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Notes on approximation in the Musielak-Orlicz

spaces of vector multifunctions

Andrzej Kasperski

Abstract. We introduce the spaces M1
Y,ϕ, M

o,n
Y,ϕ

, M̃o
Y,ϕ and Mo

Y,d,ϕ
of multifunctions.

We prove that the spaces M1
Y,ϕ

and Mo
Y,d,ϕ

are complete. Also, we get some convergence

theorems.

Keywords: Musielak-Orlicz space, multifunction, modular space of multifunctions, inte-
gral operator, modular approximation

Classification: 46E99, 28B20

1. Introduction

In this paper we extend the results of [2] and [3] to the case of the spacesM1
Y,ϕ,

M̃o
Y,ϕ and Mo

Y,d,ϕ of multifunctions. All definitions and theorems connected with

the idea of Musielak-Orlicz space can be found in [4] and [5].
Let I be a bounded interval. Let (I,Σ, µ) be the Lebesgue measure space.

Let X be a real separable Hilbert space with the norm ‖ ◦ ‖X . We denote by
Lϕ(I, X) the Musielak-Orlicz space of all strongly measurable functions x : I → X
generated by a modular

̺(x) =
∫

I ϕ(t, ‖x(t)‖X )dµ,

where ϕ is a ϕ-function with a parameter such that ϕ : I ×R → R+, ϕ(t, ◦) is an
even continuous function, nondecreasing for u ≥ 0, ϕ(t, u) = 0 iff u = 0 for every
t ∈ I, ϕ(◦, u) is measurable for every u ∈ R and lim

u→∞
ϕ(t, u) = ∞ for a.e. t ∈ I.

The space Lϕ(I, X) is N -complete (see [5, Corollaries 3.3]).
Let N be the set of all positive integers.

2. Completeness

Let Y be a real separable Hilbert space. Let o denote the zero element in Y .
Let

dist (A, B) = max(sup
x∈A

inf
y∈B

‖x − y‖Y , sup
y∈B

inf
x∈A

‖x − y‖Y ),

for all nonempty bounded A, B ⊂ Y . Let

MY (I) = {F : I → 2Y : F (s) is nonempty for every s ∈ I, closed

and bounded for a.e. s ∈ I}.
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For F, G ∈ MY (I) we introduce the function d(F, G) by the formula:

d(F, G)(t) =











0, if F (t) = G(t)

dist (F (t), G(t)), if F (t), G(t) are bounded

∞, if F (t) 6= G(t) and F (t) or G(t) is unbounded

for every t ∈ I.

Remark 1. If X is a Banach space, then the space of all nonempty closed and
bounded subsets of X with dist is a complete metric space.

Lemma 1. Let Fn ∈ MY (I) for every n ∈ N. If:

(a) there is no > 0 such that d(Fn, Fm) are measurable for m, n > no,

(b) for every ε > 0 and every δ > 0 there exists K > no such that µ({t ∈ I :
d(Fn, Fm)(t) ≥ δ}) < ε, for all m, n > K,

then there exist a subsequence {Fnk
} of the sequence {Fn} and F ∈ MY (I) such

that d(Fnk
, F )→ 0 a.e. and d(Fn, F ) are measurable for n > no.

Proof: Let Fn ∈ MY (I) for every n ∈ N. We have from the assumptions that

there exists N(k) such that µ({t ∈ I : d(Fn, Fm)(t) ≥ 2
−k}) < 2−k for all m, n >

N(k). Let n1 = N(1), n2 = max{N(2), N(1)+ 1}, . . . , nm = max{N(m), N(m−
1)+1}. Let ε > 0 be arbitrary. So there is i0 such that 2

i0−1 < ε. Let i0 < i < j.
Let Ai = {t ∈ I : d(Fni+1 , Fni)(t) ≥ 2

−i}. It is easy to see that µ(
⋃∞

i=i0
Ai) < ε

and for t ∈ I \
⋃∞

i=i0
Ai we have

d(Fnj , Fni)(t) ≤

j−1
∑

k=i

d(Fnk+1
, Fnk

)(t) ≤
∞
∑

k=i

d(Fnk+1
, Fnk

)(t) < ε.

So for the subsequence {Fnk
} we have that for a.e. t ∈ I and for every ε > 0

there is K > 0 such that d(Fnk
, Fnl
)(t) < ε for all k, l > K. Hence by Remark 1

there is F ∈ MY (I) such that d(Fnk
, F ) → 0 as k → ∞ a.e. and d(Fn, F ) are

measurable for n > n0 because d(Fn, F ) = limk→∞ d(Fnk
, Fn) a.e.

Let:

M(I, Y ) = {x : I → Y : x is strongly measurable},

M(I, R) = {q : I → R : q is measurable}.

We denote for all a ∈ Y , R, r ≥ 0, B(a, r) = {x ∈ Y : ‖x − a‖Y ≤ r},
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R(o, r,R) = {x ∈ Y : r ≤ ‖x‖Y ≤ R}. Let:

Mo,n
Y (I) = {F ∈ MY (I) : F (s) =

n
⋃

i=1

R(o, ri
F (s), R

i
F (s)) for every s ∈ I, ri

F (◦),

Ri
F (◦) ∈ M(I, R) for i = 1, . . . , n, Ri

F (t) ≤ ri+1
F (t) for t ∈ I,

i = 1, . . . , n − 1, if n > 1},

M̃o
Y (I) =

∞
⋃

i=1

Mo,i
Y
(I),

Mo
Y (I) = {F ∈ MY (I) : F (s) = B(o, RF (s)) for every s ∈ I, RF (◦) ∈ M(I, R)},

M1
Y (I) = {F ∈ MY (I) : F (s) = B(aF (s), rF (s)) for every s ∈ I, aF (◦) ∈

M(I, Y ), rF (◦) ∈ M(I, R)}.

If F, G ∈ M1
Y (I) and F (t) = G(t) for a.e. t ∈ I, then F = G in M1

Y (I). If F, G ∈

M̃o
Y (I) and F (t) = G(t) for a.e. t ∈ I, then F = G in M̃o

Y (I). In the setM
1
Y (I) we

introduce the operations ⊙ : R×M1
Y (I)→ M1

Y (I), ⊕ :M
1
Y (I)×M1

Y (I)→ M1
Y (I)

as follows: let F1, F2 ∈ M1
Y (I), a ∈ R, F1(s) = B(aF1(s), rF1(s)), F2(s) =

B(aF2(s), rF2(s)) for every s ∈ I; if F = F1 ⊕ F2 then

F (s) = B(aF1(s) + aF2(s), rF1(s) + rF2(s)) for every s ∈ I,

if G = a ⊙ F1, then G(s) = B(aaF1(s), arF1(s)) for every s ∈ I.

It is easy to see that F, G ∈ M1
Y (I). In the set M̃

o
Y (I) we introduce the operations

⊙ : R× M̃o
Y (I)→ M̃o

Y (I), ⊕ : M̃
o
Y (I)× M̃o

Y (I)→ M̃o
Y (I) as follows: let F1, F2 ∈

M̃o
Y (I), a ∈ R,

F1(s) =

n
⋃

i=1

R(o, ri
F1
(s), Ri

F1
(s)), F2(s) =

m
⋃

i=1

R(o, ri
F2
(s), Ri

F2
(s)) for all s ∈ I,

if F = F1 ⊕ F2, then F (s) =
⋃

1≤i≤n
1≤j≤m

R(o, ri
F1
(s) + rj

F2
(s), Ri

F1
(s) +Rj

F2
(s))

for every s ∈ I, if

G = a ⊙ F1, then G(s) =
n
⋃

i=1

R(o, ari
F1
(s), aRi

F1
(s))

for every s ∈ I. It is easy to see that F, G ∈ M̃o
Y (I). �
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Let now

Mo
Y,ϕ(I) = {F ∈ Mo

Y (I) : rF (◦) ∈ Lϕ(I, R)},

M1
Y,ϕ(I) = {F ∈ M1

Y (I) : aF (◦) ∈ Lϕ(I, Y ), rF (◦) ∈ Lϕ(I, R)},

M̃o
Y,ϕ(I) = {F ∈ M̃o

Y (I) : r
i
F (◦), R

i
F (◦) ∈ Lϕ(I, R) for i = 1, . . . , n,

if F ∈ M
o,n
Y (I)}.

Remark 2. If F, G ∈ M1
Y,ϕ(I), then d(F, G) is measurable.

Proof: It is easy to see that

d(F, G)(s) = ‖aF (s)− aG(s)‖Y + | rF (s)− rG(s) | for a.e. s ∈ I,

so d(F, G) is measurable. �

Remark 2’. If F, G ∈ M̃o
Y,ϕ(I), then d(F, G) is measurable.

Proof: Let

F (s) =

n
⋃

i=1

R(o, ri
F (s), R

i
F (s)), G(s) =

m
⋃

j=1

R(o, r
j
G(s), R

j
G(s))

for s ∈ I. It is easy to see that

d(F, G)(s) = dist (

n
⋃

i=1

[ri
F (s), R

i
F (s)],

m
⋃

j=1

[r
j
G(s), R

j
G(s)]) for a.e. s ∈ I,

so d(F, G) is measurable (see [1, Remark 1, p. 120]). �

Definition 1. Let F, Fn ∈ MY (I) for every n ∈ N. We write Fn
d,ϕ
−→ F , if there

exists no > 0 such that d(Fn, F ) are measurable for n > no and

∫

I
ϕ(t, ad(Fn, F )(t)) dt → 0 as n → ∞ for every a > 0.

Definition 2. Let Fn ∈ MY (I) for every n ∈ N. We say that the sequence
{Fn} fulfils the (C,d, ϕ)-condition, if there exists no > 0 such that d(Fn, Fm) are
measurable for n, m > no and for every ε > 0 and every a > 0 there is K > no

such that
∫

I ϕ(t, ad(Fn, Fm)(t)) dt < ε for all m, n > K.

Definition 3. Let A ⊂ MY (I). We say that A is (C,d, ϕ)-complete, if for every
sequence {Fn} such that Fn ⊂ A for every n ∈ N and the sequence {Fn} fulfils

the (C,d, ϕ)-condition, there is F ∈ A such that Fn
d,ϕ
−→ F .
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Theorem 1. M1
Y,ϕ(I) is (C,d, ϕ)-complete.

Proof: Let Fn ∈ M1
Y,ϕ(I) for every n ∈ N and let the sequence {Fn} fulfil

the (C,d, ϕ)-condition. Let Fn(s) = B(aFn
(s), rFn

(s)) for every s ∈ I and every
n ∈ N. Then {aFn

} is a Cauchy sequence in the Musielak-Orlicz space Lϕ(I, Y )
and {rFn

} is a Cauchy sequence in the Musielak-Orlicz space Lϕ(I, R). So there
are a ∈ Lϕ(I, Y ) and r ∈ Lϕ(I, R) such that

̺(a(a− aFn
))→ 0, ̺(a(r− rFn

))→ 0 as n → ∞ for every a > 0.

Let F(s) = B(a(s), r(s)) for every s ∈ I. It is easy to see that F ∈ M1
Y,ϕ(I) and

Fn
d,ϕ
−→ F. �

Remark 3. M̃o
Y,ϕ(I) is not (C,d, ϕ)-complete.

Now, let us denote

Mo
Y,d(I) = {F ∈ MY (I) : d(Fn, F )→ 0 a.e. for some Fn ∈ M̃o

Y,ϕ(I), n ∈ N},

Mo
Y,d,ϕ(I) = {F ∈ Mo

Y,d(I) : Fn
d,ϕ
−→ F for some Fn ∈ M̃o

Y,ϕ(I), n ∈ N}.

Remark 4. If F, G ∈ Mo
Y,d(I), then d(F, G) is measurable.

Proof: Let F, G ∈ Mo
Y,d(I). So there are Fn, Gn ∈ M̃o

Y,ϕ(I), n ∈ N such that

d(Fn, F ) → 0 and d(Gn, G) → 0 as n → ∞ a.e. So d(Fn, Gn) → d(F, G) as
n → ∞ a.e. Hence d(F, G) is measurable because from Remark 2’ d(Fn, Gn) are
measurable for n ∈ N. �

Theorem 2. Mo
Y,d,ϕ(I) is (C,d, ϕ)-complete.

Proof: Let Fn ∈ Mo
Y,d,ϕ(I) for every n ∈ N, and let the sequence {Fn} fulfil

the (C,d, ϕ)-condition. It is easy to prove that the sequence {Fn} fulfils the
assumptions of Lemma 1, so there exist a subsequence {Fnk

} of the sequence
{Fn} and F ∈ MY (I) such that d(Fnk

, F )→ 0 a.e. and d(Fn, F ) are measurable.
We have by Fatou Lemma

∫

I
ϕ(t, ad(Fn, F )(t)) dt ≤ ε for n > K,

so Fn
d,ϕ
−→ F . For every n ∈ N, ε > 0, a > 0 there exists Fn

n ∈ M̃o
Y,ϕ(I) such that

∫

I ϕ(t, ad(Fn
n , Fn)(t)) dt < ε, so we have

∫

I
ϕ(t,

a

2
d(Fn

n , F )(t)) dt ≤

≤

∫

I
ϕ(t, ad(Fn

n , Fn)(t)) dt+

∫

I
ϕ(t, ad(Fn, F )(t)) dt < 2ε

for n > K, hence F ∈ Mo
Y,d,ϕ(I) and Mo

Y,d,ϕ(I) is (C,d, ϕ)-complete. �

The spaces M1
Y,ϕ(I) and Mo

Y,d,ϕ(I) will be called the Musielak-Orlicz spaces

of vector multifunctions.
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3. On the operator H

Let H :I × Y → Y and let

H(F )(t) = {H(t, x) : x ∈ F (t)} for every t ∈ I, F ∈ MY (I).

Lemma 2. Let the function H fulfil the following conditions:

(a) H(s, x) is a strongly measurable function as a function of s for every
x ∈ Y ,

(b) there exists L > 0 such that ‖H(s, x) − H(s, y)‖Y ≤ L‖x − y‖Y for all

s ∈ I, x, y ∈ Y ,
(c) H(s, o) = o for every s ∈ I,
(d) if ‖x‖Y < ‖y‖Y , then ‖H(s, x)‖Y < ‖H(s, y)‖Y and if ‖x‖Y = ‖y‖Y , then

‖H(s, x)‖Y = ‖H(s, y)‖Y for every s ∈ I,
(e) for every t ∈ I and every y ∈ Y there is x ∈ Y such that y = H(t, x).

Then H :Mo
Y,ϕ(I)→ Mo

Y,ϕ(I) and H : M̃
o
Y,ϕ(I)→ M̃o

Y,ϕ(I).

Proof: We only prove that H : Mo
Y,ϕ(I) → Mo

Y,ϕ(I). The proof that H :

M̃o
Y,ϕ(I) → M̃o

Y,ϕ(I) as analogous is omitted. Let F ∈ Mo
Y,ϕ(I). We prove

that there exists rH(F ) ∈ Lϕ(I, R), rH(F )(t) ≥ 0 for every t ∈ I, such that

H(F )(t) = B(o, rH(F )(t)) for every t ∈ I. Let x ∈ Y , x 6= o be arbitrary. Let now

ξ(t) = xrF (t)/‖x‖Y for every t ∈ I. It is easy to see that ξ ∈ M(I, Y ) ∩ F and
‖ξ(t)‖Y = rF (t) for every t ∈ I. Let rH(F )(t) = ‖H(t, ξ(t))‖Y for every t ∈ I.

We have
sup

z∈H(F )(t)
‖z‖Y = sup

x∈F (t)
‖H(t, x)‖Y ≤ ‖H(t, ξ(t))‖Y ,

for every t ∈ I, so H(F )(t) ⊂ B(o, rH(F )(t)) for every t ∈ I. For every a > 0 we
have

∫

I
ϕ(t, arH(F )(t)) dt =

∫

I
ϕ(t, a‖H(t, ξ(t))‖Y ) dt ≤

∫

I
ϕ(t, aL‖ξ(t)‖Y ) dt

=

∫

I
ϕ(t, aLrF (t)) dt.

So rH(F ) ∈ Lϕ(I, R). Let t ∈ I be arbitrary, let y ∈ B(o, rH(F )(t)).

From (e) we obtain that there exists x ∈ Y such that y = H(t, x). So ‖H(t, x)‖Y ≤
‖H(t, ξ(t))‖Y . Hence from (d) we obtain that ‖x‖Y ≤ rF (t). So x ∈ F (t) and
y ∈ H(F )(t). Hence H(F )(t) = B(o, rH(F )(t)) for every t ∈ I. �

Remark 5. Let C(F )(t) = H(F + (−aF ))(t) for every t ∈ I, where F (t) =
B(aF (t), rF (t)) for every t ∈ I. If the assumptions of Lemma 2 hold, then

C :M1
Y,ϕ(I)→ Mo

Y,ϕ(I).
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Remark 6. Let the assumptions of Lemma 2 hold. If

(i) H(s, A) is closed for every nonempty and closed A ⊂ Y and for a.e. s ∈ I,
then H :Mo

Y,d,ϕ(I)→ Mo
Y,d,ϕ(I).

Proof: The proof is analogous to that of Theorem 1’ in [2] so we give only
the sketch of it. First, from the assumptions (b), (c) of Lemma 2 and from
the assumption (i) H : MY (I) → MY (I). Second, from the assumption (b) of
Lemma 2 we obtain that

(1) dist (H(F )(t),H(G)(t)) ≤ L dist (F (t), G(t))

for all F, G ∈ MY (I) and t ∈ I such that F (t), G(t) are nonempty, bounded and
closed. Third, from (1) and Lemma 2 we obtain that ̺(ad(H(Fn),H(F )))→ 0 as

n → ∞ for every a > 0, where F ∈ Mo
Y,d,ϕ(I), Fn ∈ M̃o

Y,ϕ, n ∈ N and Fn
d,ϕ
−→ F .

So H(F ) ∈ Mo
Y,d,ϕ(I) because from Lemma 2 H(Fn) ∈ M̃o

Y,ϕ(I) for every n ∈ N.

�

4. On the operators T ′
v and T ′′

v

Let V be an abstract set of indices and let V be a filter of subsets of V.

Definition 4. A function g : V → R tends to zero with respect to V , written

g(v)
V

−→ 0, if for every ε > 0 there is a set V ∈ V such that | g(v) |< ε for every
v ∈ V .

Definition 5. Let Fv ∈ MY (I) for every v ∈ V and let F ∈ MY (I). We write

Fv
d,ϕ,V
−→ F , if there is Vo ∈ V such that d(Fv , F ) are measurable for every v ∈ Vo

and for every ε > 0, every a > 0 there is V ∈ V such that

∫

I
ϕ(t, ad(Fv , F )(t)) dt < ε for every v ∈ Vo ∩ V.

Definition 6. Let M(I) ⊂ MY (I). The family T = (Tv)v∈V of operators, Tv :
M(I)→ M(I) for every v ∈ V will be called (d,V , M(I))-bounded, if there exist

positive constants k1, k2 and a function g : V → R+ such that g(v)
V

−→ 0, and
for all F, G ∈ M(I) such that d(F, G) is measurable there exists a set VF,G ∈ V
such that d(Tv(F ), Tv(G)) are measurable and

∫

I
ϕ(t, ad(Tv(F ), Tv(G))(t)) dt ≤ k1

∫

I
ϕ(t, ak2d(F, G)(t)) dt + g(v)

for every a > 0 and all v ∈ VF,G.
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Remark 7. Let the family T be (d,V , Mo
Y,d,ϕ(I))-bounded. If Tv(F )

d,ϕ,V
−→ F for

every F ∈ M̃o
Y,ϕ(I), then Tv(F )

d,ϕ,V
−→ F for every F ∈ Mo

Y,d,ϕ(I).

Proof: Let a, ε > 0 be arbitrary. Let F ∈ Mo
Y,d,ϕ(I) be arbitrary. Let

G ∈ M̃o
Y,ϕ and V ∈ V be such that ̺(3ad(G, F )) < ε

4 , ̺(3ak2d(G, F )) < ε
4k1
,

̺(3ad(Tv(G), G)) < ε
4 , g(v) < ε

4 for every v ∈ V , where we may assume that
k1 ≥ 1. It is easy to see that such G, V exist. We have for every v ∈ V ∩ VF,G

̺(ad(Tv(F ), F )) ≤

≤ ̺(3ad(Tv(F ), Tv(G))) + ̺(3ad(Tv(G), G)) + ̺(3ad(G, F )) < ε.

�

Let now I = [0, b) and let us extend ϕ b-periodically to the whole R.

Definition 7. We shall say that the function ϕ is τ -bounded, if there are positive
constants k1, k2 such that

ϕ(t − v, u) ≤ k1ϕ(t, k2u) + f(t, v) for all u, v, t ∈ R,

where f : R × R → R+ is measurable and b-periodic with respect to the first

variable and such that writing h(v) =
∫ b
0 f(t, v) dt for every v ∈ R, we have

M = supv∈R h(v) < ∞ and h(v)→ 0 as v → 0 or v → b.
Let now Kv : [0, b)→ R+ for every v ∈ V be integrable in [0, b) and singular,

i.e.

σ(v) =

∫ b

0
Kv(t) dt

V
−→ 1, σδ(v) =

∫ b−δ

δ
Kv(t) dt

V
−→ 0

for every 0 < δ < b
2 , σ = supv∈V σ(v) < ∞. Let us extend Kv b-periodically to

the whole R.
Let q : [0, b) → R be measurable and let us extend q b-periodically to the

whole R. We introduce the family of operators A1 = (A1
v)v∈V by the formula:

A1
v(q)(t) =

∫ b

0
Kv(s − t)q(s) ds

for every v ∈ V and every t ∈ [0, b).
Let x : [0, b)→ Y be strongly measurable and let us extend x b-periodically to

the whole R. We introduce the family of operators A2 = (A2
v)v∈V by the formula:

A2
v(x)(t) =

{
∫ b
0 Kv(s − t)x(s) ds, if

∫ b
0 Kv(s − t)‖x(s)‖Y ds < ∞

o, if
∫ b
0 Kv(s − t)‖x(s)‖Y ds =∞

for every v ∈ V and every t ∈ [0, b).
Let us extend F b-periodically to the whole R.
Let Bv(F ) = {A2

v(x) : x ∈ M([0, b), Y )∩F} for every F ∈ MY ([0, b)) and every
v ∈ V.
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Remark 8. If A1
v : L

ϕ([0, b), R)→ Lϕ([0, b), R), where R = [−∞,+∞], then

Bv :M
o
Y,ϕ([0, b))→ Mo

Y,ϕ([0, b)).

Proof: Let F ∈ Mo
Y,ϕ([0, b)), v ∈ V. We have for D = [0, b)

sup
x∈M(D,Y )∩F

‖

∫ b

0
Kv(s − t)x(s) ds‖Y ≤ sup

x∈M(D,Y )∩F

{

∫ b

0
Kv(s − t)‖x(s)‖Y ds}

=

∫ b

0
Kv(s − t)rF (s) ds.

On the other hand, for x(s) = xrF (s)/‖x‖Y for every s ∈ D, where x ∈ Y and
x 6= o, we have

‖

∫ b

0
Kv(s−t)x(s) ds‖Y = ‖

x

‖x‖Y

∫ b

0
Kv(s−t)rF (s) ds‖Y =

∫ b

0
Kv(s−t)rF (s) ds.

Let 0 <
∫ b
0 Kv(s − t)rF (s) ds < ∞ and let y ∈ B(o,

∫ b
0 Kv(s − t)rF (s) ds). Let

xt(s) = yrF (s)/

∫ b

0
Kv(s − t)rF (s) ds

for every s ∈ [0, b). We have

∫ b

0
Kv(s − t)xt(s) ds = y and xt ∈ M([0, b), Y ) ∩ F

because

‖xt(s)‖Y = ‖yrF (s)/

∫ b

0
Kv(s − t)rF (s) ds‖Y ≤ rF (s) for every s ∈ [0, b).

So B(F )(t) = B(o, rB(F )(t)) for every t ∈ [0, b), where

rB(F )(t) =

{

∫ b
0 Kv(s − t)rF (s) ds, if A1

v(rF )(t) < ∞

0, if A1
v(rF )(t) =∞

for every t ∈ [0, b). It is easy to see that rB(F ) ∈ Lϕ([0, b), R).

Let F ∈ M1
Y,ϕ([0, b)) and let F (s) = B(aF (s), rF (s)) for every s ∈ [0, b). We

introduce the family of operators T ′ = (T ′
v)v∈V by the formula:

T ′
v(F )(s) =

{

B(A2
v(aF )(s), A

1
v(rF )(s)), if A1

v(rF )(s) < ∞

{A2
v(aF )(s)}, if A1

v(rF )(s) =∞
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for every s ∈ [0, b) and every v ∈ V.

Let F ∈ M̃o
Y,ϕ([0, b)) and F (s) =

⋃n
i=1 R(o, ri

F (s), R
i
F (s)) for every s ∈ [0, b),

where we receive that if there are D ⊂ [0, b), D ∈ Σ, and m < n such that

F (s) =
⋃m

i=1 R(o, ri
F (s), R

i
F (s)), Ri

F (s) < ri+1
F (s) for s ∈ D, i = 1, . . . , m − 1

if m > 1, then we denote F (s) =
⋃n

i=1(o, r
i
F (s), R

i
F (s)) for every s ∈ D, where

ri
F (s) = ri

F (s), Ri
F (s) = Ri

F (s) for i = 1, . . . , m, ri
F (s) = Ri

F (s) = Ri
F (s) for

i = m+ 1, . . . , n for every s ∈ D.
We introduce the family of operators T ′′ = (T ′′

v )v∈V by the formula:

T ′′
v (F )(s) =

{

⋃n
i=1 R(o, A1

v(r
i
F )(s), A

1
v(R

i
F )(s)), if A1

v(R
n
F )(s) < ∞

{o}, if A1
v(R

n
F )(s) =∞

for every s ∈ [0, b) and every v ∈ V. �

Remark 9. If A1
v : Lϕ([0, b), R) → Lϕ([0, b), R), where R = [−∞,+∞], then

T ′
v :M

1
Y,ϕ([0, b))→ M1

Y,ϕ([0, b)).

Proof: Let F ∈ M1
Y,ϕ([0, b)), F (s) = B(aF (s), rF (s)) for every s ∈ [0, b). It is

easy to see that

B(A2
v(aF )(s), A

1
v(rF )(s)) = B(A2

v(aF )(s), 0)⊕ B(o, A1
v(rF )(s))

for every s ∈ [0, b) and A2
v : L

ϕ([0, b), Y )→ Lϕ([0, b), Y ), so T ′
v(F ) ∈ M1

Y,ϕ([0, b)).

�

Corollary 1. If the assumptions of Lemma 2 and Remarks 5, 8 hold, then

T ′
v(C) :M

1
Y,ϕ([0, b))→ Mo

Y,ϕ([0, b)).

Applying the proofs of Proposition 2 and Theorem 4 in [3], we obtain the
following

Theorem 3. Let ϕ be a convex, τ -bounded ϕ-function which fulfils the ∆2 con-

dition,
∫ b

0 ϕ(t, c) dt < ∞ for every c > 0 and let (Kv)v∈V be singular. Then

̺(a(A2
vx − x))

V
−→ 0 for every a > 0 and every x ∈ Lϕ([0, b), Y ).

Corollary 2. If the assumptions of Theorem 3 hold, then

T ′
v(F )

d,ϕ,V
−→ F for every F ∈ M1

Y,ϕ([0, b)).

Proof: By the assumptions T ′
v :M

1
Y,ϕ([0, b))→ M1

Y,ϕ([0, b)). Let F ∈ M1
Y,ϕ([0, b)),

F (s) = B(aF (s), rF (s)) for every s ∈ [0, b). We have for a > 0
∫ b

0
ϕ(t, ad(T ′

v(F ), F )(t)) dt

≤
1

2

∫ b

0
ϕ(t, 2a | A1

v(rF )(t) − rF (t) |) dt

+
1

2

∫ b

0
ϕ(t, 2a‖A2

v(aF )(t)− aF (t)‖Y ) dt
V

−→ 0.

�
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Remark 10. Let A =
⋃n

i=1[ai, bi], B =
⋃n

i=1[ci, di], where [ai, bi], [ci, di],
i = 1, . . . , n, are nonempty and compact segments in R, then dist (A, B) ≤
∑n

i=1 dist ([ai, bi], [ci, di]).

Corollary 3. If the assumptions of Theorem 3 hold, then

T ′′
v (F )

d,ϕ,V
−→ F for every F ∈ M̃o

Y,ϕ([0, b)).

Proof: Let F ∈ M̃o
Y,ϕ([0, b)), F (s) =

⋃m
i=1 R(o, ri

F (s), R
i
F (s)), a > 0, v ∈ V.

By the assumptions and by Remark 10 (also, see the proof of Remark 2’ and [2,
Remark 10]) we have

∫ b

0
ϕ(t, ad(T ′′

v (F ), F )(t)) dt

≤
1

2m

m
∑

i=1

b
∫

0

ϕ(t, 2am | A1
v(r

i
F )(t)− ri

F (t) |) dt

+
1

2m

m
∑

i=1

b
∫

0

ϕ(t, 2am | A1
v(R

i
F )(t) − Ri

F (t) |) dt
V

−→ 0.

Let F ∈ Mo
Y,d,ϕ([0, b)). Let v ∈ V be arbitrary. If there exists Gv ∈

Mo
Y,d,ϕ([0, b)) such that limn→∞

∫ b
0 ϕ(t, ad(T ′′

v (Fn), Gv)(t)) dt = 0 for every a > 0

and every sequence {Fn} such that Fn ∈ M̃o
Y,ϕ([0, b)) for every n ∈ N and

limn→∞

∫ b
0 ϕ(t, ad(Fn, F )(t)) dt = 0 for every a > 0, then we define Tv(F ) = Gv.

�

Theorem 4. Let the assumptions of Theorem 3 hold and there are K1, K2 > 0
such that ̺(ad(T ′′

v (F ), T
′′
v (G))) ≤ K1̺(aK2d(F, G)) for all F, G ∈ M̃o

Y,ϕ([0, b)),

a > 0 and every v ∈ V, then Tv(F )
d,ϕ,V
−→ F for every F ∈ Mo

Y,d,ϕ([0, b)).

Proof: The proof is analogous to that of Theorem 3’ from [2], so we give the
sketch of it only. Analogously as in that proof we prove that the family (Tv)v∈V
is (d,V , Mo

Y,d,ϕ([0, b))-bounded. So we obtain the assertion from Remark 7 and

Corollary 3.

Final remarks. The results of [2] can be extended in other ways.
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1. Let x, y ∈ Y . By s(x, y) we denote the closed segment joining the points x
and y. Let a ∈ Y . Define:

Y a = {λa : λ ∈ R},

Y 1,a
ϕ = {F ∈ MY (I) : F (t) = s(bF (t), eF (t)) for every t ∈ I, where

bF (·), eF (·) ∈ Lϕ(I, Y a)},

Y n,a
ϕ = {F ∈ MY (I) : F (t) =

n
⋃

i=1

s(bi
F (t), e

i
F (t)) for every t ∈ I, where

bi
F (·), e

i
F (·) ∈ Lϕ(I, Y a), i = 1, . . . , n, ‖ei

F (t)‖Y ≤ ‖bi+1
F (t)‖Y for every

t ∈ I, i = 1, . . . , n − 1 if n > 1},

Ỹ a
ϕ =

∞
⋃

i=1

Y n,a
ϕ ,

Y a
d = {F ∈ MY (I) : d(Fn, F )→ 0 a.e. for some Fn ∈ Ỹ a

ϕ , n ∈ N},

Y a
d,ϕ = {F ∈ Y a

d :

∫

I
ϕ(t, λd(Fn, F )(t))dt → 0 as n → ∞ for every λ > 0

for some Fn ∈ Ỹ a
ϕ , n ∈ N}.

The results of [2] will be in force if we replace R by Y , the space Xd,ϕ by Y a
d,ϕ

and if we introduce the other evident changes.

2. Let Y = R
n. By Πn(ai, bi) we denote the Cartesian product of the n closed

segments [ai, bi], where ai, bi ∈ R. Define

Y Πn

ϕ = {F ∈ MY (I) : F (t) = Π
n(aF

i (t), b
F
i (t)) for every t ∈ I,

aF
i (·), b

F
i (·) ∈ Lϕ(I, Y ) for i = 1, . . . , n},

D(F, G)(t) = max
1≤i≤n

d([aF
i , bF

i ], [a
G
i , bG

i ])(t) for all F, G ∈ Y Πn

, t ∈ I.

We easily obtain that the space 〈Y Πn
, D〉 is a complete space. For all F ∈ Y Πn

,
v ∈ V, t ∈ [0, b) we define:

T n
v (F )(t) = Π

n(A1
v(a

F
i )(t), A

1
v(b

F
i )(t)).

We easily obtain the following :

Theorem 5. If the assumptions of Theorem 3 hold, then

T n
v (F )

D,ϕ,V
−→ F for every F ∈ Y Πn

ϕ , n ∈ N.
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