GCG\B . If SdK is the first barycentric subdivision of

K, then H(i, j) (resp. H(i, j, h)) is the largest subcomplex of SdK, disjoint from
SdK(i, j) ∪ SdK(h, r, s, t) (resp. SdK(i, j, h) ∪ SdK(r, s, t)). Then the polyhedron
|H(i, j)| (resp. |H(i, j, h)|) is a closed 4-manifold F = F (i, j) (resp. F (i, j, h))
which splits M into two complementary 5-manifolds V = N(i, j), V ′ = N(h, r, s, t)
(resp. N = N(i, j, h), N ′ = N(r, s, t)) having F as common boundary. Further the
Mayer-Vietoris exact sequences of the triples (M,V, V ′) and (M,N,N ′) give 0 −→
H5(M) −→ H4(F ) −→ 0, hence M is orientable if and only if F is. Finally V and
V ′ (resp. N and N ′) are regular neighbourhoods of |SdK(i, j)| and |SdK(h, r, s, t)|
(resp. |SdK(i, j, h)| and |SdK(r, s, t)|) in M respectively.

Lemma 1. Let (G, c) be a crystallization of a closed 5-manifoldM . Then we have
the following relations

2αrst = αrs + αst + αtr − p/2(1)
∑

i,j,h

αijh = 2
∑

i,j

αij − 5p(2)

∑

i,j,h,r

αijhr =
∑

i,j

αij − 3p+ 6(3)
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Proof: (1). Let T be a triangle of the 2-dimensional subcomplex K(i, j, h). Then
the Euler-Poincaré characteristic χT of lkd(T,K) is given by

χT = χ(S
2) = 2 = q3(T )− q4(T ) + q5(T ),

where qk(T ) is the number of k-simplexes ofK containing T as their face. IfB ⊂ CG,
let qk(B) denotes the number of k-simplexes of K containing vertices labelled by B.
Then it is easy to check that

q3(i, j, h) = q3(i, j, h, r) + q3(i, j, h, s) + q3(i, j, h, t) = αst + αrt + αrs,

q4(i, j, h) = q4(i, j, h, r, s) + q4(i, j, h, r, t) + q4(i, j, h, t, s) = αt + αs + αr =
3

2
p

and
q5(i, j, h) = p.

Summation over all the triangles of K(i, j, h) gives

2αrst = 2q2(i, j, h) = q3(i, j, h)− q4(i, j, h) + q5(i, j, h) =

= αst + αrt + αrs − (3/2) p+ p = αst + αrt + αrs − p/2

as requested.

(2). It is a direct consequence of (1).

(3). Now call qk, k ∈ CG, the number of k-simplexes of K. By construction we
have

q0 = 6, q1 =
∑

i,j,h,r

αijhr, q2 =
∑

i,j,h

αijh

q3 =
∑

i,j

αij , q4 = 3p and q5 = p.

Then the Euler-Poincarè characteristic χ(M) of M = |K| is given by

χ(M) =
∑

k

(−1)kqk = 6−
∑

i,j,h,r

αijhr +
∑

i,j,h

αijh −
∑

i,j

αij + 2p

= 6−
∑

i,j,h,r

αijhr +
∑

i,j

αij − 3p = 0 (use (2)).

The proof is completed. �

Now we assume that (G, c) regularly imbeds into the closed surface of genus
g = g(M) and of Euler-Poincarè characteristic

(4) α01 + α12 + α23 + α34 + α45 + α50 − 2p = 2− 2g.
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Each subgraph G
î
, i ∈ CG, regularly imbeds into an orientable closed surface since

G
î
represents the combinatorial 4-sphere lkd(vi,K). Then we can define the non

negative integer g
î
, i ∈ CG, as follows:

αi+1 i+2 + αi+2 i+3 + αi+3 i+4 + αi+4 i+5 + αi+5 i+1 = 2− 2gî +
3

2
p(5)

i ∈ CG, indices mod 6.

By substituting (5) into (4) and by using (1) we get

αjh = αijh + g − g
î

(6)

i ∈ CG, j ≡ i+ 1 (mod 6), h ≡ i− 1 (mod 6).

As a direct consequence, we have also proved that g ≥ g
î
for each color i ∈ CG.

Lemma 2. With the above notation, we have

α135 = 1 + 2g − g0̂ − g2̂ − g4̂(7)

α024 = 1 + 2g − g1̂ − g3̂ − g5̂(8)

α02 + α13 + α15 + α24 + α35 + α04 = 4 + 8g + p− 2
∑

i

g
î

(9)

Proof: We get the formula (7) (resp. (8)) of the statement by simply adding the
relations obtained from (6) for i = 0, 2, 4 (resp. i = 1, 3, 5) and by using (1) and (4).
Adding (7) and (8) and making use of (1) we obtain the formula (9). �

Theorem 3. LetM be a closed connected 5-manifold. Then g(M) = 1 if and only
if M is (PL) homeomorphic to S

1 ⊗ S
4.

Proof: IfM is (PL) homeomorphic to S
1⊗S

4, then g(M) = 1 (see for example [5]).
Now we prove the converse implication. For convenience, we work in the orientable
case. If g = 1, then (7) and (8) of Lemma 2 imply that α135 and α024 belong to
the set {1, 2, 3}. We apply the inequalities g(M) ≥ rkΠ1(M) ≥ rk H1(M) (see
[2]). Here FH∗ (resp. TH∗) denotes the free (resp. torsional) part of the homology
group H∗. By symmetry we have to consider the following three cases:

(1) α135 = 1
(2) α135 = 2
(3) α135 = α024 = 3.

Case (1). Since α135 = 1, the complex K(0, 2, 4) consists of exactly one triangle.
However K(0, 2, 4) might have other edges besides the ones of the named triangle.
Thus the regular neighborhood N = N(0, 2, 4) of K(0, 2, 4) is (PL) homeomorphic
to a boundary connected sum #kS

1×B4, B4 being a closed 4-ball (if k = 0, then we
set N = B5). Thus we have ∂N ≃PL ∂N

′ ≃PL #kS
1 × S

3, where N ′ = N(1, 3, 5).
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Since N ′ collapses onto the 2-dimensional complex K(1, 3, 5), the Mayer-Vietoris
sequence of the triple (M,N,N ′) implies that

0 −→ H4(M) −→ H3(∂N) ≃ ⊕kZ −→ 0(10)

0 −→ H3(M) −→ H2(∂N) ≃ 0(11)

(12) 0 −→ H2(N
′) −→ H2(M) −→ H1(∂N) ≃ ⊕kZ →

−→ H1(N)⊕H1(N
′) ≃ ⊕kZ ⊕H1(N

′) −→ H1(M) −→ 0.

By (11) we have 0 ≃ H3(M) ≃ H2(M) ≃ FH2(M) ⊕ TH1(M), i.e. FH2(M) ≃
TH1(M) ≃ 0. Since H2(N

′) is free, (12) implies that 0 −→ H2(N
′) −→ FH2(M) ≃

0, hence H2(N
′) ≃ 0 and H2(M) is free, i.e. H2(M) ≃ 0. Thus (12) splits as

H1(M) is free. This gives H1(M) ≃ H1(N
′) ≃ ⊕kZ. Because g = 1 ≥ rk H1(M),

it follows that either k = 0 or k = 1, hence either ∂N ≃ S
4 or ∂N ≃ S

1 × S
3

respectively. In the first case we have H1(M) ≃ Π1(M) ≃ 0 and H2(M) ≃ 0, so
M is (PL) homeomorphic to S

5 by the classification theorem of simply-connected
spin 5-manifolds (see [1] and [13]). This is a contradiction since the genus of S

5 is
zero. In the second case we have H1(M) ≃ Π1(M) ≃ H4(M) ≃ Z and H2(M) ≃
H3(M) ≃ 0. Further M is obtained by attaching two disjoint copies of S

1 × B4

along their boundaries (use H2(N
′) ≃ 0 and H1(N

′) ≃ H1(M) ≃ Z). Then M is
homotopy equivalent to S

1 × S
4, hence M ≃PL S

1 × S
4 by the Shaneson theorem

(see [10]).

Case (2). If α135 = 2, then (7) implies that g0̂ + g2̂ + g4̂ = 1, hence for example
g0̂ = 1. Now the relation (6), for i = 0, gives α15 = α015. Thus K(0, 2, 3, 4)
consists of as many 3-simplexes as there are triangles in K(2, 3, 4). Therefore
K(0, 2, 3, 4) collapses onto the 2-dimensional complex K(2, 3, 4), i.e. the polyhe-
dron V ′ = N(0, 2, 3, 4) collapses onto a 2-polyhedron. We also have V = N(1, 5) ≃
#k(S

1 × B4) and ∂V ≃ ∂V ′ ≃ #k(S
1 × S

3) since K(1, 5) consists of two vertices
joined by k + 1 edges for some non-negative integer k. Now we can repeat the
arguments of Case (1) by replacing the pair (N,N ′) with (V, V ′).

Case (3). If α135 = α024 = 3, then gî = 0 for each color i ∈ CG by (7) and (8).
Then the relation (6) gives α15 = α015 +1, i.e. K(0, 2, 3, 4) has one more 3-simplex
than there are triangles in K(2, 3, 4). Call σ1, σ2 the two 3-simplexes of K(0, 2, 3, 4)
which have a common triangle T ∈ K(2, 3, 4) as their face. If ∂σ1 6= ∂σ2, then
K(0, 2, 3, 4) collapses to a 2-dimensional subcomplex, hence the pair (V, V ′), V =
N(1, 5), V ′ = N(0, 2, 3, 4), satisfies the conditions of Case (2). If ∂σ1 = ∂σ2, then
H3(V

′) ≃ Z. We prove that this case gives a contradiction. First of all we observe
that

∂V ′ ≃ ∂V ≃ ∂N(1, 5) ≃ #kS
1 × S

3

for some integer k ≥ 0. Indeed, the Mayer-Vietoris sequence of the triple (M,V, V ′)
yields

0 −−−−→ H5(M) −−−−→ H4(∂V ) −−−−→ 0,
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henceM is orientable if and only if ∂V is. FurthermoreK(1, 5) is the one-dimensional
subcomplex of K = K(G) which consists of all edges with vertices v1 and v5. Thus
the regular neighborhood V = N(1, 5) ofK(1, 5) is PL homeomorphic to a boundary
connected sum #kS

1 ×B4, hence ∂V ≃ #kS
1 × S

3 as claimed.
Now, the exact sequence of the pair (V ′, ∂V ′) gives

(13) 0 = H2(∂V ) −→ H2(V
′) −→ H2(V

′, ∂V ′)→

→ H1(∂V
′) ≃ ⊕kZ −→ H1(V

′) −→ H1(V
′, ∂V ′) ≃ 0

and

(14) 0 = H4(V
′) −→ H4(V

′, ∂V ′) −→ H3(∂V
′) ≃ ⊕kZ →

→ H3(V
′, ∂V ′) −→ H2(∂V

′) ≃ 0

since H1(V
′, ∂V ′) ≃ H4(V ′) ≃ 0. The isomorphism H4(V ′) ≃ 0 follows from the

fact that V ′ collapses onto the 3-dimensional complex K(0, 2, 3, 4). By Lefschetz
duality we also have H2(V

′, ∂V ′) ≃ H3(V ′) ≃ FH3(V
′)⊕TH2(V

′) ≃ Z⊕TH2(V
′),

H4(V
′, ∂V ′) ≃ H1(V ′) ≃ FH1(V

′) and H3(V
′, ∂V ′) ≃ H2(V ′) ≃ FH2(V

′) ⊕
TH1(V

′). Thus (13) and (14) become

(13′) 0 −→ H2(V
′) −→ Z ⊕ TH2(V

′) −→ ⊕kZ −→ H1(V
′) −→ 0

and

(14′) 0 −→ FH1(V
′) −→ ⊕kZ −→ FH2(V

′)⊕ TH1(V
′) −→ 0

hence we obtain

(15) β2(V
′)− 1 + k − β1(V

′) = 0

and

(16) β1(V
′)− k + β2(V

′) = 0 ,

where βk(V
′) denotes the k-th Betti number of V ′. From (15) and (16) we have

that
2β2(V

′) = 1 ,

which is a contradiction. �

Corollary 4. g(#kS
1 ⊗ S

4) = k.

Proof: Use g(M) ≥ rkΠ1(M), Theorem 3 and the subadditivity of the genus.
�

The concept of genus can be extended to boundary case in a natural way (see for
example [5]). By slightly modifying the proof of Theorem 3 we obtain the following
result
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Theorem 5. Let M be a compact 5-manifold with (possibly empty) connected
boundary ∂M . Then g(M) = 1 if and only if M is (PL) homeomorphic to either
S
1 ⊗ S

4 or S
1 ⊗ S

4\(open 5-ball) or S
1 ⊗B4. Here S

1 ⊗B4 denotes either S
1 ×B4

or the twisted B4-bundle over S
1.

3. Free fundamental groups.

In this section we consider closed orientable 5-manifoldsM with free fundamental
group Π1(M) ≃ ∗gZ, g ≥ 1. If g = 1, then J.L. Shaneson proved that the number
of closed smooth 5-manifolds of the same homotopy type as M is finite and at
most equals the number of elements of H2(M ;Z2). Here we extend this result
for g > 1 by using (PL) surgery theory in dimension five (see [6] and [14]). For
convenience, we recall some definitions listed in the quoted papers. Firstly we
note that it follows from Wh(Z) ≃ 0 and Wh(Π∗Π′) = Wh(Π) ⊕ Wh(Π′) (see
[8]) that “s-cobordant” is equivalent to “h-cobordant” in our case. Let Mn be
a closed orientable (PL) n-manifold with fundamental group Π1 = Π1(M) and

let ξk be a linear bundle over M . Then Ω+n (M, ξ) denotes the set of bordism
classes of normal maps (X, f, b) where X is a (PL) n-manifold, f : X −→ M

a map of degree one, b : νkX −→ ξk a linear bundle map covering f and νkX is

the stable normal bundle of Xn −→ S
n+k, k ≫ n. Let Nn(M) be the union of

all Ω+n (M, ξ) over all k-plane bundle ξk over M modulo the additional equivalence
relation that (X0, f0, b0) ∈ Ω

+
n (M, ξ1) is equivalent to (X1, f1, b1) ∈ Ω

+
n (M, ξ2) if

and only if (X0, f0, b0) is normally cobordant to (X1, f1, b1) for some linear bundle
automorphism ξ1 −→ ξ0 (see [6, p. 74]). The elements of Nn(M) are called the
normal invariants of M . Let Sn(M) denote the set of equivalence classes of pairs
(X,h), where X is a compact (PL) n-manifold, h : X −→ M is an orientation
preserving simple homotopy equivalence and (X,h) ∼ (X ′, h′) if and only if there
is an orientation preserving (PL) homeomorphism γ : X −→ X ′ such that h′ ◦ γ is
homotopic to h. Finally, denote by Ln(Π1) the n-th Wall group in the orientable
case, n=dimM and Π1 = Π1(M) (see [6, p. 77] and [14]). Recall that if h : X −→M
represents an element of Sn(M) there exists an obvious forgetful map

ηn : Sn(M) −→ Nn(M)

which associates to (X,h) the class of (X,h, h∗) in Nn(M), h
∗ being the obvious

map on stable normal bundles induced by h. Further, there is a map

σn : Nn(M) −→ Ln(Π1)

which associates to any normal invariant (X, f, b) the surgery obstruction σn(X, f, b)
(see [6, p. 77]). Finally we denote by

ωn : Ln+1(Π1) −→ Sn(M)

the map induced by the action of Ln+1(Π1), n + 1 =dim (M × I), I = [0, 1],
Π1 = Π1(M × I) ≃ Π1(M), on Sn(M) (see [6, p. 80]). By [6, Theorem 5.11] and
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[14, Theorem 10.8], there is an exact sequence

Sn+1
(

M × I, ∂(M × I)
) ηn+1
−→ Nn+1

(

M × I, ∂(M × I)
) σn−→

→ Ln+1(Π1)
ωn−→ Sn(M)

ηn
−→ Nn(M).

We prove the following

Theorem 6. Let M5 be a closed connected orientable smooth (or PL) 5-manifold
with fundamental group Π1(M) = ∗gZ. Then the map

η5 : S5(M) −→ N5(M)

is injective and Im η5 ≃ H2(M ;Z2), i.e. the number of distinct smooth 5-manifolds
homotopy equivalent to M equals the 2-nd Betti number (mod 2) of M .

Proof: We prove that

(1) σ5 and σ6 are epimorphisms.
(2) N5(M) ≃ H2(M ;Z2)⊕H1(M)
(3) σ5 is injective on the summand H1(M).

(1) Since L6(Π1) = L6(∗gZ) ≃ Z2 (see [3, Theorem 1.6, p. 28]), the map

L6(1) ≃ Z2 −→ L6(∗gZ) ≃ Z2

is an isomorphism, hence one can represent the non-trivial element of L6 by a degree
one normal map (S3 × S

3, f, b) with f : S
3 × S

3 −→ S
6 (see [11], [12]). Then the

action of L6 on S6(M × I,M × ∂I) is defined by taking an element k : (K, ∂K) −→
(M × I,M × ∂I) in S6(M × I,M × ∂I) and forming the connected sum in the
interior k#f : K#S

3× S
3 −→M × I =M × I#S

6. Using the additivity of surgery
obstructions and the fact σ6(k) = 0, we have that σ6(k#f) = σ6(f) is the generator
of L6(Π1) and

(

K#S
3 × S

3, k#f, (k#f)∗
)

∈ Ω+6
(

M × I,M × ∂I, ξ
)

⊂ N6
(

M × I,M × ∂I
)

,

i.e. σ6 is surjective. This implies that the sequence

0 −→ S5(M)
η5
−→ N5(M)

σ5−→ L5(Π1)

is exact, i.e. η5 is injective. Now we prove that σ5 is surjective. SinceM is orientable,
any imbedded 1-sphere f̃ : S

1 −→ M has trivial normal bundle, i.e. f̃ extends to
an imbedding f : S1 × B4 −→ M . Let f1, f2, . . . , fg : S

1 × B4 −→ M be disjoint

imbeddings such that f̃i = fi|S1×0 represent a set of generators of Π1(M) (by
general position this is always possible).

LetNi, i = 1, 2, . . . , g, be the 5-manifold obtained by deleting fi(S
1×

◦
B4) fromM

and substituting (S1×‖E8‖)\(S
1×

◦
B4) by an obvious identification of their bound-

aries. Here ‖E8‖ represents the simply-connected Poincaré 4-complex realizing the
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form E8 as constructed in [6, pp. 22–23]. Note that S
1 × ‖E8‖ is a 5-manifold.

Using an appropriate normal map

S
1 × ‖E8‖ −→ S

1 × S
4 ,

we obtain a normal map of degree one

ξi : Ni −→M =M\fi(S
1 ×

◦
B4)

⋃

S1×S3

(S1 × S
4\S
1 ×

◦
B4)

hence (Ni, ξi, ξ
∗
i ) ∈ Ω+5 (M, ξ) ⊂ N5(M). Furthermore, the surgery obstruction

σ5(Ni, ξi, ξ
∗
i ) is exactly the i-th generator of L5(Π1) = L5(∗gZ) ∼= ⊕gZ (use [3,

Theorem 1.6, p. 28]), i.e. σ5 is epi. Thus we have the exact sequence

(17) 0 −→ S5(M)
η5
−→ N5(M)

σ5−→ L5(Π1) ≃ ⊕gZ −→ 0.

Now D. Sullivan proved that there is a bijection between Nn(M) and the group
[M,G/TOP ] of the homotopy classes of maps from M to the H-space G/TOP
(see for example [6, Theorem 5.4, p. 77]). Since Π2(G/TOP ) ≃ Z2, Π3(G/TOP ) ≃
Π5(G/TOP ) ≃ 0 and Π4(G/TOP ) ≃ Z with vanishing k-invariant inH5

(

K(Z2, 2)
)

,
the Postnikov resolution of G/TOP gives an H-map

G/TOP −→ K(Z2, 2)×K(Z, 4)

which is a 5-equivalence. In particular, for any topological closed 5-manifoldM , we
have

N5(M) ≃ [M,G/TOP ] ≃ [M,K(Z2, 2)×K(Z, 4)] ≃

H2(M ;Z2)⊕H4(M) ≃ H2(M ;Z2)⊕H1(M) ≃

H2(M ;Z2)⊕⊕gZ ≃ H2(M ;Z2)⊕ L6(Π1).

Thus we have Ker σ5 ≃Im η5 ≃ H2(M ;Z2) by (17) as requested. �

As a direct consequence of Theorem 6 (see also [10]), we obtain the following

Corollary 7.

(1) If M has the homotopy type of #gS
1 × S

4, then M is diffeomorphic to

#gS
1 × S

4.

(2) Any h-cobordism of #gS
1 × S

4 with itself is a product.

(3) Let L be a disjoint union of g copies of S3 and let ψ : L −→ S
5 be a smooth

imbedding. Then ψ is ambient isotopic to the standard inclusion L ⊂ S
5 if

and only if S
5\ψ(L) has the homotopy type of the wedge ∨gS1.

Now we use (1) of Corollary 7 to prove the following result.



522 A.Cavicchioli, F. Spaggiari

Corollary 8. LetM be a closed orientable smooth (or PL) 5-manifold with Π1(M)
≃ ∗gZ and H2(M) ≃ 0. Suppose that there exists a crystallization (G, c) of M for
which at least one of αijhr’s equals g + 1. Then M is (PL) homeomorphic to

#gS
1 × S

4.

Proof: First we note that a finite presentation 〈X : R〉 of the fundamental group
Π1(M) can be directly obtained from the crystallization (G, c) ofM (for details see
[5]). Here we briefly recall the construction. If CG = {i, j, h, r, s, t} is the color set
of G, then the generators of X are in bijection with the connected components of
the subgraph G{i,j,h,r}, but one, while the relators of R are in bijection with the

{s, t}-colored cycles of G. This implies that the inequality

αijhr − 1 ≥ rkΠ1(M) = g

holds. Suppose for example α0234 = g + 1. Then the pseudocomplex K(1, 5)
consists of two vertices joined by exactly 1+g edges, hence its regular neighborhood
N = N(1, 5) is (PL) homeomorphic to #gS

1×B4. Further we have that H4(M) ≃
H1(M) ≃ ⊕gZ and H3(M) ≃ H2(M) ≃ FH2(M) ⊕ TH1(M) ≃ 0. Then the
Mayer-Vietoris sequence of the triple (M,N,N ′), N ′ = N(0, 2, 3, 4), implies that

0 −→ H4(M) ≃ ⊕gZ −→ H3(∂N) ≃ ⊕gZ −→ H3(N
′) −→ 0,

0 −→ H2(N
′) −→ H2(M) ≃ 0,

0 −→ H1(∂N) ≃ ⊕gZ −→ H1(N)⊕H1(N
′) ≃ ⊕gZ ⊕H1(N

′)→

−→ H1(M) ≃ ⊕gZ −→ 0,

hence H1(N
′) ≃ ⊕gZ and H2(N

′) ≃ 0. Furthermore H3(N
′) is free since N ′ =

N(0, 2, 3, 4) collapses onto the 3-dimensional pseudocomplex K(0, 2, 3, 4). Thus the
first exact sequence splits, i.e. H3(N

′) ≃ 0. This implies that there do not ex-
ist two 3-simplexes in K(0, 2, 3, 4) with common boundary (notice that any ball
of a pseudocomplex is abstractly isomorphic to the standard simplex of the same
dimension). Therefore any 3-simplex of K(0, 2, 3, 4) can be retracted, by deforma-
tion, on a 2-dimensional subcomplex, i.e. K(0, 2, 3, 4) collapses onto a 2-dimensional

subcomplex, say K̃. Moreover, K̃ is still a pseudocomplex, so any two faces of a sim-
plex of K̃ do not identify together. Thus the conditions H2(N

′) ≃ H2(K̃) ≃ 0 and
H1(K̃) ≃ H1(N

′) ≃ ⊕gZ imply that K̃ (and whenceK(0, 2, 3, 4)) collapses to a one-
dimensional subcomplex formed by two vertices joined by exactly 1 + g edges (use
the same argument as above). Then N ′ is also (PL) homeomorphic to #gS

1 ×B4.

The manifold M is obtained by attaching two disjoint copies of #gS
1 × B4 along

their boundaries. Since Π1(M) ≃ ∗gZ, M is homotopy equivalent to #gS
1 × S

4,

hence M ≃PL #gS
1 × S

4 by (1) of Corollary 7. �

We conjecture that Π1(M) ≃ ∗gZ and g(M) = g imply the hypothesis of Corol-
lary 8.
We complete the section with the following
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Proposition 9. LetM be a closed orientable spin smooth (or PL) 5-manifold with
free fundamental group. If H2(M) has no torsion, then M is null cobordant.

Proof: Let ψi : S
1 × B4 −→ M be disjoint imbeddings such that the homotopy

class
[

ψi|S1×0
]

is the i-th generator of Π1(M) ≃ ∗gZ, i = 1, 2, . . . , g. We set

M0 =M\ ∪gi=1 ψi(S
1 ×

◦
B4) and consider the cobordism

W 6 =M × I ∪ψ

g
⋃

i=1

B2 ×B4

between M and M ′ = M0 ∪
⋃g
i=1B

2 × S
3. Here we set I = [0, 1] and ψ = {ψi :

i = 1, 2, . . . , g} as usual. Obviously M ′ is a simply-connected 5-manifold obtained
from M by killing the generators of Π1(M) according to ψ. Further the pairs
(M,M0) and (M

′,M0) are homology equivalent (by excision) to the disjoint unions
∪gi=1(S

1 × B4, S1 × S
3) and ∪gi=1(B

2 × S
3, S1 × S

3) respectively. The following

diagram easily implies that H2(M) ≃ H2(M0) ≃ H2(M
′):

H3(M
′,M0) ≃ 0




y

0 ≃ H3(M,M0) −−−−→ H2(M0)
iso

−−−−→ H2(M) −−−−→ H2(M,M0) ≃ 0




y

H2(M
′)





y

H2(M
′,M0) ≃ ⊕gZ





y

0 ≃ H2(M,M0) −−−−→ H1(M0)
iso

−−−−→ H1(M) ≃ ⊕gZ −−−−→ H1(M,M0) ≃ 0




y

H1(M
′) ≃ 0

We also recall that the Stiefel-Whitney numbers are invariant under surgery (see
[7]), hence w2(M) ≃ w2(M

′) ≃ 0. Since H2(M
′) is free, M ′ is diffeomorphic to

#kS
2 × S

3 by the classification theorem of simply connected spin 5-manifolds (see
[13]). ThusW is a cobordism betweenM and #kS

2×S
3, where k = rkH2(M). Let

Ŵ be a compact 6-manifold obtained from W by capping the boundary component
#kS

2 × S
3 by #kS

2 × B4. Since M bounds Ŵ , the proof is completed. �

We conjecture that if Π1(M) ≃ ∗gZ and g(M) = g, then M bounds exactly

#gS
1 ×B5, i.e. M ≃PL #gS

1 × S
4.
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