Commentationes Mathematicae Universitatis Carolinae

Miron Zelina

Selfduality of the system of convex subsets of a partially ordered set

Commentationes Mathematicae Universitatis Carolinae, Vol. 34 (1993), No. 3, 593--595

Persistent URL: http://dml.cz/dmlcz/118617

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1993

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

Selfduality of the system of convex subsets of a partially ordered set

Miron Zelina

Abstract

For a partially ordered set P let us denote by $C o P$ the system of all convex subsets of P. It is found the necessary and sufficient condition (concerning P) under which CoP (as a partially ordered set) is selfdual.

Keywords: partially ordered set, convex subset, selfduality
Classification: Primary 06A10

1. Introduction.

For a partially ordered set P we denote by $C o P$ the system of all convex subsets of P. The system $C o P$ is partially ordered by the set-theoretical inclusion. It is not difficult to see that $C o P$ is a lattice. The aim of this paper is to find a necessary and sufficient condition (concerning P) under which $C o P$ is selfdual.

An analogous question for IntP (the system of all intervals of a partially ordered set P) was investigated by J. Jakubík.

In [1], the following theorem was proved:
(T) Let P be a partially ordered set. Then the following conditions are equivalent:
(i) The partially ordered set $\operatorname{Int} P$ is selfdual.
(ii) P is a lattice such that either card $P \leq 2$, or card $P=4$ and P has two atoms.

2. Results.

Let Q be a partially ordered set. A subset C of Q is called convex if the following holds:

If $x, y \in C, z \in Q$ and $x \leq z \leq y$, then $z \in C$.
Thus the empty set is convex.
The partially ordered set Q is said to be selfdual if there exists a dual automorphism of Q, i.e. such a bijection $f: Q \rightarrow Q$, that for all $x, y \in Q$ we have

$$
x \leq y \Leftrightarrow f(x) \geq f(y)
$$

An element $q \in Q$ is said to be extremal if it is minimal or maximal element of Q. Finally, for $r, s \in Q$ we put $[r, s]=\{u \in Q: r \leq u \leq s\}$.

From now on let P denote a partially ordered set. The system $C o P$ is a lattice (intersection of convex subsets is clearly convex) with the least element (\emptyset) and the greatest element (P).

Let $X \in C o P$. The set X is an atom of $C o P$ if and only if there is $a \in P$ with $X=\{a\}$.

Lemma. Let $X \subseteq P$. Then X is a dual atom of $C o P$ if and only if there exists $x \in P$ such that $X=P \backslash\{x\}$ and x is extremal.

Proof: Let x be an extremal element of P such that $X=P \backslash\{x\}$. In order to prove the convexity of $P \backslash\{x\}$, suppose that $u, v \in P \backslash\{x\}, z \in P, u \leq z \leq v$. If $z=x$, then either $u=x$ or $v=x$, since x is extremal. But that is a contradiction, because $u, v \in P \backslash\{x\}$. We have proved that $X=P \backslash\{x\}$ is convex and hence X is a dual atom of $C o P$.

Now let $X \subseteq P$ be a dual atom of $C o P$. We distinguish two cases:
(1) There exists an extremal element $y \in P$ such that $y \notin X$.

Then $X \subseteq P \backslash\{y\}$ and $P \backslash\{y\}$ is a dual atom, according to the first part of the proof. Since X is a dual atom, necessarily $X=P \backslash\{y\}$. Thus in the case (1) the assertion is proved.
(2) X contains all extremal elements of P.

Since X is a dual atom, there exists $x \in P \backslash X$. Consider $C(X \cup\{x\})$ - the convex closure of $X \cup\{x\}$. It is not difficult to see that $C(X \cup\{x\})=\{z \in P$: there exist $t, u \in X \cup\{x\}$ such that $t \leq z \leq u\}$. Next, $x \in P \backslash X, X$ contains all extremal elements of P, therefore x is not extremal. Then there are $x_{1}, x_{2} \in P$ such that $x_{1}<x<x_{2}$.

Let $x_{1}, x_{2} \in C(X \cup\{x\})$. Then there exist $t_{1}, u_{1}, t_{2}, u_{2} \in X \cup\{x\}$ such that $t_{1} \leq x_{1} \leq u_{1}$ and $t_{2} \leq x_{2} \leq u_{2}$. We have $t_{1} \leq x_{1}<x<x_{2} \leq u_{2}$, so $t_{1}, u_{2} \in X$. Since X is convex, we obtain $x \in X$, which is a contradiction.

Hence either x_{1} or x_{2} does not belong to $C(X \cup\{x\})$, which means $C(X \cup\{x\}) \neq$ P. Then $X \subsetneq C(X \cup\{x\}) \subsetneq P$, which is a contradiction with the fact that X is a dual atom. Thus the case (2) cannot occur.

Theorem. Let P be a partially ordered set. Then the following conditions are equivalent:
(i) $C o P$ is selfdual.
(ii) P does not contain a three-element chain.
(iii) Each subset of P is convex.

Proof: (i) \Rightarrow (ii) Let $C o P$ be selfdual and let P contain a three-element chain. Then we have $a, b, c \in P$ with $a<b<c$. As we know, $\{a\},\{b\},\{c\}$ are atoms of $C o P$. Let f be a dual automorphism of $C o P$. Then $f(\{a\}), f(\{b\}), f(\{c\})$ are dual atoms and by Lemma there exist distinct extremal elements $x, y, z \in P$ such that $f(\{a\})=P \backslash\{x\}, f(\{b\})=P \backslash\{y\}$ and $f(\{c\})=P \backslash\{z\}$. Consider intervals $[a, b]$ and $[a, c]$. It is easily seen that $\{a\} \vee\{c\}=[a, c]$ in $C o P$. Using the dual automorphism f we get $f([a, c])=f(\{a\} \vee\{c\})=f(\{a\}) \wedge f(\{c\})=(P \backslash\{x\}) \wedge(P \backslash\{z\})=$ $(P \backslash\{x\}) \cap(P \backslash\{z\})=P \backslash\{x, z\}$. Analogously, $f([a, b])=P \backslash\{x, y\}$. Since $a<b<c$,
$[a, b] \subseteq[a, c]$, which implies $f([a, c]) \subseteq f([a, b])$. Hence $P \backslash\{x, z\} \subseteq P \backslash\{x, y\}$, which is a contradiction.
(ii) \Rightarrow (iii) Suppose that P does not contain a three-element chain. Let $X \subseteq P$ and let $x, y \in X, z \in P, x \leq z \leq y$. Now P does not contain a three-element chain, so either $z=x$ or $z=y$. Hence $z \in X$ and X is convex.
(iii) \Rightarrow (i) We define the dual automorphism f as follows: $f(X)=P \backslash X$.

Acknowledgement. The author would like to thank Ján Jakubík for bringing presented problem to his attention.

References

[^0](Received November 19, 1992)

[^0]: [1] Jakubík J., Selfduality of the system of intervals of a partially ordered set, Czechoslov. Math. J. 41 (1991), 135-140.

 Matematický ústav SAV, Grešákova 6, 04001 Košice, Slovak Republic

