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Entropies of self-mappings

of topological spaces with richer structures

Miroslav Katětov

Abstract. For mappings f : S → S, where S is a merotopic space equipped with a diameter
function, we introduce and examine an entropy, called the δ-entropy. The topological
entropy and the entropy of self-mappings of metric spaces are shown to be special cases of
the δ-entropy. Some connections with other characteristics of self-mappings are considered.
We also introduce and examine an entropy for subsets of SN , which is closely connected
with the δ-entropy of f : S → S.

Keywords: entropy, merotopic space, self-mapping, diameter function

Classification: 54C70, 54E17

In this article, we introduce an entropy, which we call the δ-entropy, for self-
mappings of certain enriched topological spaces, namely for those equipped with
a merotopy µ and a diametric function d, as defined, in a more special setting,
by Z. Froĺık in 1962. If d is the unit diameter function, i.e. d(X) = 1 whenever
card X > 1, then the δ-entropy is shown to coincide with the usual topological
entropy if the underlying space is compact and with the entropy introduced by
R. Bowen in 1973, if the space is metrizable.
We examine some properties of the δ-entropy for self-mappings and its rela-

tions to an analogous entropy for subsets of SN , where S is a space equipped with
a diameter function and a merotopy. We also present several examples and some
simple propositions on self-mappings of Rn showing certain connections between
the δ-entropy and other characteristics of self-mappings.
The article is organized as follows.
Diametric spaces (D-spaces) are introduced in Section 1. For these spaces we

define the δ-entropy; in the case of diametric functions induced by a semimetric,
this entropy coincides with the δ-entropy considered in [K90] and [K92a]. Some
properties of the δ-entropy for diametric spaces are examined and the concept of
a relative δ-entropy is considered.
In Section 2, we recall some basic facts connected with the well-known concepts

of the topological entropy and of the entropy (which we call the Bowen entropy) for
uniformly continuous self-mappings of metric spaces.
After stating some definitions and facts concerning merotopic spaces, we intro-

duce, in Section 3, diametric spaces equipped with a merotopy; we call them mero-
topic diametric spaces or MD-spaces. For these spaces, we introduce an entropy
(again called the δ-entropy), a special case of which is the δ-entropy for D-spaces.
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In Section 4, we introduce and examine the central concept of the article, namely
that of the δ-entropy δ〈f, S〉 of a self-mapping f : S → S, also denoted by 〈f, S〉,
of an MD-space S. Among other things, it is shown that both the usual topological
entropy and the entropy of uniformly continuous self-mappings of metric spaces are
special cases of δ〈f, S〉.
Objects of the form 〈P, S〉, where S is an MD-space and P is a non-void subset

of SN , are considered in Section 5; we call them “polydromic processes” in view
of a certain analogy with stochastic processes. For objects of this kind, an entropy
is introduced. It turns out that with every self-mapping 〈f, S〉, where S is an
MD-space, there is associated a polydromic process 〈P, S〉 and that, under certain
conditions, the entropies of 〈f, S〉 and 〈P, S〉 coincide.
Section 6 contains a number of examples and some propositions concerning re-

lations between δ〈f, S〉 and some other characteristics of f : S → S, in particular
for the case S = Rn.

1.

1.1. Notation. (A) The letters N,R,R+, R+ have their usual meaning. — (B) If
X is a set, then expX = {Y : Y ⊂ X}. — (C) If f is a self-mapping, i.e. a mapping
of the form f : X → X , then fk, k ∈ N , is defined by fk+1 = f ◦ fk, where f0 is
the identity mapping id : X → X . — (D) If x, y ∈ R, we put x ∨ y = max{x, y},
x ∧ y = min{x, y}. — (E) Parentheses are used to denote indexed collections, e.g.
(Xa : a ∈ A). In particular, (xk : k < n) and (xk : k ∈ N) denote sequences.
If x = (xk : k < n), we put |x| = n. If x = (xk : k < n) or x = (xk : k ∈ N)
is a sequence and m ∈ N , then x ↾ n denotes (xk : k < m ∧ n) or (xk : k < m),
respectively. If x and y are sequences, and x = y ↾ n for some n, we write x ≤ y.
— (F) The concatenation of finite sequences x and y is denoted by x · y. — (G) If
x ∈ R, we put expx = 2x. If x ∈ R, x > 0, we put log x = log2 x, Log x = m,
where m is the least integer satisfying log x ≤ m. We put log∞ = Log ∞ =∞.

1.2. Notation and conventions. (A) Parentheses are often omitted provided
there is no danger of confusion. E.g. we write, if f is a mapping, fx instead of
f(x), f−1Y instead of f−1(Y ). — (B) If f : X → X is a mapping and Y ⊂ expY ,
then f−1Y denotes {f−1Z : Z ∈ Y }, and similarly for other analogous cases. —
(C) Brackets of the form 〈 〉 are used to denote spaces and similar objects. Instead
of e.g. 〈f, 〈Q, d, µ〉〉 we often write 〈f ;Q, d, µ〉; details concerning the use of this
notation are given at pertinent places. — (D) The same symbol is sometimes used
to denote a space and its underlying set.

1.3. Definitions. Let Q be a set. If ̺ : Q × Q → R satisfies, for all x, y ∈ Q,
the conditions (i) ̺(x, y) = ̺(y, x), (ii) ̺(x, x) = 0, then ̺ is called a semimetric
on Q and 〈Q, ̺〉 is called a semimetric space. If d : expQ → R+ satisfies (1)
d(X) ≤ d(Y ) wheneverX ⊂ Y ⊂ Q, (2) d(X) = 0 if X ⊂ Q, card X ≤ 1, then d is
called a diametric function or a diameter on Q and 〈Q, d〉 is called a diametric space
or a D-space. — If 〈Q, d〉 is a D-space and X ⊂ expQ, we put d(X ) = sup{d(X) :
X ∈ X }. If Q is a set and b ∈ R+, then b will also denote the diameter d on Q
such that d(X) = b if card X > 1; the diameter 1 will be called the unit diameter.
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For diametric spaces, we introduce two kinds of subspaces. If 〈Q, d〉 is a D-space
and X ⊂ Q, then the diameter d ↾ expX is denoted by d ↾ X and 〈X, d ↾ X〉,
often denoted simply by 〈X, d〉, is called a subspace of the first kind, abbreviated
subspace (I), of 〈Q, d〉. Subspaces of the first kind will also be called simply “sub-
spaces” provided there is no danger of confusion. Another kind of subspaces, which
we are going to define, will not occur very often. If S1 = 〈Q, d1〉 and S2 = 〈Q, d2〉
are D-spaces and d1 ≤ d2, we will say that S1 is a subspace of the second kind,
abbreviated subspace (II), of S2. If S1 is a subspace (I) of S, we write S1 ⊂ S; if
S1 is a subspace (II) of S, we write S1 ≤ S.

1.4. Remark. It seems that diameters, defined as non-negative functions on expQ,
appear for the first time in [F62], where it is assumed that Q is endowed with the
topology and that, besides (1) and (2) from 1.3, the following condition holds:
d(X) = inf{d(U) : X ⊂ U ⊂ Q, U open}.

1.5. If ̺ is a semimetric on Q, then the function d : expQ → R+, defined by
d(X) = sup{̺(x, y) : x, y ∈ X}, is a diameter on Q, which will be denoted by d[̺].
We will say that d[̺] is induced by ̺.
Clearly, 〈Q, ̺〉 7→ 〈Q, d[̺]〉 is an embedding of the class of semimetric spaces into

that of D-spaces.
With every W-space (see e.g. [K90]), there is associated a D-space. Namely, if

〈Q, ̺, µ〉 is a W-space, i.e. µ is a bounded measure and ̺ is a measurable semimetric
on Q, let, for every X ⊂ Q, d(X) be the least t ∈ R+ such that {(x, y) ∈ X ×X :
̺(x, y) > t} is of measure zero. Then 〈Q, d〉 is a D-space.
In [K90] and [K92a], we have examined the functional δ defined for semimetric

spaces. In what follows, we introduce (1.9) an analogous functional, also denoted
by δ, for D-spaces. It is easy to show (by considering dyadic expansions) that we
always have δ〈Q, d[̺]〉 = δ〈Q, ̺〉. Hence we can limit ourselves to the functional δ
defined for D-spaces.
It will turn out that many, though not all, results about δ for semimetric spaces

remain valid for D-spaces. However, some assertions concerning 〈Q, d〉 are true only
if d is induced by a semimetric or, as the case may be, by a metric.

1.6. Dyadic expansions (abbreviated d.e.) of D-spaces are defined in a way com-
pletely analogous to the case of semimetric spaces. Nevertheless, we state the
pertinent definitions in full.
(A) D will denote the collection of all finite non-void A ⊂

⋃
({0, 1}n : n ∈ N)

such that (1) x ∈ A, y ≤ x implies y ∈ A, (2) if x ∈ A, then either {x0, x1} ⊂ A or
{x0, x1} ∩A = ∅. — If A ∈ D , we put A′ = {x ∈ A : {x0, x1} ⊂ A}, A′′ = A \A′.
(B) A dyadic expansion of a set Q is an indexed collection (Qx : x ∈ A) such that

A ∈ D , Q∅ = Q, andQx0∪Qx1 = Qx, Qx0∩Qx1 = ∅ for x ∈ A′. A dyadic expansion
of a D-space S is an indexed collection S = (Sx : x ∈ A) of subspaces of S such
that (|Sx| : x ∈ A) is a d.e. of |S|. — If S = (Sx : x ∈ A) is a d.e., we put
S ′′ = {Sx : x ∈ A′′}. Observe that this notation is different from the notation in
[K90] and [K92a], where S ′′ is the indexed collection (Sx : x ∈ A′′).

1.7. Notation. If S = (Sx : x ∈ A) is a dyadic expansion of a D-space S =
〈Q, d〉, then we put δ(S ) = max{

∑
(d(Sx) : x < z) : z ∈ A′′}.
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1.8. Notation and definition. (A) A cover of a set Q or of a space S = 〈Q, . . . 〉
is a collection X of subsets of Q such that

⋃
X = Q. The set of all covers of Q will

be denoted by Cov (Q). — (B) If X ∈ Cov (Q), A ⊂ Q, then X ↾ A denotes the
collection {X ∩A : X ∈ X }. — (C) If X , Y are covers of Q and, for any X ∈ X ,
there is Y ∈ Y with X ⊂ Y , then we say that X refines Y (X is finer than Y )
or that Y is coarser than X , and we write X ≥ Y . If X ≥ Y and Y ≥ X , we
write X ∼= Y and say that X and Y are equivalent. — (D) If X , Y are covers of
Q, then X ∨ Y denotes the cover {X ∩ Y : X ∈ X , Y ∈ Y }. — (E) If 〈Q, d〉 is a
D-space and ε ≥ 0, then the cover {X : X ⊂ Q, d(X) ≤ ε} is denoted by M (d, ε),
abbreviatedM (ε) or M ε.

1.9. Definition. Let S = 〈Q, d〉 be a D-space. If U ∈ Cov (Q), then δ〈S | U 〉 or
δ〈Q, d | U 〉 denotes the infimum of all δ(S ), where S = (Sx : x ∈ A) is a dyadic
expansion of S such that S ′′ ≥ U (i.e. for every x ∈ A′′ there is U ∈ U with
Sx ⊂ U). Instead of δ〈S | M (d, ε)〉 we often write δ〈S | ε〉. We put δS = sup{δ〈S |
ε〉 : ε > 0}. — We will call δ〈S | U 〉 the δ-entropy of S with respect to U ; δS will
be called the δ-entropy (entropic content) of the D-space S = 〈Q, d〉.

1.10. Definition. A D-space S = 〈Q, d〉 is called bounded, if d(Q) < ∞,
totally bounded (abbreviated t.b.), if d(Q) < ∞ and, for every ε > 0, there is
a finite cover U with d(U ) ≤ ε.

1.11. The following statement, which is almost evident, will be used in some proofs.

Let S = (Sx : x ∈ A) be a d.e. of a D-space S = 〈Q, d〉. For every a ∈ A′′

let Y a = (Ya,b : b ∈ Ba) be a d.e. of Sa. Let Â consists of all x ∈ A′ and all

concatenations a · b, where a ∈ A′′, b ∈ Ba. For a ∈ A′ put Ta = Sa; for a ∈ A′′,

b ∈ Ba put Ta·b = Ya,b. Then T = (Tc : c ∈ Â) is a d.e. of S.

1.12. Proposition. Let S = 〈Q, d〉 be a D-space. Then (1) δ〈S | U 〉 ≤ δS for
every finite cover U of S, (2) if S is totally bounded or d is induced by a metric,
then δS is equal to the supremum of all δ〈S | U 〉, where U is a finite cover of S.

Proof: I. Let V = (Vx : x ∈ A) be a d.e. of S such that V ′′ refines U ; let
n = max{|x| : x ∈ A}; let ε > 0 be arbitrary. Clearly, there exists a d.e. S = (Sy :
y ∈ B) of S such that d(S ′′) ≤ ε and δ(S ) ≤ δ〈S | ε〉+ ε. Let T = (Tz : z ∈ C)
be the d.e. of S constructed from S and V y = (Vx ∩ Sy : x ∈ A), y ∈ B′′, in the
way described in 1.11. Since T ′′ refines U , we get δ〈S | U 〉 ≤ δ(T ) ≤ δ(S )+nε ≤
δ〈S | ε〉 + (n + 1)ε ≤ δS + (n + 1)ε. This proves the first assertion. — II. If S is
t.b. then every M ε is refined by a finite cover, which implies δS = sup{δ〈S | U 〉 :
U ∈ Cov (Q), U finite}. If d = d[̺], ̺ a metric, and S is not t.b., then there is an
ε > 0 and an infinite M ⊂ Q such that ̺(x, y) ≥ ε for x, y ∈ M , x 6= y. Clearly,
δ〈M | U 〉 ≥ mε whenever U is a finite cover, card U ≥ expm. �

1.13. Example. Let F be a free filter on N . For X ⊂ N put d(X) = 1 if X ∈ F ,
d(X) = 0 if X /∈ F . If F is not an ultrafilter, then 〈N, d〉 is easily seen to be totally
bounded, δ〈N, d〉 = 1. If F is an ultrafilter, then 〈N, d〉 is not totally bounded,
δ〈N, d〉 =∞, but δ〈N | U 〉 = 1 for every finite cover U .



Entropies of self-mappings of topological spaces with richer structures 751

1.14. Lemma. Let S = 〈Q, d〉 be a D-space. Assume that there exists a finite
cover U of S such that d(U ) = 0. Then δS = inf{δ(S ) : d(S ′′) = 0} and
δS = δ〈S | V 〉 for every finite cover V satisfying d(V ) = 0.

Proof: By definition, for every ε > 0 we have δ〈S | ε〉 = inf{δ(S ) : d(S ′′) ≤ ε}
and therefore δ〈S | ε〉 ≤ inf{δ(S ) : d(S ′′) = 0}. This implies δS ≤ inf{δ(S ) :
d(S ′′) = 0}. If V is a finite cover and d(V ) = 0, then, by 1.12, δS ≥ δ〈S |
V 〉 = inf{δ(S ) : S ′′ refines V } ≥ inf{δ(S ) : d(S ′′) = 0}, which proves δS =
inf{δ(S ) : d(S ′′) = 0}. This equality implies δS ≤ inf{δ(S ) : S ′′ refines
V } = δ〈S | V 〉. �

1.15. The product of finitely many semimetric spaces is defined in the usual way,
see e.g. [K90, 1.4]. To introduce the product of finitely many D-spaces, it is sufficient
to define S1 × S2, where Si = 〈Qi, di〉 are D-spaces. For every X ⊂ Q1 × Q2, let
Xi, i = 1, 2, denote the projection of X into Qi; put d(X) = d1(X1) ∨ d2(X2).
Clearly, d is a diameter on Q1 ×Q2, which will be denoted by d1 × d2. The space
S1 × S2 = 〈Q1 ×Q2, d1 × d2〉 will be called the product of S1 and S2.

1.16. Lemma. Let S = 〈Q1, d1〉 and T = 〈Q2, d2〉 be D-spaces. Let S = (Sa |
a ∈ A) and T = (Tb : b ∈ B) be dyadic expansion of S and T , respectively.
Let ε ≥ 0. Assume that d1(S

′′) ≤ ε, d2(T
′′) ≤ ε, d1(Sa) > ε for a ∈ A′ and

d2(Tb) > ε for b ∈ B′. Then there exists a dyadic expansion U = (Uc : c ∈ C) of
S × T = 〈Q1 ×Q2, d〉 such that (1) d(U

′′) ≤ ε, (2) δ(U ) ≤ δ(S ) + δ(T ), (3) every
Uc, c ∈ C, is of the form Sa × Tb, a ∈ A, b ∈ B.

Proof: It is easy to see that, starting from the trivial d.e. (Uc : c ∈ {∅}), U∅ =
S × T , we can construct, step by step, a dyadic expansion U = (Uc : c ∈ C) with
the following properties: U satisfies (3); if c ∈ C, d(Uc) ≤ ε, then c ∈ C′′; if c ∈ C,
d(Uc) > ε, Uc = Sa × Tb, then, for i = 0, 1, Uci = Sai × Tb if d1(Sa) ≥ d2(Tb),
whereas Uci = Sa × Tbi if d1(Sa) < d2(Tb). Clearly, U satisfies (1) and (3). To
prove that (2) is satisfied, it is sufficient to show that, for c ∈ C, Uc = Sa × Tb, we
have

∑
(d(Uz) : z < c) =

∑
(d1(Sx) : x < a) +

∑
(d2(Ty) : y < b).

This equality is easily proved by induction on the length |c| of c. �

1.17. Proposition. For any D-spaces and T , δ(S × T ) ≤ δS + δT .

Proof: Let ε > 0. Then, for any ϑ > 0, there are d.e. S = (Sa : a ∈ A) of
S = 〈Q1, d1〉 and T = (Tb : b ∈ B) of T = 〈Q1, d2〉 such that d1(S

′′) ≤ ε,
d2(T

′′) ≤ ε, δ(S ) < δ〈S | ε〉 + ϑ/2, and δ(T ) < δ〈T | ε〉 + ϑ/2. Clearly, we can
assume that d1(Sa) > ε for a ∈ A′, and d2(Tb) > ε for b ∈ B′. By 1.16, there exists
a d.e. U = (Uc : c ∈ C) of S × T such that δ(U ) ≤ δ(S ) + δ(T ) and d(U ′′) ≤ ε.
Hence δ〈S×T | ε〉 ≤ δ〈S | ε〉+δ〈T | ε〉+ϑ. Therefore δ〈S×T | ε〉 ≤ δ〈S | ε〉+δ〈T | ε〉
for every ε > 0. By 1.9, this implies δ(S × T ) ≤ δS + δT . �
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1.18. Notation. Let S = 〈Q, d〉 be a D-space and let U be a cover of S. Then
(1) U ⊙ d denotes the diameter defined as follows: (i) (U ⊙ d)(X) = 0 if X ⊂ U for
some U ∈ U , (ii) (U ⊙ d)(X) = d(X) if X ⊂ U for no U ∈ U , (2) U ⊙ S denotes
the D-space 〈Q,U ⊙ d〉. — If ε ≥ 0, we put ε⊙ d =M (d, ε)⊙ d, ε⊙S = 〈Q, ε⊙ d〉;
thus, (ε⊙ d)(X) = 0 if d(X) ≤ ε, and (ε⊙ d)(X) = d(X) if d(X) > ε.
The following assertions are obvious. Let S = 〈Q, d〉 be a D-space and let U and

V be covers of S. Then (1) (U ∨ V ) ⊙ d = (U ⊙ d) ∨ (V ⊙ d), (2) ifV refines U ,
then V ⊙ d ≥ U ⊙ d.

1.19. Proposition. Let S = 〈Q, d〉 be a D-space. Then (1) δ(U ⊙ S) ≤ δ(S | U )
for every cover U of Q, (2) δ(U ⊙ S) = δ〈S | U 〉 if U is finite.

Proof: Write d∗ instead ofU ⊙d, S∗ instead of U⊙S. To prove (1), we can assume
that δ〈S | U 〉 < ∞. Let ε > 0. Then there is a d.e. S = (Sa : a ∈ A) of S such
that δ(S ) < δ〈S | U 〉+ ε and S ′′ refines U . Put Ta = U ⊙Sa, T = (Ta : a ∈ A);
thus T ′′ is a d.e. of S ∗. Clearly, T ′′ refines M (d∗, 0) and therefore δS∗ ≤ δ(T ).
Since δ(T ) ≤ δ(S ), we get δS∗ ≤ δ〈S | U 〉+ε, which implies, ε > 0 being arbitrary,
the inequality (1). — To prove (2), we can assume that δ(U ⊙ S) < ∞. Let U be
finite. We have d∗(U ) = 0, hence, by 1.14, δS∗ = δ〈S∗ | U 〉. Let ε > 0. There
exists a d.e. T = (Ta : a ∈ A) = (U ⊙Sa : a ∈ A) of S∗ such that δ(T ) < δS∗+ ε
and T ′′ refines U . Clearly, we can assume that if a ∈ A′, then Ta ⊂ U for U /∈ U ,
and therefore d∗(Sa) = d(Sa) for a ∈ A′. Put S = (Sa : a ∈ A). Then S is a d.e.
of S, δ(S ) = δ(T ) ≤ δS∗ + ε and S ′′ refines U . This implies δ〈S | U 〉 < δS∗ + ε,
which proves, ε > 0 being arbitrary, the inequality δ〈S | U 〉 ≤ δS∗. �

1.20. We are going to consider some questions connected with the notion of relative
entropy including certain conceptual and intuitive aspects. An examination of these
aspects can throw light on some ideas investigated later (see e.g. 5.5), though the
relative entropy itself will occur only seldom in the subsequent sections. From
several approaches to the relative δ-entropy, we choose the one which is fairly simple
and fits well into the general framework introduced in [K92b].

1.21. Recall that in [K92b, 1.3] a piece of information is defined as a pair (S, S′),
where S and S′ are V-fields (in the case considered here, D-spaces); it is required
that S′ should be a subspace of S. In [K92b, 1.25] it is stated that the concept of
a piece of information (S, S′) can be extended by dropping this requirement, and
a (non-mathematical) example is given, where S is a subfield of S′. In [K92b], it
is also stated (1.21) that subfields can be introduced in various ways and that the
concept of a piece of information depends on how subfields are defined.
In accordance with this approach and with the fact that two kinds of subspaces

have been introduced for D-spaces, we proceed as follows. For the case of D-spaces,
two different kinds of pieces of information will be considered. A piece of information
of the first kind, abbreviated a piece of information (I), is a pair (S, S′) such that
S ⊃ S′, i.e. S′ is a subspace (I) of S.; a piece of information of the second kind,
abbreviated a piece of information (II), is a pair (S, S′), where S ≤ S′, i.e. S is
a subspace (II) of S′. A piece of information of the first kind could also be called
a localizing piece of information, and that of the second kind, an enriching piece of
information.
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1.22. Definition. Let (S, S′), where S and S′ are D-spaces, be a piece of informa-
tion of the first or the second kind. The evaluation or “measure” (cf. [K92b, 1.6])
of (S, S′) is defined to be the value δS − δS′ or δS′ − δS according to the whether
S ⊃ S′ or S ≤ S′ provided, of course, that these expressions are meaningful (i.e.
δS′ < ∞ or δS < ∞, respectively). The value δS − δS′ or δS′ − δS will be called
the relative δ-entropy of S with respect to S′ (if S ⊃ S′) or of S′ with respect to S
(if S ≤ S′).

If X and Y are covers of a D-space S and δ(X ⊙ S) < ∞, then δ((X ∨ Y ) ⊙
S)− δ(X ⊙ S) will be called the relative δ-entropy of Y with respect to X on S.

1.23. The intuitive meaning of the transition from a cover U to a finer one V can
be outlined as follows (for the sake of simplicity we consider finite partitions only).

It is not possible, in general, to localize (to identify) elements of a given D-space
S = 〈Q, d〉 with a full precision in finitely many steps.
In fact, we rather proceed as follows. A finite partition U = {Ui : 1 ≤ i ≤ m}

is taken and it is determined to which Ui does the element in question belong. The
overall information gain, with respect to all possible x ∈ Q, can be evaluated as
δ〈S | U 〉, i.e., by 1.19, as δ(U ⊙ S).

In the next step, a finer partition V = {Vk : 1 ≤ k ≤ n} is taken; thus,
we pass from a view characterized by U to a sharper and more informative view
corresponding to V . The evaluation of the overall information gain is now δ〈S |
V 〉 = δ(V ⊙ S). Clearly, U ⊙ S ≤ V ⊙ S; in other words, U ⊙ S is a subspace (II)
of V ⊙ S.

In this way, we can proceed indefinitely, passing over from a given “visualization”
to a sharper one. A more general procedure consists in transitions from 〈Q, d1〉 to
〈Q, d2〉 ≥ 〈Q, d1〉. Since d2 discerns points of Q more effectively than d1, transitions
of this kind also mean taking a sharper view. They will play an important role in
Section 5.

2.

In this section, we recall the definitions of the topological entropy of continuous
self-mappings of compact spaces, introduced in [AKM65], and of the entropy of
uniformly continuous self-mappings of metric spaces, introduced in [B71]. We also
recall some auxiliary concepts and known facts.

2.1. Notation. (A) If X ∈ Cov (Q), then ν(X ) denotes the infimum of card Y ,
where Y ⊂ X is a finite cover of Q; thus, if there is no finite cover Y ⊂ X , then
ν(X ) =∞. We put h(X ) = log ν(X ). — (B) IfX ∈ Cov (Q), then ν∗(X ) denotes
the supremum of card M for finite subsets M of Q such that card (M ∩ X) ≤ 1
for all X ∈ X . We put h∗(X ) = log ν∗(X ). — (C) If S = 〈Q, d〉 is a D-space
and ε > 0, we put h(S, ε) = h(M (d, ε)), h∗(S, ε) = h∗(M (d, ε)). For a semimetric
space S = 〈Q, ̺〉, we put h(S, ε) = h(〈Q, d[̺]〉, ε), h∗(S, ε) = h∗(〈Q, d[̺]〉, ε). If
S is fixed, we write h(ε) and h∗(ε) instead of h(S, ε) and h∗(S, ε), respectively.
Instead of h(〈X, d〉, ε) and h∗(〈X, d〉, ε), we sometimes write h(X, ε) and h∗(X, ε),
respectively, provided there is no danger of confusion.
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2.2. We list some well-known simple facts. (A) If U ∈ Cov (Q), then h(U ) ≥
h∗(U ). — (B) IfX ,Y ∈ Cov (Q) andX ≥ Y , then h(X ) ≥ h(Y ), h∗(X ) ≥ h∗(Y ).
— (C) If X ,Y ∈ Cov (Q), then h(X ∨Y ) ≤ h(X ) + h(Y ). — (D) If ̺ is a metric
on Q, S = 〈Q, d〉, then h(S, ε) ≤ h∗(S, ε/2) for every ε > 0. — Observe that this
last assertion may be false if ̺ is merely a semimetric.

2.3. Recall that a mapping of the form f : X → X is called a self-mapping (of X).
A self-mapping f : X → X will often be denoted by 〈f,X〉, in particular if X is
a space.

2.4. If 〈f, S〉 is a self-mapping, U is a cover of S, m,n ∈ N , and n > 0, we put

U (n) = U
(n)
f
=

∨
(f−kU : 0 ≤ k < n), U (m,n) = U

(m,n)
f

=
∨
(f−kU : m ≤ k <

m+ n).
The following assertions are evident. If U ∈ Cov (Q), 〈f,Q〉 is a self-mapping,

m,n ∈ N , and n > 0, then (A) h(f−1U ) = h(U ), (B) U (m+n) = U (m) ∨ U (m,n),

(C) h(U (m+n)) ≤ h(U (m)) + h(U (n)).

2.5. Fact. If U ∈ Cov (Q), then either h(U ) = δ〈Q, 1 | U 〉 = ∞ or δ〈Q, 1 |
U 〉 − 1 ≤ h(U ) ≤ δ〈Q, 1 | U 〉, where 1 denotes the unit diameter.
The proof is easy and can be omitted.

2.6. Lemma. Let xn, n ∈ N be non-negative reals. If xm+n ≤ xm + xn for all

m,n ∈ N , then the sequence (xn/n : n ∈ N) converges in R.

This is well known.

2.7. We recall the definition of the topological entropy of self-mappings in its usual
form (with a partly changed notation). Let 〈f,X〉 be a continuous self-mapping of
a compact Hausdorff topological space, in particular, of a compact metric spaceX =

〈Q, ̺〉. For every finite open cover U of X , put h〈f,X | U 〉 = limn→∞(h(U
(n))/n)

(this limit does exist by 2.4 (C) and 2.6); we say that h〈f,X | U 〉 is the topological
entropy of 〈f,X〉 with respect to U . The supremum of all h〈f,X | U 〉, where U is
a finite open cover, is denoted by h〈f,X〉 and it is called the topological entropy of
the self-mapping f of X .

Remark. The definition remains meaningful, if (1) instead of finite open covers,
any family of covers is considered, (2) the assumption of continuity of f is dropped.
We will return to these questions in Section 4.

2.8. Notation. Let f : Q → Q be a mapping. Let d be a diameter on Q. If

n ∈ N , n > 0, then d(n) = d
(n)
f
= d[f, n] denotes the diameter defined by d(n)(X) =

max{d(fkX) : 0 ≤ k < n}. If ̺ is a semimetric on Q, then ̺(n) = ̺
(n)
f
= ̺[f, n] is

defined in a similar way: ̺(n)(x, y) = max{̺(fkx, fky) : 0 ≤ k < n}.

2.9. We are going to recall the definition of the entropy of a uniformly continuous
self-mapping of a metric space. It will be stated in a form which is equivalent to
but formally different from that given in [B71].
Let S = 〈Q, ̺〉 be a metric space and let 〈f, S〉 be a uniformly continuous self-

mapping. If K ⊂ S is compact, then we put (1) for every ε > 0, h∗〈f, S;K |
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ε〉 = limn→∞(h
∗(〈K, ̺(n)〉, ε)/n), (2) h∗〈f, S;K〉 = sup{h∗〈f, S;K | ε〉 : ε > 0}.

We put h∗〈f, S〉 = sup{h∗〈f, S;K〉 : K ⊂ S compact}. We will call h∗〈f, S〉 the
Bowen entropy of 〈f, S〉; h∗〈f, S;K〉 will be called the Bowen entropy of 〈f, S〉 with
respect to K.

2.10. The following important well-known result can be easily proved using the
inequality h∗(S, ε) ≤ h(S, ε) ≤ h∗(S, ε/2), see 2.2 (A) and 2.2 (D).

Proposition. Let 〈f, S〉 be a self-mapping of a compact metric space. Then
h∗〈f, S〉 = h〈f, S〉.

2.11. The definition of the uniform equivalence of metrics can be extended top
semimetrics and diameters as follows. Let ̺1 and ̺2 be semimetrics and let d1
and d2 be diameters on Q. We will say that ̺1 and ̺2 or, respectively, d1 and
d2 are uniformly equivalent, if there are positive realvalued functions u and v on
R+ \ {0} such that ̺1(x, y) < η implies ̺2(x, y) < u(η) and ̺2(x, y) < ε implies
̺1(x, y) < v(ε) (or, respectively, d1(X) < η implies d2(X) < u(η) and d2(X) < ε
implies d1(X) < v(ε)).

2.12. The following result is also known. Nevertheless, we give a short proof.

Proposition. Let ̺ and σ be uniformly equivalent metrics on Q. Let f : Q→ Q
be uniformly continuous with respect to ̺ or σ. Then h∗〈f, 〈Q, ̺〉〉 = h∗〈f, 〈Q, σ〉〉.

Proof: Let u and v possess, with respect to ̺ and σ, the properties stated in
2.11. It is easy to verify that they also possess these properties with respect to

̺(n) and σ(n) for all n ∈ N . This implies that, for every compact K ⊂ S, every

n ∈ N , n > 0, and every ε > 0, we have h∗(〈K, ̺(n)〉, ε) ≤ h∗(〈K,σ(n)〉, u(ε)),

h∗(〈K,σ(n)〉, ε) ≤ h∗(〈K, ̺(n)〉, v(ε)). Hence, we get h∗〈f, S1;K | ε〉 ≤ h∗〈f, S2;K |
u(ε)〉, h∗〈f, S2,K | ε〉 ≤ h∗〈f, S1,K | v(ε)〉, where S1 = 〈Q, ̺〉, S2 = 〈Q, σ〉. From
this we obtain, by definition 2.9, h∗〈f, S1;K〉 = h∗〈f, S2;K〉 for every compact
(with respect to ̺ or, equivalently, to σ) subsetK ⊂ Q. Hence h∗〈f, S1〉 = h

∗〈f, S2〉.
�

Remark. The proposition just proved shows that, in fact, h∗ is an entropy of
a uniformly continuous self-mappings of a metrizable uniform space; it does not
depend on the choice of metric inducing the uniformity.

2.13. Proposition. Let S = 〈Q, d〉 be a compact metrizable space. If f : S → S
is a continuous mapping, then h〈f, S〉 is equal to the supremum of all lim(δ〈Q, 1 |

U (n)〉/n), where U is an open cover of S .

Proof: Since S is compact, h(U ) < ∞ for every open cover U . By 2.5, we have
|h(U )− δ〈Q, 1 | U 〉| ≤ 1. �

3.

In Section 2, we mentioned the fact that the definition 2.7 remains meaningful if,
given a non-void ξ ⊂ Cov (Q), we define h(f,Q, ξ) as the supremum of all h〈f,Q |
U 〉 for U ∈ ξ (observe that for a fixed U , h〈f,X | U 〉, as defined in 2.7, does not
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depend on the topology of the space in question). Before proceeding to develop
this observation, let us note that, in connection with entropies, there do occur
systems ξ of covers of a topological space 〈Q, τ〉 which differ from the system of
all U ∈ Cov (Q) refinable by some open cover; cf. e.g. the example in Section 1 of
[B73].
Since it seems superfluous to examine quite arbitrary systems of covers, we re-

strict ourselves to merotopies.

3.1. From various equivalent definitions of a merotopy (see e.g. [K75]), we choose
the following one.

Definition. Let Q be a set and let ∅ 6= µ ⊂ Cov (Q). Assume that (1) if X ,Y ∈
Cov (Q), X ≤ Y , Y ∈ µ, then X ∈ µ, (2) X ,Y ∈ µ implies X ∨Y ∈ µ. Then µ is
called a merotopy on Q and 〈Q,µ〉 is called a merotopic space. — A cover X ∈ µ
will sometimes be called a µ-cover.
Observe that every merotopy induces, in a natural way, a topology and that

merotopic spaces can be considered as topological spaces equipped, in addition,
with a merotopy inducing the given topology.

3.2. We are now going to recall some simple basic concepts and facts concerning
merotopic spaces. For further information see e.g. [H74], [H82] or [K76].
(A) If µ is a merotopy on Q and X ⊂ Q, then µ ↾ X denotes the collection of

all {U ∩ X : U ∈ U }, where U ∈ µ. It is easy to see that µ ↾ X is a merotopy.
The space 〈X,µ ↾ X〉, often denoted simply by 〈X,µ〉, will be called a subspace of
〈Q,µ〉. — (B) Let µ be a merotopy on Q. A collection β ⊂ µ will be called a base of
µ (or of 〈Q,µ〉), if for everyX ∈ µ there is a Y ∈ β refiningX . — (C) If µ1 and µ2
are merotopies on Q, µ1 ⊃ µ2, we say that µ1 is finer than µ2 or that µ2 is coarser
than µ1. — (D) A merotopic space 〈Q,µ〉 is called totally bounded (abbreviated
t.b.) if, for every U ∈ µ, there is a finite cover V ⊂ U (it is not required that V

should be a µ-cover). A set X ⊂ Q is called totally bounded if so is 〈X,µ〉. — (E)
If S1 = 〈Qi, µi〉, i = 1, 2, are merotopic spaces, then a mapping f : S1 → S2 is
called continuous, if f−1(µ2) ⊂ µ1. — (F) If Si = 〈Qi, µi〉, i = 1, 2, are merotopic
spaces, then µ1×µ2 denotes the merotopy on Q1×Q2 with a base consisting of all
{X1 ×X2 : Xi ∈ X i}, where X i ∈ µi. The space 〈Q1 ×Q2, µ1 × µ2〉, denoted by
S1 × S2, is called the product of S1 and S2.

3.3. We list some important classes of merotopies. (A) Let S = 〈Q, τ〉 be a topo-
logical space, and let µ[τ ] be the merotopy with a base consisting of all open covers;
we say that µ[τ ] is induced by τ (or by S). — (B) If S = 〈Q, τ〉 is a topological space
and X ⊂ Q, we say that the merotopy µ[τ ] ↾ X on X is induced by the topology
of S. — (C) If S = 〈Q, ξ〉 is a uniform space, then µ[ξ] denotes the merotopy con-
sisting of all uniform covers (thus, if uniformities are defined as systems of covers,
we have µ[ξ] = ξ). (D) If d is a diameter on Q, then µ[d] denotes the merotopy with
a base consisting of allM (d, ε), ε > 0. — (E) If U ∈ Cov (Q), then [U ] will denote
the merotopy of which {U } is a base.
We shall see in what follows that the approach based on arbitrary merotopies

enables the uniform treatment of quite different objects (uniformities, diameters,
individual covers) in the same way.
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3.4. We are going to introduce spaces whose structure consists of a diameter d
and a merotopy µ; in general, no relationship between d and µ is assumed. Self-
mappings of these spaces, entropies of self-mappings, etc. will form the main object
of investigations in the subsequent sections.

3.5. Definition and convention. Let Q be a set, d a diameter and µ a merotopy
on Q. We will call 〈Q, d, µ〉 a merotopized diametric space or simply an MD-space.
If S = 〈Q, d〉 is a D-space and no merotopy on Q is explicitly given, we will consider
S as an MD-space 〈Q, d, µ[d]〉.

3.6. Definition. If S = 〈Q, d, µ〉 is an MD-space, then δS will denote the supre-
mum of all δ〈Q, d | U 〉, where U ∈ µ. We will call δS the δ-entropy of the
MD-space S.

3.7. Fact. If U is a cover of a D-space 〈Q, d〉, then δ〈Q, d, [U ]〉 = δ〈Q, d | U 〉.
This is an immediate consequence of the definition.

3.8. The following equality justifies the convention in 3.5 and also the use of the
same letter δ to denote the entropy of D-spaces as well as of MD-spaces.

Fact. If 〈Q, d〉 is a D-space, then δ〈Q, d, µ[d]〉 = δ〈Q, d〉.

Proof: By definition, δ〈Q, d〉 is equal to the supremum of all δ〈Q, d | M (d, ε)〉,
where ε > 0. Since (see 3.3 (D)) M (d, ε), ε > 0, form a base for µ[d], this proves
the assertion. �

3.9. We are going to introduce some terminology concerning MD-spaces. Though
it is often self-explanatory, we prefer to state the exact definitions. — (A) Let
S = 〈Q, d, µ〉 be an MD-space. If X ⊂ Q, then 〈X, d ↾ X,µ ↾ X〉, often denoted
simply by 〈X, d, µ〉 (or also by S ↾ X), will be called a subspace of S. — (B) If
Si〈Qi, di, µi〉, i = 1, 2, then 〈Q1 × Q2, d1 × d2, µ1 × µ2〉 is called the product of
S1 and S2 and it is denoted by S1 × S2. — (C) If Si = 〈Qi, diµi〉, i = 1, 2, then
a mapping f : S1 → S2 is called (1) continuous, if f : 〈Q1, µ1〉 → 〈Q2, µ2〉 is
continuous, i.e. f−1(µ2) ⊂ µ1, (2) bounded, if d2(fX) <∞ whenever d1(X) <∞.

3.10. Definition. An MD-space 〈Q, d, µ〉 is called totally bounded, abbreviated
t.b., if d(Q) <∞ and 〈Q,µ〉 is totally bounded.

3.11. We list some simple facts, omitting their proofs. Observe that the assertion
(D) is an easy consequence of 1.12.
(A) If S′ is a subspace of an MD-space S, then δS′ ≤ δS. — (B) If Si = 〈Q, di, µi〉,

i = 1, 2, are MD-spaces and d1 ≤ d2, µ1 ⊂ µ2, then δS1 ≤ δS2. — (C) If an MD-
space S = 〈Q, d, µ〉 is not t.b., then δS =∞ except when µ is the coarsest merotopy
on Q, in which case δS = 0. — (D) Let S = 〈Q, d, µ〉 be an MD-space and let 〈Q, d〉
be t.b. If µ is t.b. and µ ⊃ µ[d], then δS = δ〈Q, d, µ[d]〉 = δ〈Q, d〉.

3.12. Proposition. Let Si = 〈Qi, di, µi〉, i = 1, 2, be MD-spaces. If µi ⊃ µ[di],
i = 1, 2, then δ(S1 × S2) ≤ δS1 + δS2.

Proof: It follows from 3.11 (C) that we can assume S1 and S2 to be t.b. Put
Q = Q1 × Q2, d = d1 × d2, µ = µ1 × µ2. Since µi ⊃ µ[di], the D-spaces 〈Qi, di〉
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and 〈Q, d〉 are also t.b. Hence, by 3.11 (D), δSi = δ〈Qi, di〉, δ(S1 × S2) = δ〈Q, d〉.
By 1.17, this implies the proposition. �

4.

In this section, we introduce and examine the entropy δ〈f, S〉 for self-mappings
on MD-spaces.

4.1. Notation. (A) A self-mapping 〈f, S〉, where S = 〈Q, d, µ〉 will also be denoted
by 〈f ;Q, d, µ〉. — (B) If 〈f, S〉 is a self-mapping of an MD-space S = 〈Q, d, µ〉, then

(1) for everyM ⊂ Q and everyU ∈ µ, we put δr〈f, S;M | U 〉 = limn→∞(δ〈M,d(n)|

U (n)〉/n), (2) for every M ⊂ Q, δr〈f, S;M〉 will denote the supremum of all
δr〈f, S;M | U 〉, U ∈ µ. — We do not introduce a special name for δr〈. . . 〉, since it
plays only an auxiliary role. The subscript r in δr〈. . . 〉 stems from “raw entropy”
(a possible name for δr).

4.2. Definition. Let 〈f, S〉 be a self-mapping of an MD-space S = 〈Q, d, µ〉. Let
M ⊂ Q. The pair 〈〈f, S〉,M〉 will be denoted by 〈f, S;M〉 and δ〈f, S;M〉 will
denote the supremum of all δr〈f, S;X〉, where X ⊂ M is totally bounded in S.
Instead of δ〈f, S;Q〉, we write δ〈f, S〉. — We call δ〈f, S〉 the δ-entropy of 〈f, S〉;
δ〈f, S;M〉 will be called the δ-entropy of 〈f, S〉 with respect to M .

4.3. Theorem. Let S = 〈Q, τ〉 be a compact Hausdorff topological space and let
〈f, S〉 be a continuous self-mapping. Then the topological entropy h〈f, S〉 is equal
to the δ-entropy δ〈f ;Q, 1, µ[τ ]〉.

This is an immediate consequence of 2.13.

4.4. Theorem. Let S = 〈Q, ̺〉 be a metric space and let 〈f, S〉 be a uniformly
continuous self-mapping. Then the Bowen entropy h∗〈f, S〉 is equal to the δ-entropy
δ〈f ;Q, 1, µ[τ ]〉, where τ is the topology induced by ̺.

Proof: I. If M ⊂ Q is t.b. in 〈Q,µ[τ ]〉, then its closure is a compact subset of
〈Q, τ〉. This is a consequence of the following simple fact, the proof of which can be
omitted: if 〈X, τ〉 is a regular topological space and M ⊂ X is t.b. with respect to
µ[τ ], then the closure of M is compact. — II. By 2.10 and 2.13, the Bowen entropy
h∗〈f, S〉 is equal to the supremum of all sup{lim(δ〈K, 1 | U (n)〉/n) : U ∈ µ[τ ]},

where K ⊂ S is compact. On the other hand, δ〈f ;Q, 1, µ[τ ]〉 is equal, by definition,

to the supremum of all sup{lim(δ〈M, 1 | U (n)〉/n) : U ∈ µ[τ ]}, where M is t.b. in
〈Q,µ[τ ]〉. By I, these two suprema are equal. �

4.5. Along with the δ-entropy, there is another kind of entropy for self-mappings,
which will be denoted by δ. The δ-entropy has some useful properties; under certain
not too strong assumptions it coincides with the δ-entropy. On the other hand, some
properties of δ are highly unpleasant (see e.g. 4.9 below). Therefore, we will not
consider δ in any detail, except proving the proposition (see 4.15) on the coincidence

of δ〈f, S〉 and δ〈f, S〉 under certain conditions.
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4.6. Definition. Let 〈f, S〉 be a self-mapping of an MD-space S = 〈Q, d, µ〉. For

anyX ⊂ Q, put δr〈f, S;X〉 = limn→∞(δ〈X, d(n), µ(n)〉/n), where µ(n) =
∨
(f−kµ :

0 ≤ k < n). If M ⊂ Q, then δ〈f, S;M〉 will denote the supremum of all δr〈f, S;X〉,
where X ⊂ M is totally bounded in S. Instead of δ〈f, S;Q〉 we write δ〈f, S〉. We
say that δ〈f, S;M〉 is the δ-entropy of 〈f, S〉 with respect to M , and we call δ〈f, S〉
the δ-entropy of 〈f, S〉. Observer that we always have δ〈f, S;X〉 ≥ δ〈f, S;X〉; this
follows easily from the definitions.

4.7. One would expect the entropy of an identity mapping to be zero. Next we
shall show that this is, in fact, true for the δ-entropy but generally fails for the
δ-entropy (see 4.9). Hence the usefulness of δ is rather limited.

4.8. Proposition. Let S = 〈Q, d, µ〉 be an MD-space. Then δ〈id, S〉 = 0, where
id denotes the identity mapping.

Proof: Let X ⊂ S be t.b. Then δr〈id, S;X〉 is equal to the supremum of all
δr〈id, S;X | U 〉, where U ∈ µ, and δr〈id, S;X | U 〉 is equal to lim(δ〈X, d | U 〉/n).
Since X is t.b., we have, for everyU ∈ µ, δ〈X, d | U 〉 <∞, hence δr〈id, S;X | U 〉 =
0. This implies δr〈id, S;X〉 = 0 and proves δ〈id, S〉 = 0, since X is an arbitrary t.b.
subspace of S. �

4.9. Fact. Let S = 〈Q, d, µ〉 be an MD-space. If δT < ∞ for every totally

bounded T ⊂ S, then δ〈id, S〉 = 0. If δT = ∞ for some totally bounded T ⊂ S,
then δ〈id, S〉 =∞.

Proof: If T = 〈X, d, µ〉 is t.b., then δr〈id, T 〉 = lim(δ〈X, d, µ〉/n) and therefore
δr〈id, T 〉 = 0 provided δT <∞, whereas δr〈id, T 〉 =∞ whenever δT =∞. �

4.10. Among MD-spaces, those of the form S = 〈Q, 1, µ〉 play an important role
due, among other things, to the equalities stated in 4.3 and 4.4. On the other hand,
it is easy to see that if S = 〈Q, 1, µ〉, then, under quite weak assumptions on f ,
δ〈f, S〉 =∞ or δ〈f, S〉 = 0, hence δ〈f, S〉 6= δ〈f, S〉 whenever 0 < δ〈f, S〉 <∞.

4.11. The situation is quite different for δ-regularMD-spaces of the form 〈Q, d, µ[d]〉.
For spaces of this form the equality δ = δ is fulfilled, and it may be easier to calculate
(or estimate) δ than δ.
In accordance with [K92a] we will use the following notation. Let S be a D-

space 〈Q, d〉 or an MD-space of the form 〈Q, d, µ[d]〉. Then, for every t > 0, we put
CS(t) = sup{δ〈X, d〉 : X ⊂ Q, d(X) ≤ t}. If CS(t)→ 0 for t → 0, we say that S is
δ-regular. We are going to prove the equality δ = δ for δ-regular spaces. First we
give some simple lemmas.

4.12. Lemma. Let S = 〈Q, d〉 be a D-space. Then (1) for every dyadic expansion
S = (Sx : x ∈ D) of S, δS ≤ δ(S )+CS(ε), where ε = d(S

′′), (2) for every ε > 0,
δS ≤ δ〈S | ε〉+ CS(ε).

Proof: Put ϑ = CS(ε); we can assume ϑ < ∞. Let b and c be arbitrary positive
reals. For every z ∈ D′′, δ(Sz) ≤ ϑ, and therefore there exists a d.e. T z of Sz such
that d(T z) < ϑ + b, d(T ′′

z ) < c. Let U be the d.e. constructed from S and T z ,
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z ∈ D′′, in the manner described in 1.11. Then d(U n) < c, δ(U ) ≤ δ(S ) + ϑ + b.
This proves the assertion (1). The second assertion is an immediate consequence.

�

4.13. Lemma. Let 〈f, S〉 be a self-mapping of a D-space S = 〈Q, d〉. Let n ∈ N ,

n > 0. Then (1) δ〈Q, d(n)〉 ≤ n·δS, (2) ifM ⊂ Q, then δ〈M,d(n)〉 ≤
∑
(δ〈fkM,d〉 :

0 ≤ k < n), (3) CZ ≤ nCS , where Z = 〈Q, d(n)〉, (4) δ〈Q, d(n), µ[d]〉 ≤ δ〈Q, d(n) |
ε〉+ nCS(ε) for every ε > 0.

Proof: I. For x ∈ Q put g(x) = (fkx : 0 ≤ k < n). Then g maps Q onto the

subspace 〈gQ, dn〉 of Sn and transforms d(n) into dn ↾ g(Q). Hence δ〈Q, d(n)〉 ≤

δ(Sn) and therefore, by 1.17, δ〈Q, d(n)〉 ≤ n · δS. — II. If M ⊂ Q, then g(M) ⊂∏
(fkM : 0 ≤ k < n). This implies, by 1.17, the second assertion. — III. Let

t > 0. Let M ⊂ Q, d(n)(M) ≤ t. Then d(fkM) ≤ d(n)(M) for 0 ≤ k < n

and therefore δ〈fkM,d〉 ≤ CS(t). Hence, by (1), δ〈M,d(n)〉 ≤ n · CS(t). This

proves CZ(t) ≤ n. — IV. Since d(n) ≥ d, µ[d(n)] is finer than µ[d] and therefore

δ〈Q, d, µ[d]〉 ≤ δ〈Q, d(n), µ[d(n)]〉 = δ〈Q, d(n)〉 (see 3.8). For every ε > 0, we have,

by 4.12, δ〈Q, d(n)〉 ≤ δ〈Q, d(n) | ε〉 + CZ(ε), where Z = 〈Q, d(n)〉. Hence, by (3),

δ〈Q, d(n), µ[d]〉 ≤ δ〈Q, d(n) | ε〉+ nCS(ε). �

4.14. Lemma. Let S = 〈Q, d, µ[d]〉 be an MD-space. Let 〈f, S〉 be a continuous
self-mapping; let X ⊂ Q. Then, for every ε > 0, δr〈f, S;X〉 ≤ δr〈f, S;X〉+ CS(ε).

Proof: Let ε > 0. Since f is continuous, we have (µ[d])(n) = µ[d] for all n ∈ N ,

n > 0. Hence, by 4.13, δr〈f, S;X〉 = lim(δ〈X, d(n), µ[d]〉/n) ≤ lim(δ〈X, d(n) |

M (d(n), ε)〉/n) + CS(ε). It is easy to see that M (d(n), ε) = U (n), where U =

M (d, ε). Hence lim(δ〈X, d(n) | M (d(n), ε)〉/n) = lim(δ〈X, d(n) | U (n)〉/n) =
δr〈f, S;X | U 〉 ≤ δr〈f, S;X〉. This proves that δr〈f, S;X〉 ≤ δr〈f, S;X〉+ CS(ε).

�

4.15. Proposition. Let 〈Q, d〉 be a δ-regular D-space. Put S = 〈Q, d, µ[d]〉.
Let 〈f, S〉 be a continuous self-mapping. Then δ〈f, S;M〉 = δ〈f, S;M〉 for every
M ⊂ Q; in particular, δ〈f, S〉 = δ〈f, S〉.

This is an immediate consequence of 4.14.

4.16. It is a well-known and almost trivial fact that the entropies h and h∗ satisfy
the equalities h〈fp, S〉 = p · h〈f, S〉, h∗〈fp, S〉 = p · h∗〈f, S〉 for p ∈ N . It turns
out that, under certain conditions, the corresponding equality δ〈fp, S〉 = pδ〈f, S〉
is also valid, see 4.20 below. On the other hand, in many fairly simple cases (see
5.10), the set of all δ〈fp, S〉, p ∈ N , is bounded whereas δ〈f, S > 0〉 and therefore
δ〈fp, S〉 = p · δ〈f, S〉 cannot hold for all p ∈ N .

4.17. Lemma. Let 〈f, S〉 be a continuous self-mapping of an MD-space S =

〈Q, d, µ〉. Let p ∈ N , p > 0. Then δ〈fp;Q, d(p), µ〉 = p · δ〈f ;Q, d, µ〉.

Proof: The case p=1 is trivial. In what follows, we assume p = 2; for p > 2 the
proof is completely analogous, but the notation is more complicated.
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Let us write e instead of d(2), g instead of f (2). Let X ⊂ Q be t.b. It is easy to

see that, for any n ∈ N , n > 0, and any Y ⊂ Q, e(n)(Y ) is equal to max{d(f jY ) :

0 ≤ j < 2n}, hence to d
(2n)
f
(Y ). If U ∈ µ, then, with V = U ∨ f−1U , we have

δr〈g;X, e | V 〉 = lim(δ〈X, e
(n)
g | V

(n)
g 〉/n) = lim(δ〈X, d

(2n)
f | U

(2n+1)
f 〉/n). Since

δ〈X, d
(2n)
f

| U
(2n)
f

〉 ≤ δ〈X, d
(2n)
f

| U
(2n+1)
f

〉 ≤ δ〈X, d
(2n+1)
f

| U
(2n+1)
f

〉,

we get
2 lim(x2n/2n) ≤ δr〈g;X, e | V 〉 ≤ 2 lim(x2n+1/(2n+ 1)),

where xk = δ〈X, d
(k)
f

| U
(k)
f

〉.

It is easy to see that, due to the fact that (xk : k ∈ N) is non-decreasing, we
have lim(x2n/2n) = lim(x2n+1/(2n + 1)) = lim(xn/n). This implies δr〈g;X, e |
V 〉 = 2δr〈f ;X, d | U 〉.
Clearly, δr〈g;X, e, µ〉 is equal to the supremum of all δr〈g;X, e | V 〉, where V is

of the form U ∨ f−1U , U ∈ µ; this follows from the fact that f is continuous and
therefore covers U ∨f−1U form a base for µ. Hence δr〈g;X, e, µ〉 = 2δr〈f ;X, d, µ〉.

�

4.18. Definition. A self-mapping 〈f, S〉 of a D-space 〈Q, d〉 or an MD-space
〈Q, d, µ〉 is called expanding if d(fX) ≥ d(X) for every X ⊂ Q.

4.19. Lemma. Let 〈f, S〉 be an expanding self-mapping of an MD-space S =

〈Q, d, µ〉. Let p ∈ N , p ≥ 1. Put g = fp, e = d(p). Then δ〈g;Q, e, µ〉 = δ〈g;Q, d, µ〉.

Proof: Let X ⊂ Q. Since f is expanding, we easily obtain that, for every U ∈ µ,

δ〈X, d(n) | U
(n)〉 ≤ δ〈X, e(n) | U

(n)〉 ≤ δ〈X, d(n+1) | U
(n+1)〉,

and therefore

lim(δ〈X, e(n) | U
(n)〉/n) = lim(δ〈X, d(n) | U

(n)〉/n).

This implies δr〈g;X, e, µ〉 = δr〈g;X, d, µ〉 for every X ⊂ Q, which proves the asser-
tion.

�

4.20. Proposition. Let 〈f, S〉 be a continuous expanding self-mapping of anMD-
space S = 〈Q, d, µ〉. Then δ〈fp, S〉 = p · δ〈f, S〉 for every p ∈ N .

This is an immediate consequence of 4.17, 4.19, and 4.8.

5.

In this section, we introduce the δ-entropy for objects of the form 〈P, S〉, where
S is an MD-space and P ⊂ SN . The motivation for considering such objects can
be explained as follows.
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5.1. If Q is a set and f : Q → Q is a mapping, let Φ(f) denote the set of all

x = (xk : k ∈ N) ∈ QN such that xk+1 = f(xk) for all k ∈ N ; if, in addition,
a set X ⊂ Q is given, we put Φ(f,X) = {x ∈ Φ(f) : x0 ∈ X}. The set Φ(f)
can be interpreted as describing a fully determined process (with discrete time)
whose course depends only on the initial value x0. To describe a non-deterministic
process with no probability intervening, we can take any non-void subset S of QN ,
interpreted as the set of all possible courses.
It will turn out that, for Q equipped with d and µ so as to obtain an MD-space

〈Q, d, µ〉, it is possible to introduce an entropy for 〈P, S〉, denoted by δ〈P, S〉, in
a reasonable way. In particular, we get δ〈Φ(f), S〉 = δ〈f, S〉 under certain fairly
weak assumptions (see 5.7).
Since 〈P, S〉 can be considered as a “probability-free” analogue of a stochastic

process (with discrete time), we will call it a polydromic process (from πoλυ-, many-,
and δ̺oµoς, which means course).

5.2. Definition. Let S = 〈Q, d, µ〉 be an MD-space. If ∅ 6= P ⊂ QN , then 〈P, S〉
will be called a polydromic process on S. — Sometimes 〈P, S〉 will be considered
together with a given set M ⊂ Q; instead of (〈P, S〉,M), we will write 〈P, S;M〉.
— If 〈f, S〉 is a self-mapping of an MD-space S, we will say that 〈Φ(f), S〉 is the
polydromic process associated with 〈f, S〉. Similarly, if M ⊂ Q is given, we will say
that 〈Φ(f,M), S〉 is associated with 〈f, S;M〉.

5.3. Definition. The following notation (cf. 1.16, 3.2) will be used. If U ∈
Cov (Q), then U 1 = U , U n+1 = U n × U for n ∈ N , n > 0. If X ⊂ QN , n ∈ N ,
n > 0, then X ↾ n = {x ↾ n : x ∈ X}. If S = 〈Q, d, µ〉 is an MD-space, then d1 = d,
µ1 = µ, dn+1 = dn × d, µn+1 = µn × µ, thus Sn = 〈Qn, dn, µn〉. Let S = 〈Q, d, µ〉
be an MD-space and let 〈P, S〉 be a polydromic process. For every U ∈ µ put
δr〈P, S | U 〉 = limn→∞(δ〈P ↾ n, dn | U n〉/n); put δr〈P, S〉 = sup{δr〈P, S | U 〉 :
U ∈ µ}. The supremum of all δr〈X,S〉, where ∅ 6= X ⊂ P and for every n ∈ N ,
n > 0, X ↾ n is totally bounded in Sn, will be denoted by δ〈P, S〉 and will be called
the δ-entropy of the polydromic process 〈P, S〉.

5.4. We are going to discuss the intuitive meaning of δ〈P, S〉. For the sake of
simplicity, we will assume S = 〈S, d, µ〉 to be totally bounded. The entropy δ〈P, S〉
is then equal to the supremum of all δr〈P, S | U 〉 = limn→∞(δ〈P ↾ n, dn | U n〉/n),
where U ∈ µ. Hence we can restrict ourselves to explaining the meaning of this
limit from the standpoint introduced in [K92b] and developed in Section 1 of the
present article.

5.5. It turns out that we have a situation related to that considered in 1.23. For
n ∈ N , n > 0, let dn be the diameter on P defined as follows: dn(X) = 0 if
X ↾ n ⊂ V for some V ∈ U n, and dn(X) = dn(X ↾ n) if X ↾ n ⊂ V for V 6⊂ U n;
thus, dn(X) = (U

n ⊙ d)(X ↾ n). By 1.19, we obtain δ〈P ↾ n, dn | U n〉 = δ〈P, dn〉;
it is easy to see that dn ≤ dn+1 for all n ∈ N , n > 0.
Thus, every 〈P, dn〉 is a subspace (II) (see 1.3) of 〈P, dn+1〉; we have, similarly as

in 1.23, successive transitions from one way of looking at possible courses (sequences

x ∈ QN ) to another one, which is more informative. More explicitly, we pass on
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from seeing the development on {0, . . . , n − 1} with a “sharpness” given by dn

to seeing it on {0, . . . , n} with a greater sharpness given by dn+1. The resulting
information gain can be expressed as the relative entropy δ〈P, dn+1〉 − δ〈P, dn〉.

5.6. The average information gain after n steps is equal to δ〈P, dn〉/n (we put
δ〈P, d0〉 = 0). Since these values can fail to have a limit, we take the upper limit
(or, which is the same, the upper Cesàro limit of relative entropies). This limit
can be considered as expressing the speed with which the entropy increases when
successively larger segments of the process are taken into account.

5.7. Theorem. Let 〈f, S〉 be a bounded continuous self-mapping of an MD-space
S = 〈Q, d, µ〉. If M ⊂ S, then

δ〈f, S;M〉 = δ〈Φ(f,M), S〉.

Proof: I. If X ⊂ Q, put PX = Φ(f,X). We are going to show that, for every
X ⊂ Q,

(∗) δr〈f, S;X〉 = δr〈PX , S〉 = δr〈Φ(f,X), S〉.

To this end, it is sufficient to show that, for all n ∈ N , n > 0, and U ∈ µ, the

following equality holds (as for d(n), U (n), dn, U n, see 2.4, 2.8, and 5.2):

(∗∗) δr〈X, d
(n) | U

(n)〉 = δr〈PX , d
n | U

n〉.

For every n ∈ N , n > 0, put gn(x) = (f
kx : 0 ≤ k < n) for every x ∈ X . Clearly,

gn : X → PX ↾ n is a bijection, which transforms U (n) ↾ X into U n ↾ (Px ↾ n)

and d(n) ↾ X into dn ↾ (Px ↾ n). This implies (∗∗), hence also (∗). — II. Let A

and B consist, respectively, of all t.b. X ⊂ M and of all Y ∈ PM such that every
Y ↾ n is t.b. (in Sn). By definition (5.3) and by (∗), it is sufficient to show that
X ∈ A implies Φ(f,X) ∈ B whereas T ∈ B implies π(T ) ∈ A , T ⊂ Φ(f, π(T )),
where π(x) = x0 for x = (xk : k ∈ N) ∈ SN . Indeed, if X ∈ A , then, under
our assumptions, fnX is t.b. for every n. Hence Px ↾ n = gn(X) is also t.b., and
therefore Px ∈ B . It is evident that T ∈ B implies π(T ) ∈ A and T ∈ Φ(f, π(T )).
This proves the theorem. �

5.8. Fact. If S is an MD-space of the form S = 〈Q, d, µ[d]〉, then δ〈QN , S〉 ≤ δS.
— This follows easily from 1.17.

5.9. Proposition. If 〈f, S〉 is a bounded continuous self-mapping of an MD-space
S = 〈Q, d, µ[d]〉, then δ〈f, S〉 ≤ δ〈QN , S〉 ≤ δS.

This is an immediate consequence of 5.7 and 5.8.

5.10. It follows from 5.9 that if 〈f, S〉 satisfies the conditions stated in 5.9, δS <∞,
and δ〈f, S〉 > 0, then δ〈fp, S〉 = p · δ〈f, S〉 cannot hold for large p. An example:
J = [0, 1] ⊂ R, S = 〈J, d, µ[d]〉, where d is the usual diameter, f(t) = 1 − |2t − 1|
for t ∈ J . It is easy to see that 1 ≤ δS ≤ 2 (in fact, we have δS = 2) and that
δ〈f, S〉 > 0.
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6.

In this section, we present some rather elementary examples. We also state some
simple propositions indicating ceratin connections between the δ-entropy and some
other characteristics of self-mappings.

6.1. In 6.2–6.6 below, we consider the self-mapping f(x) = x + 1 of the real line
R equipped (i) with the unit diameter or with the diameter d(X) = sup{|x − y| :
x, y ∈ X} or else with d∗ = d ∧ 1, (ii) with the merotopy µ0 = µ[d] or with the
merotopy µ1 induced (see 3.3 (B)) by the topology of the one-point compactification
of R.

6.2. It can be shown that δ〈f ;R, 1, µ0〉 = ∞ whereas δ〈f ;R, 1, µ1〉 = 0. This
is essentially well known, though in a different context; see the example at the
end of Section 1 of [B73]. Therefore we omit the proof of δ〈f ;R, 1, µ0〉 = ∞ and
prove only the second equality. — Let J ⊂ R be a bounded interval. Let G ∈ µ1
be a finite open cover. Then, for some G0 ∈ G , the set R \ G0 is bounded and
therefore there is p ∈ N such that f−t(G0) ⊃ J for all t ∈ N , t ≥ p. This

implies that, for t ≥ p, {J ∩ G : G ∈ G (t)} ⊃ {J ∩ G : G ∈ G (p)} and therefore

δ〈J, 1 | G (t)〉 ≤ δ〈J, 1 | G (p)〉. Hence lim(n−1δ〈J, 1 | G (p)〉) = 0, δr〈f ; J, 1 | G 〉 = 0.
Since G is an arbitrary finite open cover belonging to µ1, we have shown that
δr〈f ; J, 1, µ1〉 = 0. This proves δ〈f ;R, 1, µ1〉 = 0.
Observe that δ〈f ;R, 1, µ0〉 = δ〈f ;R, 1, µ1〉 = ∞. This follows from the evident

fact that δ〈J, 1, µ0〉 = δ〈J, 1, µ1〉 =∞ for any non-degenerate interval J ⊂ R.

6.3. If 1 is replaced by d, then the value of δ and δ are zero. This is a consequence of
the following fact, the proof of which is easy and can be omitted. — Let S = 〈Q,µ, d〉
be an MD-space. Let 〈g, S〉 be a continuous self-mapping such that d(gX) = d(X)
for all X ⊂ Q. Assume that δ〈X, d, µ〉 < ∞ for all totally bounded X ⊂ S. Then
δ〈g, S〉 = 0.

6.4. If β = 〈bn : n ∈ N〉, b0 > 0, bn ≤ bn+1 for n ∈ N , we put gβ(t) = 1 if
t < 0, and gβ(t) = bn if n ≤ t < n+ 1, n ∈ N . Let ̺β be the metric on R defined

by ̺β(x, y) =
∫ y
x gβ(t) dt whenever x, y ∈ R, x < y. Put dβ = d[̺β ], d

∗
β = dβ ∧ 1,

Sβi = 〈R, dβ , µi〉, S
∗
βi = 〈R, d∗β , µi〉 for i = 0, 1.

6.5. By 4.17, we have δ〈f, Sβ0〉 = δ〈f, Sβ0〉 since µ0 = µ[dβ ]. As 〈X, dβ , µ0〉 is
totally bounded iff so is 〈X, dβ , µ1〉 and µ0 ↾ X = µ1 ↾ X for every bounded X ⊂ R,

we have δ〈f, Sβ1〉 = δ〈f, Sβ0〉.

We are going to show that δ〈f, Sβ0〉 = ∞ if lim(n−1bn) > 0, and δ〈f, Sβ0〉 = 0

if n−1bn → 0. — Assume that lim(n−1bn) > 0. Let m ∈ N , m > 1, and put

J = [0,m] ⊂ R. We have δ〈J, d
(n)
β
, µ
(n)
0 〉 = δ〈J, d

(n)
β
, µ0〉 ≥ δ〈J, bnd, µ0〉. Since

δ〈J, d〉 ≥ m (see 5.10), this implies δ〈J, d
(n)
β
, µ0〉 ≥ mbn. Hence δr〈f ; J, dβ , µ0〉 ≥

m · lim(n−1bn) and therefore δ〈f, Sβ0〉 = ∞. — If n−1bn → 0 for n → ∞, then

δ〈J, d
(n)
β , µ0〉 ≤ δ〈J, bm+nd, µ0〉 ≤ 2mbm+n, since δ〈[0, 1], d〉 ≤ 2 (see 5.10). This

implies δr〈f, Sβ0; J〉 = 0 and proves δ〈f, Sβ0〉 = 0.
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6.6. If dβ is replaced by d
∗
β , then the values of δ and δ are, in general, different

from those for dβ . In particular, δ〈f, S
∗
βi〉, i = 1, 2, and δ〈f, S

∗
β0〉 coincide and are

equal to lim(n−1 log bn). The proof presents no serious difficulties and it is omitted.
It is easy to see that δ〈f, S∗

β1〉 = 0. Indeed, let M ⊂ R be bounded. Then,

for every finite open cover U ∈ µ1, there is p ∈ N such that U (n) ↾ M ∼=
U (p) ↾ M whenever n ≥ p. Hence, for every n ≥ p, δ〈M,dβ | U (n)〉 ≤ δ〈M, 1 |

U (n)〉 ≤ h(U (n), 1) = h(U (p), 1) < ∞. This implies δr〈f, S∗
β1;M〉 = 0 and proves

δ〈f, S∗
β1〉 = 0.

6.7. We are going to prove some propositions which connect the δ-entropy δ〈f, S∗〉,
where S∗ is of the form 〈Q, d ∧ t, µ[d]〉, t > 0, with the behavior of h(〈fnX, d〉, t),
X ⊂ Q, for n→ ∞, and also, for S = Rp, with the behavior of λ(fnX), where λ is
the Lebesgue measure.

6.8. Lemma. Let S = 〈Q, d〉 be a D-space. Let t > 0. Then (1) δ〈Q, d ∧ t〉 ≥
t · h(S, t), (2) δ〈Q, d ∧ t〉 ≤ t · h(S, t) + t+ CS(t) · δ〈Q, e〉 <∞.

Proof: Put e = d ∧ t. — I. To prove (1), we can assume that δ〈Q, e〉 < ∞. Let
c > δ〈Q, e〉 be arbitrary. There exists a d.e. S (Sa : a ∈ A) of 〈Q, e〉 such that
δ(S ) < t and e(S ′′) < t. Clearly, there is B ⊂ A such that T = (Sx : x ∈ B)
is a d.e. of 〈Q, e〉, e(T ′′) < t, and e(Tx) ≥ t whenever x ∈ B′. For every b ∈ B′,
we have |b| < c/t, since otherwise we would have δ(T ) ≥ c, hence δ(S ) ≥ c. The
inequality |b| < c/t for b ∈ B′ implies card B′′ < exp(c/t). Since e(T ′′) < t and
therefore d(T ′′) < t, we get h(S, t) < c/t, which proves the first assertion. — II.
To prove (2), we can assume that h(S, t) < ∞. Choose a cover U of Q such that
d(U ) < t and card U = exp(h(S, t)). Then there exists a d.e. S = (Sa : a ∈ A) of
S such that S ′′ = U and |a| ≤ Log (card U )+1 for every a ∈ A. Put Ta = 〈Qa, e〉,
T = (Ta : a ∈ A). Then T is a d.e. of 〈Q, e〉 and e(T ′′) ≤ t. This implies
δ(T ) ≤ t · Log (card U ) + CS(t) < t · h(S, t) + t+ CS(t). �

6.9. Proposition. Let 〈Q, d〉 be a D-space; put µ = µ[d], S = 〈Q, d, µ〉. Let 〈f, S〉
be an expanding and continuous self-mapping. Let t > 0 and let CS(t) < ∞. Put
e = d ∧ t, S∗ = 〈Q, e, µ〉. Then, for every totally bounded X ⊂ Q, δ〈f, S∗;X〉 =
t · lim(n−1h(〈fnX, d〉, t)).

Proof: We have δ〈f, S∗;X〉 = lim(n−1δ〈X, e(n), µ(n)〉). Since f is expanding and

continuous, we have e(n) = en, µ(n) = µ, hence δ〈f, S∗;X〉 = lim(n−1δ〈X, en〉). It
is easy to see that fn transforms en onX into e on fnX , and therefore δ〈f, S∗;X〉 =
lim(n−1δ〈fnX, e〉). By 6.8, with Q replaced with fnX , this proves the proposition.

�

6.10. Fact. Let 〈Q, d〉 be a D-space; put µ = µ[d], S = 〈Q, d, µ〉. Let t > 0,
CS(t) <∞. Let 〈f, S〉 be an expanding continuous self-mapping. Put S∗ = 〈Q, d∧
t, µ〉. Then, for any X ⊂ Q, δ〈f, S∗;X〉 = δ〈f, S∗; fX〉.

Proof: Clearly, X is t.b. iff so is fX . Hence it is sufficient to prove the equality for
X totally bounded. By 6.9, δ〈f, S∗;X〉 = t · lim(n−1h(〈fnX, d〉, t)), δ〈f, S∗; fX〉 =
t · lim(n−1h(〈fn(fX), d〉, t)), from which the assertion follows. �
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6.11. Fact. Let 〈Q, d〉 be a δ-regular D-space. Put µ = µ[d], S = 〈Q, d, µ〉.
Let t > 0, CS(t) < ∞. Put S∗ = 〈Q, d ∧ t, µ〉. Then (1) for any X,Y ⊂ Q,
δ〈f, S∗;X ∪ Y 〉 = δ〈f, S∗;X〉 ∨ δ〈f, S∗;Y 〉, (2) if X ⊂ Q and n ∈ N , n > 0, then

δ〈f, S∗;
⋃
(fkX : 0 ≤ k < n)〉 = δ〈f, S∗;X〉.

Proof: For Z ⊂ Q, put ψ(Z) = lim(h(〈fnZ, d〉, t)/n). To prove the first assertion
for the case of X ∪ Y totally bounded, it is, by 6.9 and 4.15, sufficient to show
that ψ(X ∪ Y ) = ψ(X) ∨ ψ(Y ). Evidently, ν(X ∪ Y, t) ≤ ν(X < t) + ν(Y, t) (for
ν see 2.1); hence h(X ∪ Y, t) ≤ 1 + h(X, t) ∨ h(Y, t), which proves ψ(X ∪ Y ) =
ψ(X) ∨ ψ(Y ). If X,Y ⊂ Q are arbitrary, then, writing ϕ(Z) instead of δ〈f, S∗;Z〉,
we have ϕ(M) = ϕ(M ∩X)∨ϕ(M ∩Y ) for every totally boundedM ⊂ X∪Y . This
implies ϕ(X ∪ Y ) = ϕ(X) ∨ ϕ(Y ). — The second assertion is an easy consequence
of (1), 6.10, and 4.15. �

6.12. Lemma. Let 〈Q, d〉 be a complete and locally compact metric space; put
d = d[̺], µ = µ[d], S = 〈Q, d, µ〉. Assume that 〈Q, d〉 is δ-regular; let t > 0,
CS(t) < ∞; put S∗ = 〈Q, d ∧ t, µ〉. Let 〈f, S〉 be an expanding continuous self-
mapping. Assume that

⋃
(fkG : k ∈ N) = Q for every open G 6= ∅. Then

δ〈f, S∗〉 = δ〈f, S∗;X〉 for every totally bounded non-meager X ⊂ Q.

Proof: Let Xi ⊂ Q, i = 0, 1, be t.b. and non-meager. It is easy to show that
δ〈f, S∗;Xi〉 = δ〈f, S∗;Xi〉. Let Gi denote the interior of Xi. Since, clearly, f is

a surjective homeomorphism, all fkG are open and therefore, for some n, Xi ⊂⋃
(fkG1−i : 0 ≤ k < n), i = 0, 1. By 6.11, this proves δ〈f, S∗ : X0〉 = δ〈f, S

∗;X1〉,
from which the assertion follows. �

6.13. In what follows, λ denotes the Lebesgue measure on Rp, p ∈ N fixed, p > 0;
λ(X) denotes the (outer) Lebesgue measure of X . The letter ̺ denotes the metric
induced by the norm |x| = max{|xi| : 0 ≤ i < p} for x = (xi : 0 ≤ i < p) ∈ Rp.
We put d = d[̺], S = 〈Rp, d, µ〉, S∗ = 〈Rp, d ∧ 1, µ〉, where µ = µ[d].
Remark: the results stated below remain valid, with appropriate changes, if ̺ is
replaced by any metric induced by a norm on Rp.

Proposition. If f is an expanding continuous self-mapping of S = 〈Rp, d, µ〉, then
(1) for any X ⊂ Rp,

lim(n−1 logλ(fnX)) ≤ δ〈f, S∗;X〉;

(2) if X is totally bounded non-meager, then

lim(n−1 logλ(fnX)) ≤ δ〈f, S∗〉.

Proof: It is easy to see that log λ(Y ) ≤ h(〈Y, d〉, 1) for every Y ⊂ Rp. Hence

lim(n−1 logλ(fnX)) ≤ lim(n−1h(〈fnX, d〉, 1)). Since, clearly, 〈Rp, d〉 is δ-regular
and CS(1) < ∞, we have, by 6.11, lim(n−1h(〈fnX, d〉, 1)) = δ〈f, S∗;X〉. The
second assertion follows from 6.12. �
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6.14. Recall that, for a mapping g : Rr → Rr, the Jacobian of g, denoted J(g), is
defined as follows: if all partial derivatives ∂gi/∂xj exist and are continuous, then
J(g) is the determinant of the matrix [∂gi/∂xj ]i,j=0,...,p−1.

6.15. Proposition. If f is an expanding self-mapping of 〈Rp, d, µ〉 such that the
Jacobian J(f) exists, then

(1) for any measurable X ⊂ Rk,

lim(n−1 log(

∫

X
|J(fn)| dλ)) ≤ δ〈f, S∗;X〉.

(2) if X is totally bounded, non-meager measurable, then

lim(n−1 log(

∫

X
|J(fn)| dλ)) ≤ δ〈f, S∗〉.

Proof: This is an immediate consequence of 6.13 and the well-known equality
λ(gY ) =

∫
Y |J(g)| dλ. �

6.16. We will not investigate the conditions under which the inequalities can be
replaced, in the above proposition, by equalities. We state only the following simple
result.

Fact. Let f be an expanding self-mapping of 〈Rp, d, µ〉 such that the Jacobian
J(f) exists. Assume that, with B = {x ∈ Rp : |x| ≤ 1}, the set of all λ{x ∈ Rp :

̺(x, fnB) ≤ 1}/λ(fnB), n ∈ N , is bounded. Then δ〈f, S∗〉 = lim(n−1 logλ(fnB))=
lim(n−1 log(

∫
B |J(fn)| dλ)).

Proof: We can assume that all h(〈fnX, d〉, 1) are finite. Let n ∈ N . There is
a set M ⊂ fnB such that card M = exp(h∗(〈fnB, d〉, 1/2)), ̺(x, y) > 1/2 for
x, y ∈ M , x 6= y. For x ∈ M , put Ax = {z ∈ Rp : ̺(z, x) ≤ 1/4}. Then
Ax are disjoint, Ax ⊂ {z ∈ Rp : ̺(z, fnB) ≤ 1/4}, λ(Ax) = exp(−p). This
implies h∗(〈fnB, d〉, 1/2)−p ≤ logλ{z ∈ Rp : ̺(z, fnB) ≤ 1/4}, hence, by 2.2 (D),
h(〈fnB, d〉, 1) ≤ logλ{z ∈ Rp : ̺(z, fnB) ≤ 1/4}+ p. By the assumptions made,
we obtain lim(n−1h(〈fnB, d〉, 1)) ≤ lim(n−1 logλ(fnB)). By 6.9 and 4.15, this

implies δ〈f, S∗;B〉 ≤ lim(n−1 log(
∫
B |J(fn)| dλ)), which proves the assertion by

6.13 and 6.12. �

6.17. Proposition. Let f : Rp → Rp be an expanding linear mapping. Then

δ〈f ;Rp, d ∧ 1, µ〉 = log |J(f)|.

Proof: I. Evidently, |f−1|, the norm of f−1, does not exceed 1. First we assume
that |f−1| = c < 1. Put B = {x ∈ Rp : |x| ≤ 1}; for X ⊂ Rp, ε > 0, put
V (X, ε) = {y ∈ Rp : ̺(y,X) ≤ ε}. Let ϑ > 0. Choose m ∈ N such that
cm < ϑ. Let n ≥ m. If x ∈ V (fnB, 1), then there is z ∈ fnB with |z − x| ≤ 1.
We have |f−nz − f−nx| ≤ cn, f−nz ∈ B, hence f−nx ∈ V (B, ϑ). This implies
V (fnB, 1) ⊂ fn(V (B, ϑ)), from which we obtain λ(V (fnB, 1)) ≤ λ(fn(V (B, ϑ))) =
|J(fn)|λ(V (B, ϑ)) ≤ |J(fn)|(1+2ϑ)pλ(B) = (1+2ϑ)pλ(fnB). From this inequality
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we get, by 6.16, δ〈f, S∗;B〉 = log |J(f)|. — II. Let |f−1| = 1. For t ≥ 1 put ft = tf .
By I, δ〈ft, S∗〉 = log |J(ft)| for t > 1. Hence, to prove δ〈f, S∗;B〉 = log |J(f)|, it is
sufficient to show that δ〈ft, S∗;B〉 → δ〈f, S∗;B〉 for t → 1. By 6.9, δ〈ft, S∗;B〉 =
lim(n−1h(〈tnfnB, d〉, 1)) = lim(n−1h(〈fnB, d〉, t−n)) ≤ lim(n−1h(〈fnB, d〉, 1)) +
lim(n−1h(B, t−n)). Clearly, h(B, t−n) ≤ p log(tn + 1). This proves, by 6.9, that
δ〈ft, S∗;B〉 ≤ δ〈f, S∗;B〉+ p log t. Evidently, δ〈f t, S∗;B〉 ≤ δ〈ft, S∗;B〉; hence we
get δ〈ft, S

∗;B〉 → δ〈f, S∗;B〉, which proves the proposition. �

References

[AKM65] Adler K.A, Kohnheim A., McAndrew M., Topological entropy, Trans. Amer. Math. Soc.
114 (1965), 309–319.

[B71] Bowen R., Entropy for group endomorphisms and homogeneous spaces, Trans. Amer.
Math. Soc. 153 (1971), 401–414.

[B73] , Topological entropy for noncompact sets, Trans. Amer. Math. Soc. 184 (1973),
125–156.
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186 00 Praha 8, Czech Republic

(Received May 14, 1993)


		webmaster@dml.cz
	2012-04-30T14:37:30+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




