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Rectangular covers of products missing diagonals

Yukinobu Yajima

Abstract. We give a characterization of a paracompact Σ-space to have a Gδ-diagonal
in terms of three rectangular covers of X2 \∆. Moreover, we show that a local property
and a global property of a space X are given by the orthocompactness of (X ×βX) \∆.

Keywords: Σ-space, Gδ-diagonal, σ-closure-preserving, σ-cushioned, rectangular cover,
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1. Main theorem

All spaces in this paper are assumed to be regular T1. The diagonal of a space
X is denoted by ∆, that is, ∆ = {(x, x) : x ∈ X}.
Let X be a space and V a collection of subsets of the square X2. We say that

V is rectangular if each member of V is a subset of the form U × W in X2. Note
that if V is a rectangular open cover of X2 \∆, then it covers X2 \∆ and each
member of V is a subset of the form U ×W such that U and W are disjoint open
sets in X .
Gruenhage and Pelant [4] proved that a paracompact Σ-space X has a Gδ-

diagonal (i.e. is a σ-space), if X2 \ ∆ is paracompact. Subsequently, Kombarov
[7] proved that a paracompact Σ-space X has a Gδ-diagonal if and only if there
is a locally finite rectangular open cover of X2 \∆.
Our main theorem is an extension of these results in terms of three rectangular

covers of X2 \∆.

Theorem 1. The following are equivalent for a paracompact Σ-space X .

(a) X has a Gδ-diagonal.

(b) There is a σ-locally finite rectangular open cover of X2 \∆.
(c) There is a σ-closure-preserving rectangular open cover of X2 \∆.
(d) There is a rectangular open cover of X2 \∆ which has a σ-cushioned open
refinement.

The author announced Theorem 1 except (c) ⇒ (a) in [10], and asked whether
(c) implies (a) in the conference. Answering this, we give a complete proof of
Theorem 1 in the next section.
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2. Proof of Theorem 1

The main idea of the proof of Theorem 1 is based on Gruenhage-Pelant’s. In
fact, it will be proceeded along the line of that of [4, Theorem 4]. Here, we have
to do two kinds of parallel arguments.
Recall that a collection of V of subsets of a space X is closure-preserving if⋃
{V : V ∈ V ′} =

⋃
{V : V ∈ V ′} for each V ′ ⊂ V . We say that V is σ-closure-

preserving if it can be written as V =
⋃

n∈ω Vn such that each Vn is closure-
preserving.

Lemma 1. Let X be a space with p ∈ X . Let V =
⋃

n∈ω Vn be a σ-closure-

preserving rectangular open cover of X2 \∆. If there is a countable subset M of

X \ {p} such that p ∈ M , then p is a Gδ-point.

Proof: Let M = {xn : n ∈ ω}. Let Fn =
⋃
{V : V ∈ Vn, j ≤ n with (p, xn) /∈

V } for each n ∈ ω. Then each Fn is a closed subset in X2 \∆ such that (p, xn) /∈
Fn. For each n ∈ ω, take a basic open neighborhood Gn × Hn of (p, xn) in
X2 \∆, disjoint from Fn. We show

⋂
n∈ω Gn = {p}. Assume that there is some

y ∈
⋂

n∈ω Gn with y 6= p. Take some V = U × W ∈ V such that (y, p) ∈ V .

Choose m ∈ ω with V ∈ Vm. By p /∈ U , we have (p, xn) /∈ V . Hence it follows
that V ⊂ Fn for each n ≥ m. Choose some k ≥ m with xk ∈ W . Then it follows
that (y, xk) ∈ U × W = V ⊂ V ⊂ Fk. On the other hand, by (y, xk) ∈ Gk × Hk,
we have (y, xk) /∈ Fk. This is a contradiction. �
Let V and O be two collections of subsets of a space X . Recall that V is

cushioned in O if for each V ∈ V , one can assign an O(V ) ∈ O such that for each

V ′ ⊂ V ,
⋃
{V : V ∈ V ′} ⊂

⋃
{O(V ) : V ∈ V ′}. Such an assignment V 7→ O(V ),

V ∈ V , is called a cushioned assignment from V into O. We say that V is
σ-cushioned in O if it can be written as V =

⋃
n∈ω Vn such that each Vn is

cushioned in O.
Lemma 2. Let X be a space with p ∈ X . Let O be a rectangular open cover of
X2 \∆. Let V be a collection of open sets in X2 \∆ which is cushioned in O. If
there is a countable subset M of X \ {p} such that p ∈ M and M × {p} ⊂

⋃
V ,

then p is a Gδ-point.

Proof: Let V 7→ O(V ) be a cushioned assignment from V into O, and let
M = {xn : n ∈ ω}. For each n ∈ ω, take Vn ∈ V with (xn, p) ∈ Vn, and let
Wn = {x ∈ X : (xn, x) ∈ Vn}. It suffices to show

⋂
n∈ω Wn = {p}. Assume

that there is some y ∈
⋂

n∈ω Wn with y 6= p. Let O(Vn) = Pn × Qn for each

n ∈ ω. By (xn, p) ∈ Vn ⊂ O(Vn), we have p /∈ Pn for each n ∈ ω. So it follows

that (p, y) /∈
⋃

n∈ω(Pn × Qn) =
⋃

n∈ω O(Vn) ⊃
⋃

n∈ω Vn. There is an open
neighborhood G of p such that (G×{y})∩ (

⋃
n∈ω Vn) = ∅. By (xn, y) ∈ Vn, each

xn is not in G. Hence we have p /∈ M , which is a contradiction. �
A space X is called a Σ-space if there are a closed cover C of X by countably

compact sets, and a σ-discrete closed cover F of X such that whenever C ∈ C
and U is open in X with C ⊂ U , then C ⊂ F ⊂ U for some F ∈ F .
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The class of paracompact Σ-spaces is a broad one which is countably productive
(see [3], [8]).

Lemma 3. Let X be a Σ-space. If there is a σ-closure-preserving rectangular
open cover V =

⋃
n∈ω Vn of X

2 \∆, then each point of X is Gδ.

Proof: Let C and F be two closed covers of X , described as above. Assume
that some p ∈ X is not a Gδ-point. As stated in the proof of [4, Lemma 3], there
is a closed Gδ-set Y in X containing p such that y ∈ Y and y ∈ C ∈ C implies
p ∈ C. Then note that p is not Gδ in Y . Let V = UV × WV for each V ∈ V .
Let Un = {UV : V ∈ Vn with p ∈ WV } for each n ∈ ω. Note that each Un is
closure-preserving in X \{p}. Let U =

⋃
n∈ω Un. Then U is a σ-closure-preserving

open cover of X \ {p}.
Now, we construct {Uα, Gα, zα : α ∈ ω1}, satisfying the following conditions;

for each α ∈ ω1,
(i) Uα ∈ U and Gα is an open set in Y ,
(ii) Uα ∩ Y ⊂ Gα ⊂ Gα ⊂ Y \ {p},
(iii) zα ∈ (Uα ∩ (Y \ {p})) \

⋃
β<α Gβ .

In fact, for α ∈ ω1, assume that {Uβ, Gβ , zβ : β < α} satisfies the above condi-

tions. Since Y \{p} is not Fσin Y , {Gβ : β < α} does not cover Y \{p}. However,
as U covers X \ {p}, we can choose the desired zα and Uα. By the choice of Un,
note that p /∈ Uα. Since X is regular, we can choose the desired Gα.
Here we may assume without loss of generality that {Uα : α ∈ ω1} ⊂ Um for

some m ∈ ω. Let Z = {zα : α ∈ ω1}. Then Z is uncountable. Moreover, Z is
closed discrete in Y \{p}. For, pick any x ∈ Z\{p}. Since Um is closure-preserving,
Z \{p} ⊂

⋃
α∈ω1

Uα. Let α0 = min{α ∈ ω1 : x ∈ Uα}. Let N = Gα0 \
⋃

β<α0
Uβ .

Then N is an open neighborhood of x in Y such that N ∩ Z ⊂ {zα0}.
It follows from Lemma 1 that p /∈ M for each countable subset M of Z. The

remaining argument is the same as in the proof of [4, Lemma 3]. �

Lemma 4. Let X be a Σ-space. If there is a rectangular open cover O of X2 \∆
which has a σ-cushioned open refinement V =

⋃
n∈ω Vn, then each point of X is

Gδ.

Proof: Let C, F , p and Y be the same as in the above proof. Let V 7→ O(V ),
V ∈ Vn, be a cushioned assignment of Vn into O. Let UV = {x ∈ X : (x, p) ∈ V }
and O(V ) = PV × QV for each V ∈ V . Moreover, let Un = {UV : V ∈ Vn}
and Pn = {PV : V ∈ Vn with p ∈ QV } for each n ∈ ω. Let U =

⋃
n∈ω Un and

P =
⋃

n∈ω Pn. Then U is an open cover of X \ {p} and each Un is cushioned in

Pn with the cushioned assignment UV 7→ PV in X \ {p}. Since p /∈ P for each
P ∈ P and Y \ {p} is not Fσ in Y , {P ∩ Y : P ∈ P} has no countable subcover of
Y \ {p}. So we can inductively choose {Uα, Pα, zα : α ∈ ω1}, satisfying for each
α ∈ ω1,

(iv) Uα ∈ U and Pα ∈ P ,
(v) zα ∈ (Uα ∩ (Y \ {p})) \

⋃
β<α Pβ .
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We may assume that {Uα : α ∈ ω1} ⊂ Um and {Pα : α ∈ ω1} ⊂ Pm for some
m ∈ ω. Then Uα 7→ Pα, α ∈ ω1, is a cushioned assignment. Let Z = {zα : α ∈
ω1}. Similarly, Z is closed discrete in Y \ {p}. Here, using Lemma 2 instead of
Lemma 1, the remaining argument is the same as above. �

A space X is called a β-space if there is a function g : ω × X → τ(X), where
τ(X) denotes the topology of X , satisfying for each x ∈ X ,

(i) x ∈
⋂

n∈ω g(n, x),
(ii) if x ∈ g(n, xn) for each n ∈ ω, then {xn : n ∈ ω} has a cluster point in X .

Since Σ-spaces and semi-stratifiable spaces are β-spaces (see [3, Theorem 7.8 (i)]),
the class of β-spaces is fairly broad.
The definition of Wδ-diagonal in terms of the notion of a sieve is seen in [3],

[4]. We do not restate it here. It is shown in [2] (or [3, Theorem 6.6]) that
a submetacompact space with a Wδ-diagonal has a Gδ-diagonal.

Lemma 5. Let X be a β-space such that each point of X is Gδ. If there is

a σ-closure-preserving rectangular open cover V =
⋃

n∈ω Vn of X2 \ ∆, then X
has a Wδ-diagonal.

Proof: Let g : ω×X → τ(X) be a function, described as above. Let h : ω×X →
τ(X) be a function such that

⋂
n∈ω h(n, x) = {x} for each x ∈ X . As in the proof

of [4, Theorem 4], we can construct a sieve (G, X<ω), satisfying the following: If

s = 〈x0, . . . , xn−1〉 ∈ X<ω and x ∈ G(s), then G(sa〈x〉) is an open neighborhood
of x such that

(i) G(sa〈x〉) ⊂ G(s) ∩ g(n, x) ∩ h(n, x),
(ii) if i < n and xi 6= x, then

({xi} × G(sa〈x〉)) ∩ (
⋃

{V : V ∈ Vj , j ≤ n with (xi, x) /∈ V }) = ∅ .

Assume that
⋂

n∈ω G(s ↾ n) contains two distinct points for some s=〈x0, x1, . . . 〉
∈ Xω. Then, by (i), no point of X is repeated infinitely many times in the se-
quence s. By the choice of g and (i), {xn : n ∈ ω} has a cluster point y. Then we

have y ∈
⋂

n∈ω G(s ↾ n) =
⋂

n∈ω G(s ↾ n). There is some z ∈
⋂

n∈ω G(s ↾ n) with
y 6= z. Choose an n0 ∈ ω and a V0 = U × W ∈ Vn0 with (y, z) ∈ V0. Find some
k, m ∈ ω such that m > k > n0, xk 6= xm and {xk, xm} ⊂ U . By xm /∈ W , note
(xk , xm) /∈ V0. By (ii), we have ({xk} × G(s ↾ m + 1)) ∩ V0 = ∅. On the other
hand, we have (xk , z) ∈ ({xk} × G(s ↾ m+ 1)) ∩ V0. This is a contradiction. �

Lemma 6. Let X be a β-space such that each point of X is Gδ. If there is

a rectangular open cover O of X2 \∆ which has a σ-cushioned open refinement
V =

⋃
n∈ω Vn, then X has a Wδ-diagonal.

Proof: Let V 7→ O(V ) be a cushioned assignment from Vn into O for each n ∈ ω.
Let g and h be the same functions as above. Moreover, we can also construct



Rectangular covers of products missing diagonals 151

a similar sieve (G, X<ω) as above, where we only replace the condition (ii) with
the following;

(ii′) if i < n and xi 6= x, then

({xi} × G(sa〈x〉)) ∩ (
⋃

{V ∈ Vj , j ≤ n, (xi, x) /∈ O(V )}) = ∅ .

Take s, y and z as above. Choose an n0 ∈ ω and a V0 ∈ Vn0 with (y, z) ∈ V0. Take
an open neighborhood U of y such that U × {z} ⊂ V0. Find some k, m ∈ ω with
m > k > n0, xk 6= xm and {xk, xm} ⊂ U . LetO(V0) = P×Q. Since xm ∈ U ⊂ P ,
it follows that (xk , xm) /∈ O(V0). By (ii

′), we have ({xk}×G(s ↾ m+1))∩V0 = ∅.
On the other hand, we have

(xk, z) ∈ ({xk} × G(s ↾ m+ 1)) ∩ (U × {z}) ⊂ ({xk} × G(s ↾ m+ 1)) ∩ V0 .

This is a contradiction. �

We say that an open cover O of X2 \∆ is rectangular cozero if each member of
O is a subset of the form P ×Q such that P and Q are disjoint cozero sets in X .
Since each open Fσ-set in a normal space is exactly a cozero set, so is each

open set in a metric space. So, Kombarov [7] actually showed the following.

Lemma 7. If a paracompact space X has a Gδ-diagonal, then there is a locally

finite rectangular cozero cover of X2 \∆.

Now, we complete the proof of our main theorem.

Proof of Theorem 1: (a) ⇒ (b): This follows from Lemma 7 (or [7, Theo-
rem 1]).
(b) ⇒ (c): Obvious.
(a) ⇒ (d): Since a σ-locally finite rectangular cozero cover of X2 \ ∆ has

a σ-cushioned (rectangular) open refinement, this also follows from Lemma 7.
(c) ⇒ (a): Remember that each Σ-space is a β-space, and that a submeta-

compact space has a Gδ-diagonal iff it has a Wδ-diagonal. So this follows from
Lemmas 3 and 5.
(d) ⇒ (a): Similarly, this follows from Lemmas 4 and 6. �

3. Orthocompactness of (X × βX) \∆
Arhangel’skĭı and Kombarov [1] proved that a compact space X is first count-

able ifX2\∆ is normal. First, we consider what local property of a compact space
X can be obtained if the normality of X2\∆ is replaced by the orthocompactness
of it. For this, we also use some rectangular open covers.
Recall that an open cover V of a space X is interior-preserving if

⋂
V ′ is open

in X for each V ′ ⊂ V .
A space X is called a Fréchet space if for each p ∈ X and each subset M of X

with p ∈ M , there is a sequence {xn} of points in M which converges to p.
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Note that point-finite open covers of a space are interior-preserving, and that
first countable spaces and Lašnev spaces are Fréchet.
For a collection V of open sets in a product X × C and an (x, y) ∈ X × C, let⋂
V(x, y) =

⋂
{V ∈ V : (x, y) ∈ V }.

Theorem 2. Let C be a countably compact space and X a subspace of C. If
there is a rectangular open cover of (X ×C) \∆ which has an interior-preserving
open refinement, then X is a Fréchet space.

Proof: Let M be a subset of X with p ∈ M \ M . Let O be a rectangular open
cover of (X × C) \ ∆ and V an interior-preserving open refinement of O. Since
p is not isolated in X and each

⋂
V(p, x) is an open neighborhood of (p, x) in

X × C, we can inductively choose a sequence {xn : n ∈ ω} of distinct points in
M such that (xn, xi) ∈

⋂
V(p, xi) for each i < n and each n ∈ ω. We show that

{xn : n ∈ ω} converges to p. Assume the contrary. This is an open neighborhood
U of p in X such that xn /∈ U for infinitely many n’s. There is a cluster point y of
{xn ∈ X \U : n ∈ ω} in C. By y 6= p, we can find a V ∈ V and an O = P ×Q ∈ O
such that (p, y) ∈ V ⊂ O. Take an open neighborhood W of y in C such that
{p} × W ⊂

⋂
V(p, y). Moreover, take some k, m ∈ ω such that k < m and

{xk, xm} ⊂ W . Since (p, xk) ∈
⋂
V(p, y), it follows that

⋂
V(p, xk) ⊂

⋂
V(p, y).

Hence we have

(xm, xk) ∈
⋂

V(p, xk) ⊂
⋂

V(p, y) ⊂ V ⊂ O = P × Q .

On the other hand, we have

(p, xm) ∈ {p} × W ⊂
⋂

V(p, y) ⊂ V ⊂ O = P × Q .

Thus we obtain xm ∈ P ∩ Q. This is a contradiction. �

The author first showed in Theorem 2 that X has countable tightness. Subse-
quently, N. Kemoto kindly pointed out that X is a Fréchet space.
We say that a space X is orthocompact if every open cover ofX has an interior-

preserving open refinement.
As an analogue of [1, Theorem 10], we immediately have

Corollary 1. Let X be a countably compact space. If X2 \∆ is orthocompact,
then X is a Fréchet space.

For a Tychonoff space X , we denote by βX the Stone-Čech compactification
of X . Junnila [5] proved that the orthocompactness of X × βX gives the meta-
compactness of X . Finally, we show that the orthocompactness of (X × βX) \∆
gives not only the local property of X but also the global property of X .

Theorem 3. Let X be a Tychonoff space and γX a compactification of X . If
(X × γX) \∆ is orthocompact, then X is metacompact.

Proof: The proof is obtained by modifying that of [9, Theorem 2.2]. Let U , U∗,
V and G be the same ones as in the proof of it. There is an interior-preserving
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open refinement H of G|(X × γX) \∆. For each x ∈ X , fix a Vx ∈ V with x ∈ Vx.
For each (x, x′) ∈ (X ×γX)\∆, we take a basic open neighborhood Px,x′ ×Qx,x′

of (x, x′) which is contained in some member of H. Pick x ∈ X . Since γX \ Vx is
compact, there is a finite subset F (x) of γX\Vx such that γX\Vx ⊂

⋃
z∈F (x)Qx,z.

Let Wx = (
⋂

z∈F (x) Px,z) ∩ Vx. Here, we set W = {Wx : x ∈ X}. It suffices from

[6, Theorem 3.6] to show that there is a finite subcollection Ux of U such that
St(x,W) ⊂

⋃
Ux and x ∈

⋂
Ux for each x ∈ X . For this, it also suffices to show

that ClγX St(x,W) ⊂ St(x,U∗) for each x ∈ X . Assuming the contrary, we pick
some x ∈ X and some q ∈ ClγX St(x,W) \ St(x,U∗). By x 6= q,

⋂
H(x, q) is

an open neighborhood of (x, q). Take a basic open neighborhood S × T of (x, q)
contained in

⋂
H(x, q). Pick p ∈ T ∩ St(x,W), and pick y ∈ X with x ∈ Wy and

p ∈ Wy . Since x ∈ Wy ⊂ Vy ⊂ U∗
Vy

∈ U∗, it follows that

q ∈ γX \ St(x,U∗) ⊂ γX \ Vy ⊂
⋃

z∈F (y)

Qy,z .

Find z ∈ F (y) with q ∈ Qy,z. By the same argument as in the proof of [9,
Theorem 2.2], we obtain that {(x, q), (x, p), (p, q)} ⊂ H0 for some H0 ∈ H, and
so that {(x, p), (p, q)} ⊂ (V0 ∩ X) × (γX \ ClγX V0) for some V0 ∈ V . This is
a contradiction. �

By Theorems 2 and 3, we obtain

Corollary 2. Let X be a Tychonoff space. If (X × βX) \ ∆ is orthocompact,
then X is metacompact and Fréchet.
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