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Expected values in the alternative set theory

and their applications to some limit theorems

Martin Kalina

Abstract. This article presents an alternative approach to statistical moments within
non-standard models and by the help of these moments some limit theorems are refor-
mulated and proved.

Keywords: alternative set theory, expected value, law of large numbers, central limit
theorem

Classification: 26E35, 60A99, 60F05

The aim of this paper is to introduce a new approach to statistical moments
and to show, on some limit theorems, how they are to be used. It is written in
the framework of the Alternative Set Theory. Basic notions and notation from
[V] will be used freely, without any reference. The author has been inspired to
write this article by Nelson’s book [N].
If we have a random variable ξ, then its mean is usually defined by

m(ξ) =
∑

ω∈Ω
ξ(ω) · p(ω),

where Ω is the domain of ξ and p is its probability distribution. But even certain
fluctuations of an infinitesimal probability can cause a considerable change of
this mean. As well-known, the so called normal probability distribution depends
on two parameters, E and σ2. Let us call them the expected value and the
dispersion, respectively. From the Central Limit Theorem it follows that if we

have a sequence of independent random variables {ηi}β
i=1 (with some particular

properties), β being infinite, then the probability distribution of the sum of ηi,
suitably normed (i.e. the first and the second “statistical moment” of the sum
are 0 and 1, respectively), is “very close” to the normal probability distribution
with its expected value 0 and dispersion 1. But, as we shall see below, though
the first “statistical moment” of the normed sum is equal to 0, we have no idea
about the value of its mean, defined as above. So, there is really the need for
introducing of statistical moments, different from those, already defined.
Preliminarily, let us give some notions and notations, valid in the whole paper.

First, under a random variable we will understand a set function with a nonempty
domain, denoted by Ω, and the set Ω will be equipped with the uniform probability
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distribution, i.e. p({ω}) = 1/α for each ω ∈ Ω, where α is the number of the
elements of Ω. The letters ξ and η, possibly indexed, will always denote random
variables. The common range of all random variables, used in this paper, will be
denoted by u.
In order to be short, p({ω ∈ Ω; a ≤ ξ(ω) ≤ b}) will be denoted by

p(a ≤ ξ ≤ b), or simply by p([a, b]) (for any a < b ∈ Q), p({ω ∈ Ω; ξ(ω) = x}) will
be denoted by p(ξ = x), or simply by p(x) (for any x ∈ u), etc., wherever it will
not cause any confusions.
A random variable ξ will be called standard, if for each γ ∈ N \ FN

p(−γ ≤ ξ ≤ γ)
.
= 1 holds.

For any x ∈ Q the class {y ∈ Q;x
.
= y} will be denoted by mon(x). The

probability p can be extended in the sense of Loeb (for more details see [L] or
[K-Z]). This extension will be denoted by P . So, particularly, the expression
P (ξ ∈ mon(x)) is a real number for each random variable ξ and each x ∈ Q.
Finally, we will denote

a ≃ b if a/b
.
= 1

a ∼ b if a/b ∈ BQ and b/a ∈ BQ

a . b if a < b or a ∼ b

a � b if a < b and a ≁ b

for any nonzero numbers a, b ∈ Q.

Now, we are ready to investigate the announced statistical moments. We have
already defined the mean of a random variable ξ. More generally, for any random
variable ξ and k ∈ FN we denote

mk(ξ) =
1

α

∑

ω∈Ω
ξk(ω)

(let us remind that Ω = dom(ξ) and α is the number of its elements).

Lemma 1. Let 0 6= k ∈ FN and m2k(ξ) ∈ BQ. Then ξ is a standard random
variable.

Proof: Let ξ not be standard. Then there exist β, γ, β > γ ∈ N \ FN, such that

p([−β,−γ]) + p([γ, β]) 6 .= 0,

hence

m2k(ξ) ≥
∑

x∈u
−β≤x≤−γ

x2k · p(x) +
∑

x∈u
γ≤x≤β

x2k · p(x) ≥ γ2k · (p([−β,−γ]) + p([γ, β])) ,

and we get m2k(ξ) /∈ BQ, and that is a contradiction. �
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Random variables ξ and η are said to be infinitesimally shifted if they yield
the following properties for all x ∈ BQ

P (ξ ∈ mon(x)) = P (η ∈ mon(x))(1)

p(ξ ≤ x)
.
= p(η ≤ x), if P (ξ ∈ mon(x)) = 0(2)

Let ξ be a standard random variable, 0 6= k ∈ FN. If there exists a γ ∈ N \ FN
such that each set v ⊂ Q yields

p(v)
.
= 0⇒

∑

x∈u
−γ≤x≤γ

xkp(x)−
∑

x∈u\v
−γ≤x≤γ

xkp(x)
.
= 0,

then the real number

Ek(ξ) = mon(
∑

x∈u
−γ≤x≤γ

xkp(x))

will be called the expected value of the k-th order of ξ.
In spite of the fact that Ek(ξ) is a real number and mk(ξ) ∈ Q, we will write

Ek(ξ) = mk(ξ), if mon(mk(ξ)) = Ek(ξ). Similarly we will write Ek(ξ) ≤ mk(ξ),
etc.
It is just an easy exercise to show that Ek(ξ) is always finite, if it exists.

Theorem 1. Let ξ and η be standard random variables, having their probability
distributions infinitesimally shifted. Suppose there exists the expected value of

the k-th order of ξ. Then there exists the expected value of the k-th order of η
and Ek(ξ) = Ek(η).

Proof: For any n ∈ N denote

ξ̂n =
∑

x∈u
−n≤x≤n

xk · p(ξ = x), η̂n =
∑

x∈u
−n≤x≤n

xk · p(η = x)

(let us remind that u is the common range of ξ and η). Since the probability

distributions of ξ and η are infinitesimally shifted, we have ξ̂n
.
= η̂n for each

n ∈ FN, hence, by Prolongation Axiom, there is a γ ∈ N \ FN such that each
β ≤ γ, β being infinite, yields ξ̂β

.
= η̂β , and this implies the existence of Ek(η)

and the equality Ek(η) = Ek(ξ). �

Theorem 2. Let ξ and η be standard random variables and let there exist their
expected values of all finite orders and, moreover, Ek(ξ) = Ek(η) for all k ∈ FN.
Then their probability distributions are infinitesimally shifted.

Proof: From the definition of the expected value we get the existence of such
a γ ∈ Q that for all k ∈ FN there holds

∑

x∈u
−γ≤x≤γ

xk · p(ξ = x)
.
=

∑

x∈u
−γ≤x≤γ

xk · p(η = x).
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Hence, for any n ∈ FN and any ak ∈ BQ, 0 ≤ k ≤ n we get

n
∑

k=0

ak

∑

x∈u
−γ≤x≤γ

xk · p(ξ = x)
.
=

n
∑

k=0

ak

∑

x∈u
−γ≤x≤γ

xk · p(η = x).

Since the last formula holds for every polynomial

n
∑

k=0

akxk, the assertion in ques-

tion is proved.
�

Hence the expected values have all basic properties of the statistical moments
in the “classical” probability theory. Something about the relationship between
the moments Ek and mk we shall learn from the following

Theorem 3. Let ξ be any random variable, 0 6= n ∈ FN and m2n(ξ) ∈ BQ.
Then ξ is a standard random variable, whose expected values exist up to the
2n-th order, mk(ξ) = Ek(ξ) for all k ≤ 2n − 1 and E2n(ξ) ≤ m2n(ξ).

Proof: ξ is a standard random variable due to Lemma 1. Let for a k < 2n
mk(ξ) 6= Ek(ξ). Then, obviously, there exist infinite numbers β < γ such that

∑

x∈u
β≤x≤γ

xk · p(x) 6 .= 0 or
∑

x∈u
−γ≤x≤−β

xk · p(x) 6 .= 0.

Then

m2n(ξ) ≥
∑

x∈u
β≤|x|≤γ

x2n · p(x) ≥ β2n−k ·
∑

x∈u
β≤|x|≤γ

xk · p(x) /∈ BQ,

and we get a contradiction, hence mk(ξ) = Ek(ξ) for all k < n.

Denote f(i) =
∑

x∈u
|x|≤i

x2n · p(x). Since f(i), for i ∈ FN, is a nondecreasing,

bounded above function, we get the existence of E2n(ξ). The inequality E2n(ξ) ≤
m2n(ξ) is obvious. �

So, particularly, if mn(ξ) is bounded
1 for each n ∈ FN, then En(ξ) = mn(ξ)

holds for each n ∈ FN.

Now, we have a system of independent random variables {ξi}n
i=1,

2 and we are
interested in how to compute the expected value of a given order of the sum of

1that means it is an element of BQ
2that is p(ξ1 ∈ v1 & ξ2 ∈ v2 & . . . & ξn ∈ vn) = p(ξ1 ∈ v1) · p(ξ2 ∈ v2) · · · p(ξn ∈

vn) for any set v1 × v2 × · · · × vn ⊆ Qn.
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our system. Of course, this task is trivial in case our system is finite, and we
are not going to solve it. But what to do in case n is infinite? Remind that,
by our definition, by computing of the expected value we neglect some set of an
infinitesimal probability, so if we had simply used the formulas known for the finite
system, then the union of all neglected sets would possibly have been of a positive
probability. So we have to develop another technique in order to manage our task.
Let δ ∈ N and a, b ∈ Q. We denote a =δ b, if (a − b) · δ .

= 0. Particularly, if
a

.
= b, then a =1 b. The class {γ ∈ Q; a =δ γ} will be denoted by monδ(a) and
called the δ-number.
We will write a ≃ b, a ∼ b, etc, also for δ-numbers in the sense that the formula

holds for all their representatives.
In the remainder of this paper, the letters β, γ, δ will always denote infinite

natural numbers.
If {γi}β

i=1 is a sequence of δ-numbers, β . δ, then we can define the sum of our
system in the usual sense, i.e. as the sum of some representatives of our δ-numbers.
Of course, this sum will not be a δ-number, but a δ/β-number. Particularly, in
case β ∼ δ and the sum is bounded, it will be a real number.
Let ξ be any random variable and δ ∈ N. If for a γ ∈ N, such that

p(ξ ∈ [−γ, γ]) =δ 1, and for each set v ⊂ Q with p(ξ ∈ v) =δ 0
∑

x∈u
−γ≤x≤γ

xkp(x) =δ

∑

x∈u\v
−γ≤x≤γ

xkp(x),

then the δ-number monδ(
∑

x∈u
−γ≤x≤γ

xkp(x)) will be called the δ-expected value

of the k-th order of ξ and denoted by δ̃k(ξ).

For γ ≤ δ ∈ N we will write δ̃k(ξ) = γ̃k(ξ) instead of δ̃k(ξ) ⊆ γ̃k(ξ). Similarly,

we will write δ̃k(ξ) ≤ γ̃k(ξ), etc.

The relationship between δ̃k(ξ) and γ̃k(ξ) is the following

Lemma 2. Let ξ be any random variable and γ . δ. Then

(a) if 0 6= n ∈ FN and δ̃2n(ξ) is bounded, then ξ is a standard random variable,

whose γ-expected values exist up to the 2n-th order, δ̃k(ξ) = Ek(ξ) for all

k ≤ 2n − 1 and γ̃2n(ξ) ≤ δ̃2n(ξ).

(b) If there exists a set v with p(ξ ∈ v) � 1/δ such that
∑

x∈u\v
ξn(x) · p(x) is

bounded for each n ∈ N, then
∑

x∈u\v
ξn(x) · p(x) = γ̃n(ξ)

holds for each n ∈ N.

Proof of these assertions differs just slightly from that of Theorem 3, therefore
it is omitted.
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Theorem 4. Let {ξi}δ
i=0 be a sequence of independent random variables with

δ̃1(ξi) = 0 (0 is meant as a δ-number!) and δ̃2(ξi) . 1/δ for each i ≤ δ, then

the expected value of the first order of the sum of {ξi}δ
i=0 is equal to 0 and

E2(

δ
∑

i=0

ξi) =

δ
∑

i=0

δ̃2(ξi).

Proof: Let us compute E2(

δ
∑

i=0

ξi), provided it exists. Obviously,

(3) E2(

δ
∑

i=0

ξi) ≤
δ
∑

i=0

δ̃2(ξi) + 2 ·
δ
∑

i=1

i−1
∑

j=0

δ̃1(ξi) · δ̃1(ξj),

since on the right-hand side we have neglected just a set of measure zero. By

our assumptions,

δ
∑

i=0

δ̃2(ξi) is bounded and

δ
∑

i=1

i−1
∑

j=0

δ̃1(ξi) · δ̃1(ξj) = 0, hence, by

Lemma 2a, the expected value of the second order of our sum does exist and,
hence, so does the expected value of the first order. Of course, on the left-hand
side of (3) we can neglect any set of measure zero. That means, we can choose
a subsequence {ξij}

γ
j=0, γ � δ and by each of our chosen random variables

neglect a set vij with p(ξij ∈ vij ) & 1/δ and

γ
∑

j=0

p(ξij ∈ vij )
.
= 0. But, since

γ
∑

j=0

δ̃2(ξij ) = 0, we get the equality in (3).

Further we have 0 =
δ
∑

i=0

δ̃1(ξi), and E1

(

δ
∑

i=0

(ξi)

)

=
δ
∑

i=0

∑

x∈vi

x·p(ξi = x), where

for a chosen subsequence {vij}
γ
j=0, γ � δ, 1

.
= p(vij ) . 1 − 1/δ can hold. But,

since

γ
∑

j=0

δ̃2(ξij ) = 0, we get also E1

(

δ
∑

i=0

(ξi)

)

= 0. �

Now, we can turn our attention to limit theorems.

Theorem 5 (The weak law of large numbers). Let {ξi}δ
i=1 be a sequence of

independent random variables. Then

(a) if δ̃1(ξi) = 0 and

δ
∑

i=1

δ̃2(ξi) � δ2 for all i ≤ δ, then for all β ∼ δ, β ≤ δ

there holds p(1/β

β
∑

i=1

ξi
.
= 0)

.
= 1.
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(b) If δ̃1(ξi) is bounded,

δ
∑

i=1

δ̃2(ξi) ∼ δ2 and δ̃2(ξi) . δ, then 1/δ

δ
∑

i=1

ξi is

a standard random variable with a non-zero expected value of the 2-nd

order, and if β ≃ δ, β ≤ δ, then the probability distributions of 1/δ

δ
∑

i=1

ξi

and 1/β

β
∑

j=1

ξij are infinitesimally shifted for any subsequence {ξij}
β
j=1.

Proof: (a) Fix a β ∼ δ, β ≤ δ. By Theorem 4, E2(
1

β

β
∑

i=1

ξi) =
1

β2

β
∑

i=1

δ̃2(ξi).

Denote η =
1

β

β
∑

i=1

(ξi). Then, by our definition, there exists a γ ∈ N \ FN such

that

E2(η) =
∑

x∈u
−γ≤x≤γ

x2p(η = x) ≥
∑

x∈u\[−ǫ;ǫ]
−γ≤x≤γ

x2p(η = x)·≥ ǫ2p(|η| ≥ ǫ)

for any ǫ 6 .= 0, and this implies the assertion (a).3

(b) Since the random variables ξi − δ̃1(ξi) fulfil the assumptions of Theorem 4,

we get that 1/β

β
∑

j=1

ξij is a standard random variable with a non-zero expected

value of the 2-nd order for any chosen subsequence. To prove the remainder of

this assertion, it is enough to realize that
1

δ2

δ
∑

j=β+1

δ̃2(ξij ) = 0, where the sum

runs through all the remaining random variables. �

Example 1 (The Poisson probability distribution.). Suppose we have a sequence

of independent random variables {ξi}δ
i=1 with the following properties, holding

for each i ≤ δ

(a) δ̃1ξi = δ/γ

(b) δ̃2ξi = δ2/γ
(c) p(ξi = δ) ≃ 1/γ,

where γ ∼ δ. Properties (b) and (c) imply that there exists a β � δ such that

p(ξi /∈ [−β, β]) ≃ 1/γ. Denote η =
1

δ

δ
∑

i=1

(ξi). By Theorem 5b, we know that η is

3By a·≥ b for a, b ∈ Q we mean a
.
= b, or a ≥ b.
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a standard random variable. A straightforward computation gives

P (η
.
= i) = mon

(

(

δ

i

)

·
(

1− 1
γ

)δ−i

·
(

1

γ

)i
)

=

(

mon

(

δ

γ

))i

· 1
i!
· exp(δ/γ),

where i ∈ FN, and this is the usual Poisson probability distribution with its
parameter mon(δ/γ).

Theorem 6 (The strong law of large numbers.). Let {ξi}δ
i=1 be a sequence of

independent random variables with the following properties

(a) the random variables ξi, for i ∈ FN, are standard
(b) δ̃1(ξi) = 0 for each i ≤ δ

(c)

δ
∑

i=γ

δ̃2(ξi)

i2
= 0 for each infinite γ ≤ δ.

Then there exists a class A with P (A) = 1 such that for each ω ∈ A and each

infinite γ ≤ δ there holds

1

γ

γ
∑

i=1

ξi(ω)
.
= 0.

Proof: Take an ǫ 6 .= 0 and a γ ≤ δ, and denote

ak =

{

ω; max
γ<k

∣

∣

∣

∣

∣

1

γ
·

γ
∑

i=1

ξi(ω)

∣

∣

∣

∣

∣

≤ ǫ &

∣

∣

∣

∣

∣

1

k
·

k
∑

i=1

ξi(ω)

∣

∣

∣

∣

∣

> ǫ

}

and

ζβ =

β
∑

i=γ

ξi

i
+
1

γ

γ−1
∑

i=1

ξi.

Obviously, the events ak are mutually excluding, i.e. the sets ak are pairwise

disjoint, hence
δ
∑

k=γ

p(ak) ≤ 1. Now, let us estimate p({ω; max
γ≤i≤δ

|1
i

i
∑

j=1

ξj(ω)| >

ǫ}). Since the random variables ξi are standard for all i ∈ FN, we can take any
infinite ρ ∈ N and the formula

p({ω; (∀i ∈ FN)(|ξi(ω)| ≥ ρ)}) .
= 0

holds. Hence, by Prolongation Axiom, there is an infinite τ such that

(4) p({ω; (∀i ≤ τ)(|ξi(ω)| ≥ ρ)}) .
= 0
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holds. So, a straightforward computation gives

(5) p











ω; max
γ≤i≤δ

∣

∣

∣

∣

∣

∣

1

i

i
∑

j=1

ξj(ω)

∣

∣

∣

∣

∣

∣

> ǫ









 ≤ p( max
γ≤i≤δ

|ζi| > ǫ) =

δ
∑

i=γ

p(ai).

From (4) we get

(6)

ρ2

γ2

τ
∑

i=1

p(ξi ≤ ρ) +

δ
∑

i=τ+1

1

i2
· δ̃2(ξi) ≥ E2(ζδ) ≥

δ
∑

k=γ

∑

ω∈ak

ζ2δ p({ω}) ≥

≥ ǫ2 ·
δ
∑

k=γ

p(ak).

Up to now, ρ has been arbitrarily chosen, hence we can take it in such a way that
ρ � γ, and then, by (5), (6) and Property (c) we get

p











ω; max
γ≤i≤δ

∣

∣

∣

∣

∣

∣

1

i

i
∑

j=1

ξj(ω)

∣

∣

∣

∣

∣

∣

> ǫ











.
= 0,

and this implies the assertion in question. �

Example 2 (The normal probability distribution.). Denote ϑi the random vari-
ables which achieve just two values 1 and −1 with p(ϑi = 1) = 1/2 and
p(ϑi = −1) = 1/2 and let {ϑi}γ

i=1 be a sequence of independent random vari-

ables. Further denote η =
1√
γ

γ
∑

i=1

ϑi.
4 By Theorem 5b, we know that η is

a standard random variable, and, by Theorem 4, we know that E1(η) = 0 and
E2(η) = 1. This probability distribution we will call normal. It is just an easy
exercise to show that η has its expected value of each finite order.

It is known that, if {ηi}δ
i=1 is a sequence of our normally distributed, indepen-

dent, random variables and {θi}δ
i=1 is a sequence of positive rational numbers,

δ � γ, γ being the very number from Example 2, then the probability distribution

of the random variable
1

√

∑δ
i=1 θ2i

δ
∑

i=1

θi · ηi is infinitesimally shifted from the,

already defined, normal probability distribution.

4By
√

γ we will understand any number ǫ ∈ Q such that ǫ2 =γ γ. In the next theorem we
will use the symbol

√
γ also for δ-numbers. In that case by

√
γ we will understand an ǫ ∈ Q

such that ǫ2 =δ γ.
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Theorem 7 (The central limit theorem.). Let {ξi}δ
i=1 be a sequence of indepen-

dent random variables with the following properties, holding for each i ≤ δ

(a) δ̃1ξi = 0,

(b) 0 6= δ̃2ξi . S2/δ,

(c)

δ
∑

i=1

p(|ξi| ≥ S/γ)
.
= 0 for a γ �

3
√

δ,

where S2 =
δ
∑

i=1

δ̃2ξi and S =
√

S2. Further, let {ηi}δ
i=1 be a sequence of indepen-

dent, normally distributed random variables. Then the probability distributions

of
1

S

δ
∑

i=1

ξi and
1

S

δ
∑

i=1

√

δ̃2(ξi) · ηi are infinitesimally shifted.

Proof: Denote ζi =
√

δ̃2(ξi) · ηi. By Theorem 2 we know that, in order to prove

our assertion, it is enough to prove that the expected values of each finite order

of the random variables
1

S

δ
∑

i=1

ξi and
1

S

δ
∑

i=1

ζi equal each other. By Theorem 4

and Properties (a-c), their expected values of the first and second orders equal
each other. So, by Lemma 2 and Property (c), since we know that a normally
distributed random variable has expected values of all finite orders, it is enough
to prove that for each n ∈ FN, n ≥ 3

(7) 0
.
=
∑

ω∈Ω̄





(

1

S

δ
∑

i=1

ξi(ω)

)n

p({ω})−
(

1

S

δ
∑

i=1

ζi(ω)

)n

p({ω})



 ,

where Ω̄ is a subset of the common probability space of the random variables

ξi and ζi, Ω̄ ⊆
δ
∏

i=1

Ωi ×
δ
∏

i=1

Ω′i, such that for each i ≤ δ and each ω ∈ Ω̄

|ξi(ω)| ≤ S/γ, |ζi(ω)| ≤ S/γ holds. Suppose, we have already proved For-

mula (7) for all n < m. So, let us prove it for m. Denote θi =

i−1
∑

j=1

ξj +

δ
∑

j=i+1

ζi.

Obviously, it is enough to prove that for each i ≤ δ

(8) 0 =δ

∑

ω∈Ω̄

((

1

S
(θi(ω) + ξi(ω))

)m

p({ω})−
(

1

S
(θi(ω) + ζi(ω))

)m

p({ω})
)

holds. And, of course, we can assume Formula (8) to be already proved for all
m < n. Because of Properties (b) and (c), without loss of generality, we can
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assume for each i ≤ δ p(|ξi| > S/γ) =δ 0 and p(|ζi| > S/γ) =δ 0. Hence,

∑

ω∈Ω̄

((

1

S
(θi(ω) + ξi(ω))

)m

p({ω})−
(

1

S
(θi(ω) + ζi(ω))

)m

p({ω})
)

=δ(9)

=δ
1

Sm
·
∑

ω∈Ω̄
p({ω}) ·

(

(θi(ω)
m − θi(ω)

m) +

(

m

1

)

θi(ω)
m−1(ξi(ω)− ζi(ω))+

+

(

m

2

)

θi(ω)
m−2(ξi(ω)

2 − ζi(ω)
2) + · · ·+ ξi(ω)

m − ζi(ω)
m

)

.

Since the random variables θi, ξi, ζi are mutually independent and since For-
mula (8) has already been proved for all m < n, we get

1

Sm
·
∑

ω∈Ω̄
p({ω}) ·

(

m

k

)

θi(ω)
m−k(ξi(ω)

k − ζi(ω)
k) =δ

=δ
1

Sm

(

m

k

)

∑

ω∈Ω̄
θi(ω)

m−kp({ω}) ·
∑

ω∈Ω̄
(ξi(ω)

k − ζi(ω)
k)p({ω}) =δ 0,

and hence the right-hand side of Formula (9) is δ-equal to

∑

ω∈Ω̄

ξi(ω)
m − ζi(ω)

m

Sm
· p({ω}).

Because of Property (c) and our assumption m ≥ 3,
∑

ω∈Ω̄

|ξi(ω)|m
Sm

p({ω}) =δ

∑

ω∈Ω̄

|ζi(ω)|m
Sm

p({ω}) ≤δ
Sm

γm · Sm
=δ

1

γm
=δ 0

holds, and this implies our assertion. �
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